Hardy spaces on the disk and its applications

Praveen Sharma
P.G. Student
Department of Mathematics
University of Delhi, Delhi, India

Abstract
In this paper, we discuss the Hardy Hilbert Space on the open disk with center origin and radius unity. We have proved that H^2 Space is isomorphic to proper subspace of L^2 Space which has various applications in Quantum Mechanics.

Keywords: Lebesgue, Parseval Identity, Separable, orthonormal

1 Preliminaries

1.0.1 Definition (Inner Product Space)
An inner product space is a vector space W (over field $K = \mathbb{R}$ or \mathbb{C}) with an inner product defined on it. Here, an inner product is a function $\langle , \rangle: W \times W \rightarrow K$ which satisfies the following properties:

1. $\langle \alpha u + v, w \rangle = \alpha \langle u, w \rangle + \langle v, w \rangle$
2. $\langle u, v \rangle = \langle v, u \rangle$
3. $\langle u, u \rangle \geq 0$
4. $\langle u, u \rangle = 0 \Leftrightarrow u = 0$ (for all scalars $\alpha \in K$ and for all vectors $u,v,w \in W$)

Note 1: Every inner product space is a normed space with the norm induced by the inner product is given by

$$\sqrt{||u||^2} = \langle u, u \rangle$$

Note 2: An normed space $(W, ||\cdot||)$ is said to be complete if each Cauchy sequence converges in W.

1.1 Hilbert Space
An Hilbert Space is defined as the complete inner product space.
Example:

$$l^2 = \{(x_0, x_1, \ldots) : x_n \in \mathbb{C}, \sum_{n=0}^{\infty} |x_n|^2 < \infty\}$$

i.e. all the elements of l^2 are the sequence of all the complex numbers that are square-summable. Inner product on l^2 is given by:

$$\langle (x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty} \rangle = \sum_{n=0}^{\infty} x_n y_n$$

(it is an Hilbert sequence space)
1.2 Definition (Orthonormal sets and sequences)

An subset X of an inner product space is said to be orthonormal if for all $u, v \in X$ we have,

$$< u, v > = \begin{cases} 0 & \text{if } u \neq v \\ \|u\|^2 & \text{if } u = v. \end{cases}$$

Note If norm of each element of an orthogonal set X is 1 then the set is said to be orthogonal. i.e for all $u, v \in X$ we have,

$$< u, v > = \begin{cases} 0 & \text{if } u \neq v \\ 1 & \text{if } u = v. \end{cases}$$

1.3 Definition (Orthonormal basis)

An orthonormal subset X of Hilbert space W is said to be an orthonormal basis if span of X is dense in W. i.e.

$$\text{Span } X = W$$

Note Every Hilbert space W not equals to $\{0\}$ has an orthonormal basis.

1.4 Definition (Separable Hilbert Space)

A Hilbert-space W is said to be separable if there exist a countable set which is dense in W.

Example: l_2 is a separable Hilbert space

Note Each orthonormal basis of an separable Hilbert space are countable. Therefore orthonormal basis of l_2 are countable

Recall

1. An orthonormal sequence (e_n) is an orthonormal basis of a Hilbert - Space W

for all $u \in W$ we have

$$\sum_{n=0}^{\infty} |< u, e_n >|^2 = \|u\|^2$$

Parseval identity

2. Let (e_n) be an orthonormal sequence in a Hilbert-space then

$$X = \sum_{n=0}^{\infty} X |\alpha_n|^2$$

converges in W iff

the series

$$\sum_{n=0}^{\infty} \sum_{|\alpha_n|^2 < \infty}$$

converges in \mathbb{R}

2 THE HARDY-HILBERT SPACE

2.1 Definition

It is defined as the space of all the analytic functions which have a power series representation about origin with square-summable complex coefficients. It is denoted by H^2.

$$H^2 = \{ f : f(z) = \sum_{n=0}^{\infty} \alpha_n z^n : \sum_{n=0}^{\infty} |\alpha_n|^2 < \infty \}$$
Inner Product on H^2 is given by

$$< f, g >= \sum_{n=0}^{\infty} a_n \overline{b_n}$$

for $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ in H^2

Theorem 2.1. The Hardy-Hilbert space is a separable Hilbert Space.

Proof: Define an function;

$$\Phi : l^2 \rightarrow H^2$$
given by

$$\Phi(a_n)_{n=0}^{\infty} \rightarrow X a_n z^n$$

- **Φ is well defined** since $(a_n)_{n=0}^{\infty} \in l^2 \Rightarrow |a_n|^2 < \infty \Rightarrow \sum_{n=0}^{\infty} |a_n|^2 < \infty$ which being an power series is an analytic function whose coefficients are square summable hence is in H^2. ∴ Φ is well defined.

- **Clearly Φ is linear**

- **Φ is isometric**

 Fix $(a_n)_{n=0}^{\infty} \in l^2$ then we have

 $\Phi((a_n)_{n=0}^{\infty}) = \|\sum_{n=0}^{\infty} a_n z^n\|_{H^2} = \sum_{n=0}^{\infty} |a_n|^2 = \|(a_n)_{n=0}^{\infty}\|_{l^2}$

 ∴ Φ is an isometric.

- **since isometry property implies one one property**

 ∴ Φ is one one [1]

- **Φ is onto**

Let $f \in H^2$ then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ where $\sum_{n=0}^{\infty} |a_n|^2 < \infty$

define $x = (a_0, a_1, ...)$ Since

$$\|x\|^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty$$

∴ $x \in l^2$

and

$$\Phi(x) = f$$

∴ Φ is onto.

Therefore Φ is an vector space isomorphism which also preserves the inner product.

Since l^2 is an separable Hilbert space hence H^2 is also an separable Hilbert Space.
Notations $D = \{ z : |z| < 1 \}$ denotes the open unit disk about origin in C $S^1 = \{ z : |z| = 1 \}$ denotes the unit circle about origin in C.

Theorem 2.2. Radius of convergence of each function in H^2 is atleast 1

(i.e. each function in H^2 is analytic in the open unit disk D)

Proof. Let $z_0 \in D$ is fixed \Rightarrow $|z_0| < 1$ \Rightarrow the geometric series $\sum_{n=0}^{\infty} |z_0|^n$ converges. Let $f \in H^2$ is arbitrary. Then

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

where

$$\sum_{n=0}^{\infty} |a_n|^2 < \infty$$

Since the series $\sum_{n=0}^{\infty} |a_n|^2$ converges $\Rightarrow |a_n|^2 \to 0 \Rightarrow |a_n| \to 0$

$\therefore \{ |a_n| \}_{n=0}^{\infty}$ is a convergent sequence hence bounded. $\therefore \exists M > 0$ such that

$$|a_n| \leq M \quad \forall \quad n \geq 0$$

Now

$$\sum_{n=0}^{\infty} |a_n z_n^n| \leq M \sum_{n=0}^{\infty} |z_0|^n$$

where being an geometric series right hand side converges.

\therefore By Comparison test the series $\sum_{n=0}^{\infty} a_n z_0^n$ converges absolutely. Since in Hilbert space absolute convergence implies convergence.

\therefore the series $\sum_{n=0}^{\infty} a_n z_0^n$ converges in H^2 since $z_0 \in H^2$ is arbitrary \therefore each function in H^2 is analytic in the unit disk D.

2.2 **Definition ($L^2(S^1)$ space)**

It is defined as the space of all the equivalence classes of functions [4] that are Lebesgue measurable on S^1 and square integrable on S^1 with respect to Lebesgue measure normalized such that measure of S^1 is 1.

$$L^2(S^1) = \{ f : f \text{ is Lebesgue measurable on } S^1 \text{ and } \frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta < \infty \}$$

Inner product on $L^2(S^1)$ is given by

$$< f, g > = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) g(e^{i\theta}) d\theta$$

Note $L^2(S^1)$ is an Hilbert-space with the orthonormal basis given by $\{ e_n : n \in \mathbb{Z} \}$ where $e_n(e^{i\theta}) = e^{i\theta}$. Therefore

$$L^2(S^1) = \{ f : f = \sum_{n=\infty}^{n=-\infty} < f, e_n > e_n \}$$

2.2.1 **Definition (Hc^2 space)**

$$Hc^2 = \{ f \in L^2(S^1) : < f, e_n > = 0 \text{ for negative value of } n \}$$

$$Hc^2 = \{ f \in L^2(S^1) : f = \sum_{n=0}^{\infty} < f, e_n > e_n \}$$

Hc^2 is an subspace of $L^2(S^1)$ whose negative Fourier coefficients are 0.
\[
\{ e_n : n = 0, 1, \ldots \} \text{ are orthonormal basis of } H^2
\]

Theorem 2.3. \(H_c^2 \) is an Hilbert-space

Proof. Let \(f \in H_c^2 \) then there exist an sequence \(\{ f_n \}_{n=0}^{\infty} \) such that \(f_n \to f \) as \(n \to \infty \). Since \(f_n \in H_c^2 \) for all \(n \geq 0 \), we have:

\[
\langle f_n, e_k \rangle = 0 \quad \forall \ n \geq 0 \quad \text{and} \quad \forall \ k < 0
\]

Now for each \(k < 0 \) we have:

\[
|\langle f_n, e_k \rangle - \langle f, e_k \rangle| = |\langle f_n - f, e_k \rangle| \to 0 \quad \text{as} \quad n \to \infty \quad \text{(Schwarz Inequality [2])}
\]

Since \(k < 0 \) is arbitrary:

\[
\langle f, e_k \rangle = 0 \quad \forall \ k < 0
\]

Therefore \(H_c^2 \) is a closed subspace of \(L^2(S^1) \) Hence an Hilbert-Space

Theorem 2.4. The Hardy-Hilbert space can be identified as a subspace of \(L^2(S^1) \)

Proof. Define an function \(\psi : H^2 \to \mathbb{H}^2 \) where

\[
\hat{f}(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{and} \quad \hat{\psi}(z) = \sum_{n=0}^{\infty} a_n e_n
\]

- \(\psi \) is well defined

Let \(f \in H^2 \) Then \(\hat{f}(z) = \sum_{n=0}^{\infty} a_n z^n \) where \(\sum_{n=0}^{\infty} |a_n|^2 < \infty \).

Then by (recall 2) the series \(\hat{\psi} = \sum_{n=0}^{\infty} a_n e_n \) converges in \(H^2 \).

- \(\psi \) is well defined

- Clearly \(\psi \) is linear

For any arbitrary \(f \in H^2 \) where \(\hat{f}(z) = \sum_{n=0}^{\infty} a_n z^n \) we have:

\[
||\psi(f)|| = ||\hat{f}|| = \frac{1}{2\pi} \int_{0}^{2\pi} |\hat{f}(e^{i\theta})|^2 d\theta
\]

Now

\[
\frac{1}{2\pi} \int_{0}^{2\pi} |\hat{f}(e^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=0}^{\infty} a_n e^{i\theta} \right)^2 d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=0}^{\infty} a_n e^{i\theta} \right) \left(\sum_{m=0}^{\infty} a_m e^{i\theta} \right)
\]
\[\frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^\infty \sum_{m=0}^\infty a_n \overline{a_m} e^{i(n-m)\theta} d\theta \]
\[= \sum_{n=0}^\infty |a_n|^2 \quad \text{(since} \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-m)\theta} = \delta_{nm}) \]
\[= ||f||^2 \]

Since \(f \in H^2 \) is arbitrary
\[\therefore ||\psi(f)|| = ||f|| \quad \forall \ f \in H^2 \]

Therefore \(\psi \) is an isometry. Hence it preserves the inner product isometry \(\Rightarrow \) one one property.
\[\therefore \psi \text{ is one one.} \]

- \(\psi \) is Onto

Let \(\tilde{f} \in \widehat{H^2} \). Then \(\tilde{f} = \sum_{n=0}^\infty <f, e_n> e_n \)

where \(<f, e_1>, <f, e_2>, ... \) are Fourier coefficients of \(f \) with respect to the orthonormal basis \(\{e_n : n \in N\} \).

Then by Parseval relation we have
\[\sum_{n=0}^\infty |<f, e_n>|^2 = ||f||^2 < \infty \]

\[a_n = <f, e_n> \quad \forall \ n \geq 0 \]

Since \[\sum_{n=0}^\infty X_{n=0}^\infty Ca_n e^{i\theta n} \]
\[\sum_{n=0}^\infty |<f, e_n>|^2 = ||f||^2 < \infty \]
\[\sum_{n=0}^\infty |a_n|^2 = ||f||^2 < \infty \]

That is for each \(\tilde{f} \in \widehat{H^2} \) there exist \(f \in H^2 \) such that \(\psi(f) = \tilde{f} \)

Therefore \(\psi \) is onto

That is \(\psi \) is a vector space isomorphism which also preserves the norm. Therefore \(H^2 \) can be identified as a subspace of the \(L^2(S^1) \) space

\[\square \]

3 Applications

1. In the mathematical rigourous formulation of Quantum Mechanics, developed by \textbf{Joh Von Neumann} the position and momentum states for a single non relavistic spin 0 Particle is the space of all the square integrable functions (\(L^2 \)). But \(L^2 \) have some undesirable properties and \(H^2 \) is much well behaved space so we work with \(H^2 \) instead of \(L^2 \).
References

