Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

CODED PULSE TRANSMISSION AND CORRELATION FOR ROBUST ULTRASOUND RANGING FROM A LONG-CANE PLATFORM

  Authors

  Punit Kumar

  Keywords

obstacle, detection system,Cane Platform,noise immunity

  Abstract


ABSTRACT: The objective of this research was to increase the independence and safety of the sight impaired by developing an enhanced travel aid in the form of a sensor embedded long cane to reduce the risk of injury from walking into suspended or overhanging objects while providing the sight impaired community with a familiar and well accepted tool. Prior research at the Electromechanical Systems Laboratory had established a theoretical framework for ultrasound-based ranging and spatial obstacle localization from the moving reference frame of a long-cane. A prototype was implemented using analog threshold detection techniques. This research focused on a new approach. A coded pulse was transmitted and correlation techniques were used to identify echoes and determine time of flight. Compared to the prior effort this new approach was more sensitive, had greater noise immunity, and provide greater spatial resolution for obstacle detection. The first step in the coded pulse approach was to generate a transmit pulse with an embedded binary code that is highly distinguishable. A transmit pulse generated by phase modulating a 40 kHz carrier signal with a 13-bit Barker code word, with each bit consisting of 4 cycles of the 40 kHz carrier was used. Digitized representative echoes were used as reference vectors for correlation to account for the effect of the impulse responses of the transducers, the air, and the reflection, on the transmitted pulse. In a detection cycle, the coded pulse was transmitted; the A/D converters took 2600 samples at the 150 kHz sampling rate to capture any echoes from objects between 1 and 4 meters in front of the cane. The receiver data was cross-correlated with the stored echo image to find echoes in the received signal. The correlation peak positions from the upper receiver were then compared to the peak positions from the lower receiver and if they collaborated within the synthetic aperture, the range and height were calculated annunciation was made by a synthesized voice. The new obstacle detection system described above was designed and a prototype was constructed and embedded into the shaft of an 18 mm diameter body of a long cane. Introduction

  IJCRT's Publication Details

  Unique Identification Number - IJCRTRIETS095

  Paper ID - 188813

  Page Number(s) - 665-672

  Pubished in - Volume 6 | Issue 2 | APRIL 2018

  DOI (Digital Object Identifier) -    http://doi.one/10.1729/IJCRT.17907

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Punit Kumar,   "CODED PULSE TRANSMISSION AND CORRELATION FOR ROBUST ULTRASOUND RANGING FROM A LONG-CANE PLATFORM", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.6, Issue 2, pp.665-672, APRIL 2018, Available at :http://www.ijcrt.org/papers/IJCRTRIETS095.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper July 2024
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A Free digital object identifier by DOI.one How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer