E-Cordial Families Related To Cycle and Path

Mukund v.Bapat

Abstract: The two copies of graph G(p,q) are joined by t paths on n-points each. We represent the family by $G(tP_n)$. The paths are attached at the same fixed point on G. We discuss E-cordiality of C₄(Pn), C₅(Pn), w₄(Pn), C₃PnW₄, C₄PnW₄. We show that under certain conditions these graphs are E-cordial.

Keywords: graph, E-cordial, shel graph, S₅, C₄.

Subject Classification: 05C78

Introduction:

In 1997 Yilmaz and Cahit [4] introduced weaker version of edge graceful labeling E-cordial labeling. Let G be a (p,q) graph. f:E \rightarrow {0,1}Define f on V by f(v) = \sum {f(vu)(vu) $\in E(G)$ {(mod 2). The function f is called as E-cordial labeling if $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$ where $v_f(i)$ is the number of vertices labeled with i =0,1. And $e_f(i)$ is the number of edges labeled with i= 0,1,We follow the convention that $v_f(0,1) = (a,b)$ for $v_f(0)=a$ and vf(1)=b further $e_f(0,1)=(x,y)$ for $e_f(0)=x$ and $e_f(1)=y$. A graph that admits E-cordial labeling is called as E-cordial graph. Yilmaz and Cahit prove that trees Tn are E-cordial iff for n not congruent to 2(mod 4), Kn are E-cordial if n not congruent to 2(mod 4), Fans Fn are E-cordial iff for n not congruent to 1(mod 4).Yilmaz and Cahit observe that A graph on n vertices cannot be E-cordial if n is congruent to 2 (mod 4). One should refer Dynamic survey of graph labeling by Joe Gallian [2] for more results on E-cordial graphs.

The graphs we consider are finite, undirected, simple and connected. For terminology and definitions we refer Harary [3] and Dynamic survey of graph labeling by Joe Gallian [2]. The families we discuss are obtained by taking two copies of graph G and join them by t paths of equal length. The paths are attached at the same fixed point on G. We represent these families by G(tPn). We take t = 1 and choose G from C₃, C₄, C₅ and W₄.

3. Preliminaries:

3.1 $G_1(P_n)G_2$ is graph obtained by joining a vertex of G_1 with vertex of G_2 . It has p_1+p_2+n-2 vertices and q_1+q_2+n-1 edges where G_1 is (p_1q_1) and G_2 is (p_2,q_2) graph. When there are t paths from G1 to G2 starting at one vertex ans ending at one fixed vertex we denote this family of graphs as $G_1(tP_n)G_2$.

4. Main Results proved:

Theorem 4.1: $G=C_4(P_n)$ is e-cordial for n is not congruent to $0,2 \pmod{4}$

Proof: We define G as $V_1 = \{v_1, v_2, ..., v_n\}$. These are vertices on path Pn and end points are on respective cycle. $V_2 = \{u_1, u_2, u_3, u_4, u_5, u_6\}$, these are vertices on two copies of C₅. It does not includes the vertex common with path namely v_1 and v_n . Thus we have $V(G) = V_1 U V_2$. $E(G) = \{e_i = (v_i v_{i+1})/i = 1, 2, ..., n-1\}$ U $\{c_1 = (v_1 u_1), c_2 = (u_1 u_2), c_3 = (u_2 u_3), c_4 = (u_3 v_1)$ and $c_5 = (v_n u_4), c_6 = (u_4 u_5), c_7 = (u_5 u_6), c_8 = (u_6 v_n)\}$

Note that |E(V)|=q = n+7, |V(G)|=p=n+6

Define f:E(G) \rightarrow {0,1} as follows :

 $f(v_1u_1)=f(u_3v_1)=1;$

 $f(v_n u_4)=1$,

 $f(u_4u_5)=1;$

 $f(u_1u_2)=0,$

f(u₂u₃)=0,

 $f(u_5u_6)=0,$

 $f(u_6v_n)=0.$

f(ei) = 0 for i is odd number and i <2k where $k = [\frac{n}{4}]$

f(ei)=1 for i is even and i $\leq 2k$

$$f(e_{2k+j}) = 1 \text{ for } j = 1 ,...,p-k \text{ where } p = [\frac{n}{2}]$$

f(ei)=0 for i = k+p+1,...,n-1.

The label number distribution is

 $\begin{aligned} v_{f}(0,1) &= \left(\frac{p+1}{2}, \frac{p-1}{2}\right), \ e_{f}(0,1) &= \left(\frac{q}{2}, \frac{q}{2}\right) \ \text{for } n \equiv 3 \pmod{4} \\ v_{f}(0,1) &= \left(\frac{p-1}{2}, \frac{p+1}{2}\right), \ e_{f}(0,1) &= \left(\frac{q}{2}, \frac{q}{2}\right) \ \text{for } n \equiv 1 \pmod{4} \\ v_{f}(0,1) &= \left(\frac{q}{2}, \frac{q}{2}\right) \ \text{for } n \equiv 2 \pmod{4}, \ e_{f}(0,1) &= \left(\frac{q-1}{2}, \frac{q+1}{2}\right) \end{aligned}$

Fig $4.1: C_4(P_5)$ labeled copy: edge labels are shown

for n is divisible by 4 the desired labeling does not exists.

Theorem 4.2. $G=C_5(P_n)$ is e-cordial for n is not congruent to $2 \pmod{4}$

Proof: We define G as $V(G) = \{v_1, v_2, ..., v_n\} U \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$ and $E(G) = \{e_i = (v_i v_{i+1})/i = 1, 2, ..., n-1\} U \{c_1 = (v_1 u_1), c_2 = (u_1 u_2), c_3 = (u_2 u_3), c_4 = (u_3 u_4)$ and $c_5 = (u_4 v_1)$, and $c_6 = (v_n u_6), c_7 = (u_6 u_7), c_8 = (u_7 u_8), c_9 = (u_8 u_9), c_{10} = (u_9 v_n)\}$

```
Define f:E(G) \rightarrow {0,1} as follows :
```

 $f(c_1)=0;$

 $f(c_2)=1;$

 $f(c_3)=0;$

f(c₄)=1;

 $f(c_5) = 0;$

f(e_i)=0 for i = 2x-1,x = 1, 2, ,,k; where k=1+ $\frac{n-3}{2}$ if n-3 is divisible by 4 otherwise k is integer part of $\frac{n}{4}$; f(e_i) = 1 for i = 2x, x= 1,2, k; where k=1+ $\frac{n-3}{2}$ if n-3 is divisible by 4 otherwise k is integer part of $\frac{n}{4}$; f(e_{2k+j})=1 for j =1,2,.. (q₂-2-k), where f is e- cordial labeling we have e_f(0,1) = (q₁,q₂);k as above. f(e_j)=0 for all others on C₅.

Fig 4.2: $C_4(P_5)$ labeled copy: edge labels are shown

#

Thus the graph is e-cordial.

Theorem 4.3. $G=W_4(P_n)$ is e-cordial for n is not congruent to $2 \pmod{4}$.

Proof: We define G as follows: The vertices on two copies of w_4 are $V_1 = \{w_1, w_2, u_1, u_2, u_3, u_4, u_5, u_6, v_1, v_n\}$. The path vertices are $V_2 = \{v_1, v_2, ... v_{n-1}, v_n\}$. v_1 and v_n are common vertices respectively with first and second copy of W_4 . The edge set $E_1 = \{(x_1u_1), (u_1u_2), (u_2u_3), (u_4v_1), are cycle edges on first copy of <math>W_4$ and pokes on the same copy given by $(w_1ui)/i = 1, 2, 3, 4$ where $u_4 = v_1\}$, $E_2 = \{\{en=(v_2u_4), e_{n+1}=(u_4u_5), e_{n+2}=(u_5u_6), e_{n+3}=(u_6v_4), \text{ these as cycle edges on second copy of <math>W_4$ and pokes given by $(w_2ui)/i = 4, 5, 6, 7$ where $u_7 = v_n\}$. E_3 are edges on path P_n given by $E_3 = \{e_i=(v_iv_{i+1})/i=1, 2, ... (n-1)\}$. Thus we have $V(G) = V_1 \cup V_2$ and $E(G) = E_1 \cup E_2$. UE_3

Define f:E(G) \rightarrow {0,1} as follows :f(w_1u_i)=1 for i = 1,2,3,4; f(w_2u_i)=0 for i = 5, 6, 7, 8; f(u_iu_{i+1}) = 0, i = 1, 2, 3, 4 and i+1 taken (modulo 4);

 $f(e_i)=0$ for i = 2x-1 where x = 1,2,..t, $t=integer part of \frac{n}{4}+1$ for n-3 is divisible by 4 and $t = integer part of \frac{n}{4}$ otherwise. $f(e_i)=1$ for i = 2x/x=1,2,..2t.

 $f(e_{2t+i})=1$ for i = 1, 2, ..., p where $p = q_2-4$ -t.rest of $f(e_i)=0$ for all i > p

Define $f:E(G) \rightarrow \{0,1\}$ as follows :

f(c₁)=1;

 $f(c_2)=1;$

 $f(c_3) = 0;$

 $f(e_i)=0$ for i = 2x-1, x = 1, 2, ..., t. and t = k+1...

f(ei) = 1 for i = 2x; x = 1, 2, ...k. Where k = (*integer part of* $\frac{n}{4})$.

If f we defined is e-cordial labeling then have got say, $e_f(0,1) = (q_1,q_2)$. i.e. number of edges with label 1 are say, q_2 .

Let $s = q_2-2-k$. Then $f(e_{2k+1+i})=1$ for I = 1, 2, ...s. For i>s. $f(e_{2k+1+i})=0$. That completes e-cordial labeling 0f $C_3(p_n)W_4$. We showcase f in following diagram taking n = 5.

Theorem 4.5. $G=C_3(P_n)C_4$ is e-cordial for n is not congruent to 1 (mod 4)

Proof: We define G as follows: $V_1 = \{v_1, v_2, ..., v_n\}$. These are vertices on path P_n and end points are on respective cycle. $V_2 = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$, these are vertices on two cycles C_3 and C_4 . The end point on path namely $v_{1=u_1}$ on C_3 and $v_n = u_4$ on C_4 . Thus we have $V(G) = V_1UV_2$. $E(G) = \{e_i = (v_iv_{i+1})/i = 1, 2, ..., n-1\}$ U $\{c_1 = (u_1u_2), c_2 = (u_2u_3), c_3 = (u_3u_1)$ and $e_n = (u_4u_5), e_{n+1} = (u_5u_6), e_{n+2} = (u_6u_7), e_{n+3} = (u_7u_4)\}$

Note that |E(V)|=q = n+6, |V(G)|=p=n+5

Define f:E(G) \rightarrow {0,1} as follows : f(u_1u_2)=f(u_3u_1) =1; f(u_2u_3)=0;for n is divisible by 4 for all n,n-1,n-2 we have $k = \frac{n}{4}$ 1 and t = n-2-k.

 $f(e_i)=0$ for i=2x-1, x=0, 1, 2, ..., k.

 $\begin{array}{l} f(e_i) = 1 \mbox{for } i = 2x, \ x = 1,2, \ ..k. \\ f(e_{2k+1+i}) = 1 \ \mbox{for } i = 1,2,t. \end{array}$

 $f(e_i)=0$ for all i>2k+1+t

The observed label numbers are $e_f(0,1) = (x,x)$; $v_f(0,1) = (x-1,x)$ for n is even number and $x = \frac{n+6}{2}$.

If n is odd number $x' = \frac{n+5}{2}$ we have $e_f(0,1) = (x'+1,x')$; $v_f(0,1) = (x',x')$.

For $n \equiv 1 \pmod{4}$ E- cordial labeling does not exists.

Theorem 4.6. $G=C_4(P_n)w_4$ is e-cordial for n is not congruent to 0,2 (mod 4).

Define f:E(G) \rightarrow {0,1} as follows :

f(c₁)=1;

f(c₂)=1;

 $f(c_3)=0; f(c_3)=0;$

 $f(e_i)=0$ for i = 2x-1, x = 1, 2, ..., t. and t = k+1...

f(ei) = 1 for i = 2x; x = 1, 2, ...k. Where k = (*integer part of* $\frac{n}{4})$.

If f we defined is e-cordial labeling then have got say, $e_f(0,1) = (q_1,q_2)$. i.e. number of edges with label 1 are say q_2 .

Let $s = q_2-2-k$. Then $f(e_{2k+1+i})=1$ for I = 1, 2, ...s. For i>s. $f(e_{2k+1+i})=0$. That completes e-cordial labeling of $C_3(p_n)W_4$. We showcase f in following diagram taking n = 5.

Conclusion: In this paper we discuss the families of graphs obtained by joining two graphs by a path Pn. We denote these graph families by $G_1(P_n)G_2$. We have taken G_1 and G_2 from C_3 , C_4 , C_5 and W_4 .

References:

- [1] Bapat M.V. Ph.D. thesis, University Of Mumbai, 2004
- [2] Joe Gallian Dynamic survey of graph labeling 2016
- [3] Harary, Graph Theory, Narosa publishing, New Delhi
- [4] Yilmaz, Cahit, E-cordial graphs, Ars combina,46,251-256.
- [5] Introduction to Graph Theory by D. WEST, Pearson Education Asia.