Journal IJCRT UGC-CARE, UGCCARE( ISSN: 2320-2882 ) | UGC Approved Journal | UGC Journal | UGC CARE Journal | UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, International Peer Reviewed Journal and Refereed Journal, ugc approved journal, UGC CARE, UGC CARE list, UGC CARE list of Journal, UGCCARE, care journal list, UGC-CARE list, New UGC-CARE Reference List, New ugc care journal list, Research Journal, Research Journal Publication, Research Paper, Low cost research journal, Free of cost paper publication in Research Journal, High impact factor journal, Journal, Research paper journal, UGC CARE journal, UGC CARE Journals, ugc care list of journal, ugc approved list, ugc approved list of journal, Follow ugc approved journal, UGC CARE Journal, ugc approved list of journal, ugc care journal, UGC CARE list, UGC-CARE, care journal, UGC-CARE list, Journal publication, ISSN approved, Research journal, research paper, research paper publication, research journal publication, high impact factor, free publication, index journal, publish paper, publish Research paper, low cost publication, ugc approved journal, UGC CARE, ugc approved list of journal, ugc care journal, UGC CARE list, UGCCARE, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, ugc care list 2021, ugc approved journal in 2021, Scopus, web of Science.
How start New Journal & software Book & Thesis Publications
Submit Your Paper
Login to Author Home
Communication Guidelines

WhatsApp Contact
Click Here

  Published Paper Details:

  Paper Title

A HIGH THROUGHPUT DOUBLE MAC FOR HARDWARE ACCELERATION IN DEEP LEARNING

  Authors

  Anusha C A,  Shylaja V

  Keywords

Ripple Carry Adder,Kogge Stone Adder,Multiply Accumulate unit, Single MAC unit, Double MAC unit,CNN,Deep Learning

  Abstract


Deep learning such as Convolutional Neural Networks (CNNs) are an important workload increasingly demanding high-performance hardware acceleration. One distinguishing feature of deep learning workload is that it is inherently resilient to small numerical errors and works very well with low precision hardware. This paper presents a novel method to double the computation rate of convolutional neural network (CNN) accelerators by packing two multiply-and-accumulate (MAC) operations into one DSP block of off-the-shelf FPGAs (called Double MAC).There are several technical challenges, which we overcome by exploiting the mode of operation in the CNN accelerator. We have validated our method through FPGA synthesis and Verilog simulation, and evaluated our method by applying it to the state-of-the art CNN accelerator. While a general SIMD MAC using a single DSP block seems impossible, our solution is tailored for the kind of MAC operations required for a convolution layer. We find that our Double MAC approach can increase the computation throughput of a CNN layer by twice. In this paper we implement a Multiply Accumulate (MAC) unit based on a modified 8-bit Ripple carry adder which is again replaced by 8-bit Kogge Stone adder (KSA) for a DSP module in order to achieve high throughput. Our evaluation results shows that not only our Double MAC approach can increase the computation throughput of a CNN layer by twice with essentially reduced area, delay and power

  IJCRT's Publication Details

  Unique Identification Number - IJCRT2007387

  Paper ID - 196709

  Page Number(s) - 3754-3762

  Pubished in - Volume 8 | Issue 7 | July 2020

  DOI (Digital Object Identifier) -   

  Publisher Name - IJCRT | www.ijcrt.org | ISSN : 2320-2882

  E-ISSN Number - 2320-2882

  Cite this article

  Anusha C A,  Shylaja V,   "A HIGH THROUGHPUT DOUBLE MAC FOR HARDWARE ACCELERATION IN DEEP LEARNING", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.8, Issue 7, pp.3754-3762, July 2020, Available at :http://www.ijcrt.org/papers/IJCRT2007387.pdf

  Share this article

  Article Preview

  Indexing Partners

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
Call For Paper July 2024
Indexing Partner
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
ISSN and 7.97 Impact Factor Details


ISSN
ISSN
ISSN: 2320-2882
Impact Factor: 7.97 and ISSN APPROVED
Journal Starting Year (ESTD) : 2013
ISSN
DOI Details

Providing A Free digital object identifier by DOI.one How to get DOI?
For Reviewer /Referral (RMS) Earn 500 per paper
Our Social Link
Open Access
This material is Open Knowledge
This material is Open Data
This material is Open Content
Indexing Partner

Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 7.97 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer
indexer