Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

Malicious Website Detection Using Machine Learning

  Authors

  Sreedeep D,  Subin Sunil,  Mathews Varkey

  Keywords

Malicious URL, detection,machine, learning,random forest,cyber security,detection accuracy,,MLP(multi-layer perceptron),deep neural networks

  Abstract


The role that the World Wide Web plays in enabling illegal actions including spam, fraud, and the distribution of malware is examined in this study three times.The focus is on malicious URL detection using machine learning, with Random Forest and MLP demonstrating high accuracy on a dataset of 2.4M URLs. The study addresses challenges posed by dynamic HTML development and proposes a resilient method for accurate malicious webpage detection in cybersecurity. Our approach, overcoming the limitations of traditional antivirus methods, analyzes webpage characteristics to identify malicious intent. In response to the escalating cyber threat landscape, we present a robust cybersecurity method that classifies websites based on URL features using supervised machine learning. The models, trained on a dataset of malicious and benign URLs, are evaluated with Random Forests, Gradient Boosted Decision Trees, and Deep Neural Networks. The paper also tackles challenges like the availability of training data to attackers and the dynamic nature of malicious websites, introducing a paradigm for detecting and countering induced concept drifts."

  IJCRT's Publication Details

  Unique Identification Number - IJCRT2403684

  Paper ID - 253484

  Page Number(s) - f714-f718

  Pubished in - Volume 12 | Issue 3 | March 2024

  DOI (Digital Object Identifier) -   

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Sreedeep D,  Subin Sunil,  Mathews Varkey,   "Malicious Website Detection Using Machine Learning", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.12, Issue 3, pp.f714-f718, March 2024, Available at :http://www.ijcrt.org/papers/IJCRT2403684.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper November 2025
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A digital object identifier by DOI.org How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer