Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication

  Authors

Praveen Sharma

  Keywords

Lebesgue , Parseval Identity , inner product space , separable

  Abstract


documentclass[11pt]{article} usepackage{fullpage} usepackage{amsfonts} usepackage{amsmath} usepackage{amssymb} usepackage{amsthm} ewtheorem{theorem}{Theorem}[section] egin{document} itle{Hardy Hilbert spaces and its applications} author{Praveen Sharma Department of Mathematics, University of Delhi} date{} maketitle section*{Abstract} In this paper , we discuss the Hardy Hilbert Space on the open disk with center origin and radius unity. We have proved that $H^2$ Space is isomorphic to proper subspace of $L^2$ Space which has various applications in Quantumm Mechanics. section{Preliminaries} subsubsection{Definition(Inner Product Space)} An extit{inner product space} is an vector space $W$ (over field $K=mathbb{R}ormathbb{C}$) with an inner product defined on it. Here, an inner product is an function $<,> : W imes W o K$ which satisfies the following properties:-- egin{enumerate} item $<alpha u+v,w>hspace{1cm} =hspace{1cm} alpha<u,w> + <v,w>$ item $ overline{<u,v>} hspace{2cm} =hspace{1cm} <v,u> $ item $<u,u> hspace{2cm} geq 0$ item $ <u,u> = 0 hspace{1cm} Leftrightarrow u = 0$ hspace{1cm} ( extbf{ for all scalers $alphain K$ and for all vectors $u,v,win W$}) paragraph{Note1} extbf{ Every inner product space is an normed spaces with the norm induced by the inner product is given by} egin{center} $||u|| = sqrt{<u,u>}$ end{center} paragraph{Note2} extbf{An normed space $(W,||.||)$ is said to be complete if each cauchy sequence coverges in $W$.} end{enumerate} subsection{Hilbert Space} An Hilbert Space is defined as the complete inner product space.smallskip extbf{Example:-} smallskip egin{center} egin{large} extbf{$l^2 = {(x_0,x_1,ldots ) : x_n in mathbb{C}, sum_{n=0}^infty |x_n|^2 <infty }$}end{large} end{center} i.e. all the elements of $l^2$ are the sequence of all the complex numbers that are square-summable. Inner product on $l^2$ is given by :- egin{center} extbf{$ <(x_n)_{n=0}^infty , (y_n)_{n=0}^infty> = sum_{n=0}^infty{x_noverline{y_n}}$} hspace{1cm} ( extsc{it is an hilbert sequence space)} end{center} subsection{Definition(Orthonormal sets and sequences)} An subset $X$ of an inner product space is said to be orthonormal if for all $u, v in X $ we have , $$ <u,v> = left{egin{array}{ll} 0 & mathrm{if} u eq v ||u||^2 & mathrm{if} u=v end{array} ight. .$$ paragraph{Note} extbf{If norm of each element of an orthogonal set $X$ is 1 then the set is said to be orthogonal. i.e for all $u,v in X$ we have, } $$ <u,v> = left{ egin{array}{ll} 0 & mathrm{if} u eq v 1 & mathrm{if} u =v end{array} ight. $$ subsection{Definition(Orthonormal basis)} An orthonormal subset $X$ of Hilbert space $W$ is said to be an orthonormal basis if span of $X$ is dense in $W$.i.e. $$overline{spanX} = W $$ paragraph{Note} Every Hilbert space $W eq{0}$ has an orthonormal basis. subsection{Definition(Separable Hilbert Space)} An Hilbert-Space $W$ is said to be extit{separable} if there exist an countable set which is dense in $W$.smallskip extbf{Example:} $l^2$ is an separable Hilbert space paragraph{Note} Each orthonormal basis of an separable Hilbert space are countable.Therefore orthonormal basis of $l^2$ are countable subsection*{Recall} egin{enumerate} item An orthonormal sequence $(e_n)_{n=0}^infty$ is an orthonormal basis of an Hilbert - Space $W$ egin{LARGE}$$Leftrightarrow$$end{LARGE} for all $uin W$ we havehspace{2cm}$ sum_{n=0}^infty|<u,e_n>|^2 = ||u||^2$ cite{kreyszig1978introductory} hspace{0.5cm} extbf{Parseval identity} item Let $(e_n)$ be an orthonormal sequence in an Hilbert-space then $$ sum_{n=0}^inftyalpha_ne_n$$ converges in $W$ $$iff$$ the series $$sum_{n=0}^infty|alpha_n|^2$$ converges in $mathbb{R}$ end{enumerate} section{THE HARDY-HILBERT SPACE} subsection{DEFINITION} { It is defined as the space of all the analytic functions which have a power series representation about origin with square-summable complex coefficients. It is denoted by extbf{ $H^2$}. $$ H^2 = { f : f(z) = sum_{n=0}^infty alpha_nz^n : sum_{n=0}^infty|alpha_n|^2 <infty}$$ Inner Product on $H^2$ is given by $$<f,g> =sum_{n=0}^infty a_noverline{b_n}$$ for $ f(z) = sum_{n=0}^infty a_nz^n hspace{0.5cm} and hspace{0.5cm} g(z) = sum_{n=0}^infty b_nz^nhspace{0.3cm} in hspace{0.2cm} H^2$ egin{theorem} extbf{The Hardy-Hilbert space is an separable Hilbert Space.} end{theorem} egin{proof} Define an function;-- $$ phi:l^2 o H^2$$ given by $$ (a_n)_{n=0}^infty o sum_{n=0}^infty a_nz^n$$ egin{itemize} item extbf{underline{ $phi$ is well defined}} since hspace{1cm} $ (a_n)_{n=0}^infty in l^2 Rightarrow sum_{n=0}^infty |a_n|^2 <infty Rightarrow sum_{n=0}^infty a_nz^n $ hspace{1cm} which being an power series is an analytic function whose coefficients are square summable hence is in $H^2$ $ herefore phi$ is well defined item extbf{underline{Clearly $phi$ is linear}} item extbf{underline{ $phi$ is isometric}} Fix $(a_n)_{n=0}^infty in l^2 $ then we have $$phi((a_n)_{n=0}^infty) = ||sum_{n=0}^infty a_nz^n||_{H^2} = sqrt{sum_{n=0}^infty |a_n|^2} =||(a_n)_{n=0}^infty||_{l^2} $$ $ herefore phi$ is an isometric $ herefore phi$ preserves the norm so that the inner product item extbf{since isometry property implies one one property$ herefore phi$ is one one } cite{bhatia2009notes} item extbf{underline{$phi$ is onto}}smallskip Let $f in H^2$ then $f(z) = sum_{n=0}^infty a_nz^n$ where $sum_{n=0}^infty|a_n|^2<infty$medskip extbf{ define} $x=(a_0,a_1,ldots)$ extbf{Since} $$||x||^2 =sum_{n=0}^infty |a_n|^2 <infty$$ extbf{$$ herefore xin l^2$$} extbf{and}$$phi(x) = f $$ extbf{$$ hereforephi hspace{0.5cm} is hspace{0.5cm} onto$$} end{itemize} extbf{Therefore $phi$ is an vector space isomorphism which also preserves the inner product. Since $l^2$ is an separable Hilbert space hence $H^2$ is also an separable Hilbert Space } end{proof} paragraph{Notations} $mathbb{D}= {z:|z|<1}$ denotes the open unit disk about origin in $mathbb{C}$ $mathbb{S^1} ={z:|z|=1}$ denotes the unit circle about origin in $mathbb{C}$ egin{theorem} extbf{Radius of convergence of each function in $H^2$ is atleast $1$} (i.e. each function in $H^2$ is analytic in the open unit disk $mathbb{D} $) end{theorem} egin{proof} Let $z_0in mathbb{D}$ is fixed $Rightarrowhspace{0.5cm} |z_0|<1$ $ herefore$ the geometric series $sum_{n=0}^infty |z_0|^n$ converges. Let $fin H^2$ is arbitrary.Then $$f(z) = sum_{n=0}^infty a_nz^n hspace{2cm} where hspace{1cm} sum_{n=0}^infty|a_n|^2 <infty$$ Since the series $sum_{n=0}^infty|a_n|^2$ converges $Rightarrow$ $|a_n|^2 longrightarrow 0 Rightarrow|a_n|longrightarrow 0$ $ herefore (|a_n|)_{n=0}^infty$ is an convergent sequence hence bounded. $ herefore exists M>0 $ such that $$ |a_n|leq M hspace{2cm} forall hspace{1cm} ngeq0$$ Now $$sum_{n=0}^infty|a_nz_0^n| leq Msum_{n=0}^infty|z_0|^n $$ where being an geometric series right hand side converges. $ herefore$ By Comparison test the series $ sum_{n=0}^infty a_nz_0^n$ converges absolutely . Since in Hilbert space absolute convergence implies convergence. $ herefore$ the series $sum_{n=0}^infty a_nz_0^n$ converges in $H^2$ since $z_0in H^2$ is arbitrary $ herefore$ each function in $H^2$ is analytic in the unit disk $mathbb{D}$ end{proof} subsection{Definition ($L^2(mathbb{S^1})$ space)} It is defined as the space of all the equivalence classes of functions cite{royden2010real} that are Lebesgue measurable on $S^mathbb{1}$ and square integrable on $S^mathbb{1}$ with respect to Lebesgue measure normalized such that measure of $S^mathbb{1}$ is $1$. $$ L^2(S^mathbb{1}) = {f: f hspace{0.2cm} ishspace{0.2cm} Lesbesgue hspace{0.2cm} measurable hspace{0.2cm} onhspace{0.2cm} mathbb{S^1} hspace{0.2cm} andhspace{0.3cm} frac{1}{2pi}int_0^{2pi}|f(e^{iota heta)}|^2d heta<infty } $$ Inner product on $L^2(mathbb{S^1})$ is given by - $$<f,g> = frac{1}{2pi}int_0^{2pi} f(e^{iota heta})overline{g(e^{iota heta})}d heta$$ paragraph{Note} $L^2(mathbb{S^1})$ is an Hilbert-space with the orthonormal basis given by ${e_n: nin mathbb{Z}}$ where $e_n(e^{iota heta})= e^{iota n heta}.$ extbf{Therefore} $$L^2(mathbb{S^1}) =left {f:f=sum_{n=-infty}^{n=infty}<f,e_n>e_n ight}.$$.cite{martinez2007introduction} subsubsection{Definition ($widehat{H^2}$ space)} $$widehat{H^2} = {f in L^2(mathbb{S^1}): <f,e_n> =0hspace{0.2cm} forhspace{0.2cm} negativehspace{0.2cm} valuehspace{0.2cm} ofhspace{0.2cm} n }$$ $$widehat{H^2} = left{f in L^2(mathbb{S^1}) : f= sum_{n=0}^infty <f,e_n>e_n ight }.$$ extbf{$widehat{H^2}$ is an subspace of $L^2(mathbb{S^1})$ whose negative Fourier coefficients are 0 $ herefore $ ${e_n : n=0,1,ldots }$ are orthonormal basis of $widehat{H^2}$} egin{theorem} egin{LARGE} extbf{$widehat{H^2}$ is an Hilbert-space}end{LARGE} end{theorem} egin{proof} Let $f in overline{widehat{H^2}}$ then there exist an sequence $(f_n)_{n=0}^infty$medskip such that hspace{2cm} $f_n longrightarrow f$ as $nlongrightarrowinfty$medskip Since hspace{2cm} $f_nin widehat{H^2}hspace{1cm} forall hspace{1cm} ngeq0$medskip $ herefore hspace{3cm} <f_n,e_k>=0 hspace{1cm} forall ngeq0 hspace{1cm} and hspace{1cm} forall k<0$medskip extbf{Now for each $k<0$ we have}medskip $|<f_n,e_k> - <f,e_k>| leq |<(f_n-f,e_k>| leq||f_n - f||longrightarrow 0 hspace{0.3cm} ashspace{0.1cm} nlongrightarrowinfty$(Schwarz Inequality cite{kreyszig1978introductory})medskip since $ hspace{3cm} <f_n,e_k>=0 hspace{1cm} forall ngeq0 hspace{1cm} Rightarrow hspace{1cm} <f,e_k>=0 $medskip Since $k<0$ is arbitrary $ herefore hspace{1cm}<f,e_k>=0 hspace{1cm}forallhspace{1cm} k<0$medskip $$ hereforehspace{1cm} fin widehat{H^2}$$ extbf{Therefore $widehat{H^2}$ is an closed subspace of $L^2(mathbb{S^1})$ Hence an Hilbert-Space} end{proof} egin{theorem} egin{large} extbf{The Hardy-Hilbert space can be identified as a subspace of $L^2(mathbb{S^1})$} end{large} end{theorem} egin{proof} Define an function extbf{$$psi:H^2 owidehat{H^2}$$} $$f o ilde{f}$$ where $f(z)=sum_{n=0}^infty a_nz^n$hspace{1cm} and hspace{1cm} $ ilde{f}=sum_{n=0}^infty a_ne_n$ egin{itemize} item extbf{underline{$psi$ is well defined}}medskip Let $f in H^2$ hspace{0.5cm} Then hspace{0.5cm} $f(z)=sum_{n=0}^infty a_nz^n$ hspace{0.5cm} where hspace{0.5cm} $sum_{n=0}^infty |a_n|^2 <infty$medskip Then by extbf{(recall 2)} the series $ ilde{f} =sum_{n=0}^infty a_ne_n $ converges in $widehat{H^2}$medskip $ hereforepsi$ hspace{0.5cm} is hspace{0.5cm} wellhspace{0.5cm} defined item extbf{underline{Clearly $psi$ is linear}}medskip item extbf{underline{$psi$ is an isometry}}medskip For any arbitrary $fin H^2$ where $f(z)=sum_{n=0}^infty a_nz^n$ we have:- $$ || psi(f)|| = || ilde{f}|| = frac{1}{2pi}int_0^{2pi}| ilde{ f}(e^{iota heta}|^2d heta $$medskip extbf{Now} $$frac{1}{2pi}int_0^{2pi} | ilde{f}(e^{iota heta})|^2 d heta = frac{1}{2pi}int_0^{2pi}(sum_{n=0}^infty a_ne^{iota n heta})(overline{sum_{m=0}^infty a_me^{iota m heta}}) $$ hspace{7cm} = $frac{1}{2pi}int_0^{2pi}sum_{n=0}^infty sum_{m=0}^infty a_noverline{a_m}e^{iota(n-m) heta} d heta$ hspace{7cm} = $sum_{n=0}^infty |a_n|^2$ hspace{1cm} extbf{(since $frac{1}{2pi} int_0^{2pi} e^{iota(n-m) heta} = delta_{nm}$)} hspace{7cm} = $||f||^2$ Since $fin H^2$ is arbitrary extbf{$$ herefore ||psi(f)||hspace{1cm} = hspace{1cm}||f||hspace{1cm} forall hspace{0.5cm} fin H^2$$} egin{large} extbf{Therefore $psi$ is an isometry. Hence it preserves the inner product Isometry $Rightarrow$ one one property. $ herefore psi$ is one one.} end{large} item extbf{underline{$psi$ is Onto}} Let $ ilde{f}in widehat{H^2}$. Then $ ilde{f}=sum_{n=0}^infty<f,e_n>e_n$ where $<f,e_1>,<f,e_2>,ldots$ are Fourier coefficients of f with respect to the orthonormal basis ${e_n: nin mathbb{N}}.$ extbf{Then by Parseval relation we have} $$sum_{n=0}^infty |<f,e_n>|^2 = ||f||^2 < infty $$ extbf{ Define} $$ f =sum_{n=0}^infty a_nz^n hspace{1cm} where hspace{1cm} a_n = <f,e_n>hspace{1cm} forallhspace{1cm} ngeq0$$ extbf{ Since} $$ sum_{n=0}^infty |a_n|^2 = sum_{n=0}^infty |<f,e_n>|^2 = ||f||^2 < infty $$ extbf{Therefore} $$fin H^2$$ extbf{That is for each $ ilde{f}in widehat{H^2}$ there exist $fin H^2$ such that $psi(f) = ilde{f}$ Therefore $psi$ is onto}medskip extbf{ That is $psi$ is an vector space isomorphism which also preserves the norm. Therefore $H^2$ can br identified as a subspace of the $L^2(mathbb{S^1})$ space} end{itemize} end{proof} section{ extbf{ Applications} } egin{enumerate} item In the mathematical rigrous formulation of Quantum Mechanics, developed by extbf{Joh Von Neumann}' the position and momentum states for a single non relavistic spin 0 Particle is the space of all the square integrable functions($L^2$). But $L^2$ have some undesirable properties and $H^2$ is much well behaved space so we work with $H^2$ instead of $L^2$. end{enumerate} ibliographystyle{plain} ibliography{my} end{document} documentclass[11pt]{article} usepackage{fullpage} usepackage{amsfonts} usepackage{amsmath} usepackage{amssymb} usepackage{amsthm} ewtheorem{theorem}{Theorem}[section] egin{document} itle{Hardy Hilbert spaces and its applications} author{Praveen Sharma Department of Mathematics, University of Delhi} date{} maketitle section*{Abstract} In this paper , we discuss the Hardy Hilbert Space on the open disk with center origin and radius unity. We have proved that $H^2$ Space is isomorphic to proper subspace of $L^2$ Space which has various applications in Quantumm Mechanics. section{Preliminaries} subsubsection{Definition(Inner Product Space)} An extit{inner product space} is an vector space $W$ (over field $K=mathbb{R}ormathbb{C}$) with an inner product defined on it. Here, an inner product is an function $<,> : W imes W o K$ which satisfies the following properties:-- egin{enumerate} item $<alpha u+v,w>hspace{1cm} =hspace{1cm} alpha<u,w> + <v,w>$ item $ overline{<u,v>} hspace{2cm} =hspace{1cm} <v,u> $ item $<u,u> hspace{2cm} geq 0$ item $ <u,u> = 0 hspace{1cm} Leftrightarrow u = 0$ hspace{1cm} ( extbf{ for all scalers $alphain K$ and for all vectors $u,v,win W$}) paragraph{Note1} extbf{ Every inner product space is an normed spaces with the norm induced by the inner product is given by} egin{center} $||u|| = sqrt{<u,u>}$ end{center} paragraph{Note2} extbf{An normed space $(W,||.||)$ is said to be complete if each cauchy sequence coverges in $W$.} end{enumerate} subsection{Hilbert Space} An Hilbert Space is defined as the complete inner product space.smallskip extbf{Example:-} smallskip egin{center} egin{large} extbf{$l^2 = {(x_0,x_1,ldots ) : x_n in mathbb{C}, sum_{n=0}^infty |x_n|^2 <infty }$}end{large} end{center} i.e. all the elements of $l^2$ are the sequence of all the complex numbers that are square-summable. Inner product on $l^2$ is given by :- egin{center} extbf{$ <(x_n)_{n=0}^infty , (y_n)_{n=0}^infty> = sum_{n=0}^infty{x_noverline{y_n}}$} hspace{1cm} ( extsc{it is an hilbert sequence space)} end{center} subsection{Definition(Orthonormal sets and sequences)} An subset $X$ of an inner product space is said to be orthonormal if for all $u, v in X $ we have , $$ <u,v> = left{egin{array}{ll} 0 & mathrm{if} u eq v ||u||^2 & mathrm{if} u=v end{array} ight. .$$ paragraph{Note} extbf{If norm of each element of an orthogonal set $X$ is 1 then the set is said to be orthogonal. i.e for all $u,v in X$ we have, } $$ <u,v> = left{ egin{array}{ll} 0 & mathrm{if} u eq v 1 & mathrm{if} u =v end{array} ight. $$ subsection{Definition(Orthonormal basis)} An orthonormal subset $X$ of Hilbert space $W$ is said to be an orthonormal basis if span of $X$ is dense in $W$.i.e. $$overline{spanX} = W $$ paragraph{Note} Every Hilbert space $W eq{0}$ has an orthonormal basis. subsection{Definition(Separable Hilbert Space)} An Hilbert-Space $W$ is said to be extit{separable} if there exist an countable set which is dense in $W$.smallskip extbf{Example:} $l^2$ is an separable Hilbert space paragraph{Note} Each orthonormal basis of an separable Hilbert space are countable.Therefore orthonormal basis of $l^2$ are countable subsection*{Recall} egin{enumerate} item An orthonormal sequence $(e_n)_{n=0}^infty$ is an orthonormal basis of an Hilbert - Space $W$ egin{LARGE}$$Leftrightarrow$$end{LARGE} for all $uin W$ we havehspace{2cm}$ sum_{n=0}^infty|<u,e_n>|^2 = ||u||^2$ cite{kreyszig1978introductory} hspace{0.5cm} extbf{Parseval identity} item Let $(e_n)$ be an orthonormal sequence in an Hilbert-space then $$ sum_{n=0}^inftyalpha_ne_n$$ converges in $W$ $$iff$$ the series $$sum_{n=0}^infty|alpha_n|^2$$ converges in $mathbb{R}$ end{enumerate} section{THE HARDY-HILBERT SPACE} subsection{DEFINITION} { It is defined as the space of all the analytic functions which have a power series representation about origin with square-summable complex coefficients. It is denoted by extbf{ $H^2$}. $$ H^2 = { f : f(z) = sum_{n=0}^infty alpha_nz^n : sum_{n=0}^infty|alpha_n|^2 <infty}$$ Inner Product on $H^2$ is given by $$<f,g> =sum_{n=0}^infty a_noverline{b_n}$$ for $ f(z) = sum_{n=0}^infty a_nz^n hspace{0.5cm} and hspace{0.5cm} g(z) = sum_{n=0}^infty b_nz^nhspace{0.3cm} in hspace{0.2cm} H^2$ egin{theorem} extbf{The Hardy-Hilbert space is an separable Hilbert Space.} end{theorem} egin{proof} Define an function;-- $$ phi:l^2 o H^2$$ given by $$ (a_n)_{n=0}^infty o sum_{n=0}^infty a_nz^n$$ egin{itemize} item extbf{underline{ $phi$ is well defined}} since hspace{1cm} $ (a_n)_{n=0}^infty in l^2 Rightarrow sum_{n=0}^infty |a_n|^2 <infty Rightarrow sum_{n=0}^infty a_nz^n $ hspace{1cm} which being an power series is an analytic function whose coefficients are square summable hence is in $H^2$ $ herefore phi$ is well defined item extbf{underline{Clearly $phi$ is linear}} item extbf{underline{ $phi$ is isometric}} Fix $(a_n)_{n=0}^infty in l^2 $ then we have $$phi((a_n)_{n=0}^infty) = ||sum_{n=0}^infty a_nz^n||_{H^2} = sqrt{sum_{n=0}^infty |a_n|^2} =||(a_n)_{n=0}^infty||_{l^2} $$ $ herefore phi$ is an isometric $ herefore phi$ preserves the norm so that the inner product item extbf{since isometry property implies one one property$ herefore phi$ is one one } cite{bhatia2009notes} item extbf{underline{$phi$ is onto}}smallskip Let $f in H^2$ then $f(z) = sum_{n=0}^infty a_nz^n$ where $sum_{n=0}^infty|a_n|^2<infty$medskip extbf{ define} $x=(a_0,a_1,ldots)$ extbf{Since} $$||x||^2 =sum_{n=0}^infty |a_n|^2 <infty$$ extbf{$$ herefore xin l^2$$} extbf{and}$$phi(x) = f $$ extbf{$$ hereforephi hspace{0.5cm} is hspace{0.5cm} onto$$} end{itemize} extbf{Therefore $phi$ is an vector space isomorphism which also preserves the inner product. Since $l^2$ is an separable Hilbert space hence $H^2$ is also an separable Hilbert Space } end{proof} paragraph{Notations} $mathbb{D}= {z:|z|<1}$ denotes the open unit disk about origin in $mathbb{C}$ $mathbb{S^1} ={z:|z|=1}$ denotes the unit circle about origin in $mathbb{C}$ egin{theorem} extbf{Radius of convergence of each function in $H^2$ is atleast $1$} (i.e. each function in $H^2$ is analytic in the open unit disk $mathbb{D} $) end{theorem} egin{proof} Let $z_0in mathbb{D}$ is fixed $Rightarrowhspace{0.5cm} |z_0|<1$ $ herefore$ the geometric series $sum_{n=0}^infty |z_0|^n$ converges. Let $fin H^2$ is arbitrary.Then $$f(z) = sum_{n=0}^infty a_nz^n hspace{2cm} where hspace{1cm} sum_{n=0}^infty|a_n|^2 <infty$$ Since the series $sum_{n=0}^infty|a_n|^2$ converges $Rightarrow$ $|a_n|^2 longrightarrow 0 Rightarrow|a_n|longrightarrow 0$ $ herefore (|a_n|)_{n=0}^infty$ is an convergent sequence hence bounded. $ herefore exists M>0 $ such that $$ |a_n|leq M hspace{2cm} forall hspace{1cm} ngeq0$$ Now $$sum_{n=0}^infty|a_nz_0^n| leq Msum_{n=0}^infty|z_0|^n $$ where being an geometric series right hand side converges. $ herefore$ By Comparison test the series $ sum_{n=0}^infty a_nz_0^n$ converges absolutely . Since in Hilbert space absolute convergence implies convergence. $ herefore$ the series $sum_{n=0}^infty a_nz_0^n$ converges in $H^2$ since $z_0in H^2$ is arbitrary $ herefore$ each function in $H^2$ is analytic in the unit disk $mathbb{D}$ end{proof} subsection{Definition ($L^2(mathbb{S^1})$ space)} It is defined as the space of all the equivalence classes of functions cite{royden2010real} that are Lebesgue measurable on $S^mathbb{1}$ and square integrable on $S^mathbb{1}$ with respect to Lebesgue measure normalized such that measure of $S^mathbb{1}$ is $1$. $$ L^2(S^mathbb{1}) = {f: f hspace{0.2cm} ishspace{0.2cm} Lesbesgue hspace{0.2cm} measurable hspace{0.2cm} onhspace{0.2cm} mathbb{S^1} hspace{0.2cm} andhspace{0.3cm} frac{1}{2pi}int_0^{2pi}|f(e^{iota heta)}|^2d heta<infty } $$ Inner product on $L^2(mathbb{S^1})$ is given by - $$<f,g> = frac{1}{2pi}int_0^{2pi} f(e^{iota heta})overline{g(e^{iota heta})}d heta$$ paragraph{Note} $L^2(mathbb{S^1})$ is an Hilbert-space with the orthonormal basis given by ${e_n: nin mathbb{Z}}$ where $e_n(e^{iota heta})= e^{iota n heta}.$ extbf{Therefore} $$L^2(mathbb{S^1}) =left {f:f=sum_{n=-infty}^{n=infty}<f,e_n>e_n ight}.$$.cite{martinez2007introduction} subsubsection{Definition ($widehat{H^2}$ space)} $$widehat{H^2} = {f in L^2(mathbb{S^1}): <f,e_n> =0hspace{0.2cm} forhspace{0.2cm} negativehspace{0.2cm} valuehspace{0.2cm} ofhspace{0.2cm} n }$$ $$widehat{H^2} = left{f in L^2(mathbb{S^1}) : f= sum_{n=0}^infty <f,e_n>e_n ight }.$$ extbf{$widehat{H^2}$ is an subspace of $L^2(mathbb{S^1})$ whose negative Fourier coefficients are 0 $ herefore $ ${e_n : n=0,1,ldots }$ are orthonormal basis of $widehat{H^2}$} egin{theorem} egin{LARGE} extbf{$widehat{H^2}$ is an Hilbert-space}end{LARGE} end{theorem} egin{proof} Let $f in overline{widehat{H^2}}$ then there exist an sequence $(f_n)_{n=0}^infty$medskip such that hspace{2cm} $f_n longrightarrow f$ as $nlongrightarrowinfty$medskip Since hspace{2cm} $f_nin widehat{H^2}hspace{1cm} forall hspace{1cm} ngeq0$medskip $ herefore hspace{3cm} <f_n,e_k>=0 hspace{1cm} forall ngeq0 hspace{1cm} and hspace{1cm} forall k<0$medskip extbf{Now for each $k<0$ we have}medskip $|<f_n,e_k> - <f,e_k>| leq |<(f_n-f,e_k>| leq||f_n - f||longrightarrow 0 hspace{0.3cm} ashspace{0.1cm} nlongrightarrowinfty$(Schwarz Inequality cite{kreyszig1978introductory})medskip since $ hspace{3cm} <f_n,e_k>=0 hspace{1cm} forall ngeq0 hspace{1cm} Rightarrow hspace{1cm} <f,e_k>=0 $medskip Since $k<0$ is arbitrary $ herefore hspace{1cm}<f,e_k>=0 hspace{1cm}forallhspace{1cm} k<0$medskip $$ hereforehspace{1cm} fin widehat{H^2}$$ extbf{Therefore $widehat{H^2}$ is an closed subspace of $L^2(mathbb{S^1})$ Hence an Hilbert-Space} end{proof} egin{theorem} egin{large} extbf{The Hardy-Hilbert space can be identified as a subspace of $L^2(mathbb{S^1})$} end{large} end{theorem} egin{proof} Define an function extbf{$$psi:H^2 owidehat{H^2}$$} $$f o ilde{f}$$ where $f(z)=sum_{n=0}^infty a_nz^n$hspace{1cm} and hspace{1cm} $ ilde{f}=sum_{n=0}^infty a_ne_n$ egin{itemize} item extbf{underline{$psi$ is well defined}}medskip Let $f in H^2$ hspace{0.5cm} Then hspace{0.5cm} $f(z)=sum_{n=0}^infty a_nz^n$ hspace{0.5cm} where hspace{0.5cm} $sum_{n=0}^infty |a_n|^2 <infty$medskip Then by extbf{(recall 2)} the series $ ilde{f} =sum_{n=0}^infty a_ne_n $ converges in $widehat{H^2}$medskip $ hereforepsi$ hspace{0.5cm} is hspace{0.5cm} wellhspace{0.5cm} defined item extbf{underline{Clearly $psi$ is linear}}medskip item extbf{underline{$psi$ is an isometry}}medskip For any arbitrary $fin H^2$ where $f(z)=sum_{n=0}^infty a_nz^n$ we have:- $$ || psi(f)|| = || ilde{f}|| = frac{1}{2pi}int_0^{2pi}| ilde{ f}(e^{iota heta}|^2d heta $$medskip extbf{Now} $$frac{1}{2pi}int_0^{2pi} | ilde{f}(e^{iota heta})|^2 d heta = frac{1}{2pi}int_0^{2pi}(sum_{n=0}^infty a_ne^{iota n heta})(overline{sum_{m=0}^infty a_me^{iota m heta}}) $$ hspace{7cm} = $frac{1}{2pi}int_0^{2pi}sum_{n=0}^infty sum_{m=0}^infty a_noverline{a_m}e^{iota(n-m) heta} d heta$ hspace{7cm} = $sum_{n=0}^infty |a_n|^2$ hspace{1cm} extbf{(since $frac{1}{2pi} int_0^{2pi} e^{iota(n-m) heta} = delta_{nm}$)} hspace{7cm} = $||f||^2$ Since $fin H^2$ is arbitrary extbf{$$ herefore ||psi(f)||hspace{1cm} = hspace{1cm}||f||hspace{1cm} forall hspace{0.5cm} fin H^2$$} egin{large} extbf{Therefore $psi$ is an isometry. Hence it preserves the inner product Isometry $Rightarrow$ one one property. $ herefore psi$ is one one.} end{large} item extbf{underline{$psi$ is Onto}} Let $ ilde{f}in widehat{H^2}$. Then $ ilde{f}=sum_{n=0}^infty<f,e_n>e_n$ where $<f,e_1>,<f,e_2>,ldots$ are Fourier coefficients of f with respect to the orthonormal basis ${e_n: nin mathbb{N}}.$ extbf{Then by Parseval relation we have} $$sum_{n=0}^infty |<f,e_n>|^2 = ||f||^2 < infty $$ extbf{ Define} $$ f =sum_{n=0}^infty a_nz^n hspace{1cm} where hspace{1cm} a_n = <f,e_n>hspace{1cm} forallhspace{1cm} ngeq0$$ extbf{ Since} $$ sum_{n=0}^infty |a_n|^2 = sum_{n=0}^infty |<f,e_n>|^2 = ||f||^2 < infty $$ extbf{Therefore} $$fin H^2$$ extbf{That is for each $ ilde{f}in widehat{H^2}$ there exist $fin H^2$ such that $psi(f) = ilde{f}$ Therefore $psi$ is onto}medskip extbf{ That is $psi$ is an vector space isomorphism which also preserves the norm. Therefore $H^2$ can br identified as a subspace of the $L^2(mathbb{S^1})$ space} end{itemize} end{proof} section{ extbf{ Applications} } egin{enumerate} item In the mathematical rigrous formulation of Quantum Mechanics, developed by extbf{Joh Von Neumann}' the position and momentum states for a single non relavistic spin 0 Particle is the space of all the square integrable functions($L^2$). But $L^2$ have some undesirable properties and $H^2$ is much well behaved space so we work with $H^2$ instead of $L^2$. end{enumerate} ibliographystyle{plain} ibliography{my} end{document} In this paper , we discuss the Hardy Hilbert Space on the open disk with center origin and radius unity. We have proved that H2 Space is isomorphic to proper subspace of L2 Space which has various applications in Quantumm Mechanics.

  IJCRT's Publication Details

  Unique Identification Number - IJCRT2003278

  Paper ID - 192742

  Author type - Indian Author

  Page Number(s) - 1980-1986

  Pubished in - Volume 8 | Issue 3 | March 2020

  DOI (Digital Object Identifier) -   

  No Of Downloads - 1385

  Author Country - 121004, India, Faridabad, Faridabad, India, Mathematics

  Publisher Name - IJPUBLICATION | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Published Paper PDF : - http://www.ijcrt.org/papers/IJCRT2003278

  Published Paper URL: : - http://ijcrt.org/viewfull.php?&p_id=IJCRT2003278

  Published Paper PDF Downlaod: - download.php?file=IJCRT2003278

  Cite this article

Praveen Sharma,   "HARDY SPACES ON THE DISK AND ITS APPLICATIONS", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.8, Issue 3, pp.1980-1986, March 2020, Available at :http://www.ijcrt.org/papers/IJCRT2003278.pdf

  Share this article

  Article Preview

  Types of Articles invited

Research Papers, Survey Papers, Study Papers, Subjective Papers, Experimental Result Papers, Analysis Study Research Papers, Informative Article, Comparison Papers, Case Studies Papers, Review Papers, Comparative Studies, Dissertation Chapters, Research Proposals or Synopsis, Working Projects, New Innovation & Idea, Prototypes and Models and many More

  Call For Paper

  About IJCRT (Refereed Journal, Peer Journal and Indexed Journal )

About IJCRT

The International Journal of Creative Research Thoughts (IJCRT) aims to explore advances in research pertaining to applied, theoretical and experimental Technological studies. The goal is to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working in and around the world.

IJCRT is Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool), Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

The open access supports the rights of users to read, download, copy, distribute, print, search, or link to the full texts of these articles provided they are properly acknowledged and cited.


Indexing In Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar | AI-Powered Research Tool, Microsoft Academic, Academia.edu, arXiv.org, Research Gate, CiteSeerX, ResearcherID Thomson Reuters, Mendeley : reference manager, DocStoc, ISSUU, Scribd, and many more

International Journal of Creative Research Thoughts (IJCRT)
ISSN: 2320-2882 | Impact Factor: 7.97 | Impact Factor: 7.97 and Monthly-Peer-reviewed, and Refereed Journals.
Open Access Processing Charges or Publication fees with free DOI : ₹1500 INR for Indian author & 55$ for foreign International author.

Refereed Journal, Peer Journal and Indexed Journal
Publication Issue Frequency : Monthly (12 issue Per Year Annually)
Journal Discipline and Subject : Multidisciplinary,Monthly,Multilanguage (Regional language supported) .
Publisher and Managed By : IJPUBLICATION (ijpublication.org).
Publication Supported Languages: Allow All Multiple Languages (Regional language supported).


Provide DOI and Hard copy of Certificate.
High impact factor and 50+ index database and Fast paper publication.
Nominal Fee for Professional Research Services, Low cost research journal.
Publication Guidelines : COPE Guidelines
Quick, Fast, automatic Speedy Review and publication Process
Notification of Review Result and publication - Within 02-03 Days.
Provide Free e-certificate to all author and DOI (Digital Object Identifiers) to All Paper.
Download all digital data from website anytime lifetime available.
Indexing of paper in all major online journal databases.

Low Publication Charge 1500 INR per single paper Publication with Maximum 5 Author for indian author & 55$ for foreign International author.

Paper Submission Till : 29 May 2024
Review Results (Acceptance/Rejection) Notification : Within 02-03 Days
Paper Publication Time : Paper Publish: Within 02-03 Days after submitting all the required documents.

Submit your Paper Submit your paper


Call For Paper (Volume 12 | Issue 5 | Month- May 2024)

Licence and Indexing

Indexing In Google Scholar, ResearcherID Thomson Reuters, Mendeley : reference manager, Academia.edu, arXiv.org, Research Gate, CiteSeerX, DocStoc, ISSUU, Scribd, and many more | High Impact Factor: 7.97 | Digital object identifier (DOI) and Hard Copy of certificate Provided.







Licence

DOIIJCRT Research Journal
ISSN Approved
Impact Factor: 7.97 IJCRT Research Journal
Creative Common IJCRT Research Journal
Valid as per new UGC Gazette regulations IJCRT Research Journal

Features

Impact Factor: 7.97 and ISSN approved.
Impact Factor: 7.97 Calculated by google scholar
Call For Paper (Volume 12 | Issue 5 | Month- May 2024)
Quick, Fast, automatic Speedy Review Process
Notification of Review Result - Within 02-03 Days.
Publication of Paper - Within 02-03 Days.

Provide Free DOI(Digital Object Identifiers) to All Paper.
Provide Hard copy of certificate based on request.
Indexing of paper in all major online journal databases.
SEO effective and Automated Metadata Citation Generator.

Open-Access peer reviewed International Journal
Fully Automated and Secure https Website
Author can Check Publication Process status online.
EMail and SMS notification to the author for each Process stage.
Paper and Soft Copy of "Certificate" Available life time on website.

Qualifed & Experience Reviewers from Well-known Institutes/Universities among the world.
Social Media, Email and Call Support 24*7.
Google Scholar, ResearcherID Thomson Reuters Indexing.
Author Research Guidelines & Support.

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper May 2024
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A Free digital object identifier by DOI.one How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer