Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

Predicting Academic Performance Using Machine Learning Algorithms

  Authors

  Shreya Muley,  Dr. S.K Singh

  Keywords

Logistic Regression, Predicting Academic Performance, Educational Data Mining, Random Forest, Machine Learning

  Abstract


In contemporary education, pupils' academic performance must be predicted correctly. Logistic Regression and Random Forest are examples of machine learning algorithms that can effectively predict students who are more likely to fail. Logistic Regression is used for the assessment and prediction of such issues as timely interventions and customized care which address multiple factors in a student's life. Conversely, Random Forest may handle big data sets well because its precision is remarkable. With a population of 480 students sampled from Kalboard360, this study compares logistic regression and random forest about demographic, educational or behavioral features. The findings reveal the effectiveness of both approaches: Logistic regression has an 81% accuracy rate with some space for improvement while Random Forest has a classification accuracy rate of 89% which shows that it can categorize different student outcomes. Such insights from these algorithms have informed tailored interventions aimed at highlighting the significance of employing Machine Learning techniques within the academic arena and understanding their strengths as well as weaknesses for successful strategies.

  IJCRT's Publication Details

  Unique Identification Number - IJCRT2403734

  Paper ID - 253635

  Page Number(s) - g181-g186

  Pubished in - Volume 12 | Issue 3 | March 2024

  DOI (Digital Object Identifier) -   

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Shreya Muley,  Dr. S.K Singh,   "Predicting Academic Performance Using Machine Learning Algorithms", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.12, Issue 3, pp.g181-g186, March 2024, Available at :http://www.ijcrt.org/papers/IJCRT2403734.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper November 2025
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A digital object identifier by DOI.org How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer