Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

Fault Tolerance and Recovery Mechanisms in Apache Spark and Kafka Integration

  Authors

  Chetan Kailas Banait,  Om Prashant Ghade

  Keywords

Fault Tolerance , Recovery Mechanisms , Apache Spark , Apache Kafka , Real-time Data Processing , Resilient Distributed Datasets (RDDs) , Check-pointing , Message Durability

  Abstract


The integration of Apache Spark and Apache Kafka has evolved into one of the most influential combinations in real-time data analysis, but fault tolerance and recovery still is a big problem. This research paper investigates fault tolerance mechanisms in such integration. Durability of Kafka messages is achieved by partitioning and replication. Apache Spark relies on resilient Distributed Datasets and checkpointing to handle failures. The research measures their effect on the system's reliability, consistency, and performance. Experiments show that using RDD lineage in Spark and log-based recovery in Kafka brings about considerable improvement in fault tolerance, reducing time and losses of data. Specifically, the findings are that optimizing these recovery procedures is what will make real-time data processing systems more resolute and resilient to failures in a distributed computing environment. This research details the analysis and gives practical recommendations on how to enhance fault tolerance in integrated Spark-Kafka systems.

  IJCRT's Publication Details

  Unique Identification Number - IJCRT2407504

  Paper ID - 265888

  Page Number(s) - e344-e349

  Pubished in - Volume 12 | Issue 7 | July 2024

  DOI (Digital Object Identifier) -   

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Chetan Kailas Banait,  Om Prashant Ghade,   "Fault Tolerance and Recovery Mechanisms in Apache Spark and Kafka Integration", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.12, Issue 7, pp.e344-e349, July 2024, Available at :http://www.ijcrt.org/papers/IJCRT2407504.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper February 2026
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A digital object identifier by DOI.org How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer