Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

Detecting misinformation on digital platforms: AI and machine learning perspectives

  Authors

  Sakshi Mishra,  Dr. Neha Singh,  Dr. Navita Shrivastava

  Keywords

Fake news identification, machine learning algorithms, natural language processing (NLP), textual data classification, deep learning approaches, and online news authentication.

  Abstract


The exponential rise of social media and digital news platforms has accelerated the dissemination of information, which often includes a substantial portion of misleading or fabricated content, widely known as fake news. This study proposes an integrated framework for misinformation utilizing machine learning methodologies. Through the application of (NLP) techniques and supervised learning models, the system efficiently classifies news articles as authentic or deceptive with notable accuracy. To extract semantic and syntactic characteristics from textual data, approaches such as (TF-IDF) and word embeddings are incorporated. The research further analyzes the performance of diverse machine algorithms, including logistic regression, random forest, and (LSTM) networks, on benchmark datasets. Findings indicate that learning approaches, particularly LSTM, surpass conventional models in capturing subtle patterns linked with fake news. Overall, this work emphasizes the importance of AI-based strategies in addressing misinformation and fostering trustworthy information sharing in the digital landscape.

  IJCRT's Publication Details

  Unique Identification Number - IJCRT2510547

  Paper ID - 295284

  Page Number(s) - e658-e665

  Pubished in - Volume 13 | Issue 10 | October 2025

  DOI (Digital Object Identifier) -   

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Sakshi Mishra,  Dr. Neha Singh,  Dr. Navita Shrivastava,   "Detecting misinformation on digital platforms: AI and machine learning perspectives", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.13, Issue 10, pp.e658-e665, October 2025, Available at :http://www.ijcrt.org/papers/IJCRT2510547.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper February 2026
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A digital object identifier by DOI.org How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer