Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

CONVOLUTIONAL NEURAL NETWORK-BASED GRAPE LEAF DISEASE DETECTION WITH REGIONAL LANGUAGE INTEGRATION

  Authors

  Jahnavi C,  Varsha P,  Leena J,  Rachana V Murthy

  Keywords

Grape Plant Disease Classification, Image Processing, Deep Learning, Feature Extraction, CNN

  Abstract


The health of grape plants is crucial for ensuring high-quality vineyard yields and maintaining the economic sustainability of viticulture. Effective disease detection is a pivotal aspect of modern agricultural management, as diseases such as black measles, leaf blight, and black rot can significantly impact crop production. This paper discusses research on some advanced methods in the field of grape plant disease detection by incorporating machine learning algorithms and image processing techniques. In this paper, the use of spectral imaging, neural networks, and field-based monitoring systems for early, precise, and cost-effective diagnosis of diseases is discussed and the user interface is in the regional language Kannada for better usability of farmer. By addressing the limitations of traditional manual inspection methods, this research aims to highlight innovative approaches that enhance efficiency and reduce the environmental impact of disease management practices. The findings underscore the potential of precision agriculture in revolutionizing disease control strategies in viticulture.

  IJCRT's Publication Details

  Unique Identification Number - IJCRTBE02086

  Paper ID - 289404

  Page Number(s) - 618-625

  Pubished in - Volume 13 | Issue 7 | July 2025

  DOI (Digital Object Identifier) -   

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Jahnavi C,  Varsha P,  Leena J,  Rachana V Murthy,   "CONVOLUTIONAL NEURAL NETWORK-BASED GRAPE LEAF DISEASE DETECTION WITH REGIONAL LANGUAGE INTEGRATION", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.13, Issue 7, pp.618-625, July 2025, Available at :http://www.ijcrt.org/papers/IJCRTBE02086.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper January 2026
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A digital object identifier by DOI.org How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer