Product cordiality of Path union of shell related graph

Mukund V. Bapat

Abstract: In this paper we discuss path union obtained from shell graph and shell graph with fused pendent edges to it. We show that $P_m(G')$ where $G' = S_4$, Bull (S₄), S_4^+ , S_4 with two pendent vertices at a point etc and show that they are product cordial graphs under respective conditions.

Keywords: labeling, cordial, product, bull graph, crown, tail graph.

Subject Classification: 05C78

Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [9], A dynamic survey of graph labeling by J.Gallian [8] and Clark, Holton.[6]. I.Cahit introduced the concept of cordial labeling [7]. There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [10] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to {0, 1} such that if each edge (uv) is assigned the label f(u)f(v), the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1, and the number of edges labeled with 0 and the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $e_f(0,1) = (x, y)$.

A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian [8].We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); K1,mUK1,n; WmU K1,n; Wm UPn; Wm UCn; the total graph of Pn (the total graph of Pn has vertex set V (Pn)UE(Pn) with two vertices adjacent whenever they are neighbors in Pn); C_n if and only if n is odd; $C_n^{(f)}$, the one-point union of t copies of C_n , provided t is even or both t and n are even; K2+mK1 if and only if m is odd; $C_m UP_n$ if and only if m+n is odd; $K_{m,n}$ UPs if s > mn; Cn+2UK1,n; KnUKn,(n-1)/2 when n is odd; KnUKn-1,n/2 when n is even; and P2 n if and only if n is odd. They also prove that $K_{m,n}$ (m,n > 2), $P_m \times P_n$ (m,n > 2) and wheels are not product cordial and if a (p,q)-graph is product cordial graph, then q 6 (p-1)(p + 1)/4 + 1. In this paper we show that path union $P_m(G')$ where $G' = S_4$, Bull (S₄), S₄⁺, S_n⁺⁺,S₄ with two pendent vertices at a point etc are product cordial graphs and obtain the condition for same.

Preliminaries:

3.1 Fusion of vertex. Let G be a (p,q) graph. Let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p-1vertices and at least q-1 edges. If $u \in G_1$ and $v \in G_2$, where G_1 is (p_1,q_1) and G_2 is (p_2,q_2) graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has p_1+p_2-1 vertices and $q_1 + q_2$ edges. Sometimes this is referred as u is identified with the concept is well elaborated in John Clark, Holton[6]

3.2 Crown graph. It is $C_n \square K_2$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph G $\square K_2$. It has a pendent edge attached to each of it's vertex. If G is a (p,q) graph then crown(G) has q+p edges and 2p vertices.

3.3 Flag of a graph G denoted by FL(G) is obtained by taking a graph G=G(p, q). At suitable vertex of G attach a pendent edge. It has p+1 vertices and q+1 edges.

3.4 A bull graph bull(G) was initially defined for a C_3 -bull. It has a copy of G with an pendent edge each fused with any two adjacent vertices of G. For G is a (p,q) graph, bull(G) has p+2 vertices and q+2 edges.

3.5 A tail graph (also called as antenna graph) is obtained by fusing a path p_k to some vertex of G. This is denoted by tail(G, P_k). If there are t number of tails of equal length say (k-1) then it is denoted by tail(G, tp_k). If G is a (p,q) graph and a tail P_k is attached to it then tail(G, P_k) has p+k-1 vertices and q+k-1 edges4.

3.6 Path union of G ,i.e.(G) is obtained by taking a path p_m and take m copies of graph G. Then fuse a copy each of G at every vertex of path at given fixed point on G. It has mp vertices and mq +m-1 edges. Where G is a (p, q) graph.

2. Main Results:

Theorem 4.1 $P_m(S_n)$ is product cordial iff m is even number.

Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S_n fused at i^{th} vertex of P_m is defined as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,1}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})$; the chord $(u_{i,1}, u_{i,3})$; i = 1, 2, ...m. Note that $u_{i,1}$ is v_i , i = 1, 2, ...m.

Define f:V(G) \rightarrow {0,1} as follows.

Case i = 2x.

$$f(u_{i,j}) = 0$$
 for all $i = 1, 2, ...x$ and $j = 1, 2, 3, 4.;$

 $f(u_{i,j}) = 1$ for i = x+1, x+2, ..2x, and j = 1, 2, 3, 4. The label number distribution is $v_f(0,1) = (4x, 4x)$;

 $e_f(0,1) = (6x, 6x-1)$. If we change the vertex on S_4 to three degree vertex on S_4 , we get product cordial path union with the same f.

C.F

Fig 4.2: $P_4(S_4)$: not product cordial graph :

If we try to fulfill the condition $|v_f(0) - v_f(1)| \le 1$ on vertices the condition for edges is spoiled. Even if we change the point of contact of P_m and S_4 from 3-degree vertex to 2-degree vertex, there is no f: $V(G) \rightarrow \{0,1\}$ that will label $P_{(2x+1)}(s_4)$ as product cordial.

Thus the graph $P_{2x+1}(S_4)$ is not product cordial.

Theorem 4.2. Let G' be a flag graph $FL(S_4)$, then path union of G' given by $P_m(G')$ is product cordial for all m.

Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S_4 fused at i^{th} vertex of P_m is defined as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,1}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})U\{u_{i,5}\}$, the chord $(u_{i,1}u_{i,3})$; ; i = 1, 2, ...m. Note that $u_{i,1}$ is v_i , i = 1, 2, ...m. Further in structure 1 the pendent vertex is attached at 2-degree vertex of S_4 by edge $(u_{i,2}u_{i,5})$ or by edge $(u_{i,4}u_{i,5})$ when the pendent vertex is attached at degree 3 vertex of S_4 by edge $(u_{i,2}u_{i,5})$ or by edge $(u_{i,3}u_{i,5})$ or by $(u_{i,1}u_{i,5})$, we call it as structure 2. Further v_i is same as $u_{i,1}$. Define f: $V(G) \rightarrow \{0,1\}$ as follows,

Case i = 2x.

 $f(u_{i,j}) = 0$ for all i = 1, 2, ...x and j = 1, 2, 3, 4, 5;

 $f(u_{i,j}) = 1$ for i = x+1, x+2, ... 2x, and j = 1, 2, 3, 4, 5.

The label number distribution is $v_f(0,1) = (5x,5x)$; $e_f(0,1) = (7x,7x-1)$.

Case i = 2x+1

Fig 4.3: $P_5(FL(S_4))$: product cordial graph : $v_f(0,1) = (12,12)$; $e_f(0,1) = (14,13)$.

To obtain a labeled copy of $P_{2x+1}(FL(S_4))$ we first follow the labeling on $P_{2x}(FL(S_4))$ part as given above.

For i = 2x+1, $f(u_{i,j}) = 0$; j = 2,5.

 $f(u_{i,j}) = 1$ for j = 1, 3, 4,

The label number distribution is $v_f(0,1) = (5x+2,5x+3)$; $e_f(0,1) = (7x+3,7x+3)$.

Theorem 4.3 Let G' be a bull graph $bull(S_4)$, then path union of G' given by $P_m(G')$ is product cordial for all m.

Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S_4 fused at ith vertex of P_m is defined as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,1}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1}) \cup \{u_{i,5}, u_{i,6}\}$; i = 1, 2, ...m. Note that $u_{i,1}$ is v_i , i = 1, 2, ...m. Further in structure 1 the pendent vertices are attached at $u_{i,2}$ and $u_{i,3}$ of S_4 by edges $(u_{i,2}u_{i,5})$ and by edge $(u_{i,3}u_{i,6})$. when the pendent vertex is attached at degree 3 vertex of S_4 by edge $(u_{i,1}u_{i,5})$ or by $(u_{i,3}u_{i,6})$, we call it as structure 2. Further v_i is same as $u_{i,1}$.

Define f: $V(G) \rightarrow \{0,1\}$ as follows, |V(G)| = 6m, |E(G)| = 8m-1.

Case i = 2x.

 $f(u_{i,j}) = 0$ for all i = 1, 2, ..x and j = 1, 2, 3, 4, 5, 6

 $f(u_{i,j}) = 1$ for i = x+1, x+2, ...2x, and j = 1, 2, 3, 4, 5, 6

The label number distribution is $v_f(0,1) = (6x,6x)$; $e_f(0,1) = (8x,8x-1)$.

 $f(u_{i,j}) = 1$ for j = 1, 3, 4,

 $f(u_{i,j}) = 0$ for j = 2, 5, 6.

The label number distribution is $v_f(0,1) = (6x+3,6x+3)$; $e_f(0,1) = (8x+4,8x+3)$.

Theorem 4.4 Let G' crown on S_4 , given by S_4^+ then path union of G' given by $P_m(G')$ is product cordial for all m.

Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S_4 fused at i^{th} vertex of P_m is defined as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,1}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})U\{u_{i,5}, u_{i,6}, u_{i,7}, u_{i,8}\}$, the chord $(u_{i,1}u_{i,3})$, i = 1, 2, ...m. Note that $u_{i,1}$ is v_i ; i = 1, 2, ...m the pendent edges are attached at $u_{i,1}$, $u_{i,2}$ and $u_{i,3}$, $u_{i,4}$ and are given by $(u_{i,1}u_{i,5})$, $(u_{i,2}u_{i,6})$, $u_{i,3}u_{i,7}$) and edge $(u_{i,4}u_{i,8})$. Further v_i is same as $u_{i,1}$.

Define f:V(G) \rightarrow {0,1} as follows,

Case i = 2x.

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x and j = 1, 2, 3, 4, 5, 6, 7, 8.

 $f(u_{i,j}) = 0$ for i = x+1, x+2, ...2x, and j = 1, 2, 3, 4, 5, 6, 7, 8.

The label number distribution is $v_f(0,1) = (8x,8x)$; $e_f(0,1) = (10x,10x-1)$.

Fig 4.5: $P_4(S_4^+)$: product cordial graph $v_f(0,1) = (18,18)$; $e_f(0,1) = (20,19)$.

Case m = 2x+1. To obtain a labeled copy of $P_{2x+1}(S_4^+)$ we first follow the labeling on $P_{2x}(S_4^+)$ part as given above. i = 2x+1

 $f(u_{i,j}) = 1$ for j = 1, 2, 3, 4,

 $f(u_{i,j}) = 0$ for j = 5, 6, 7, 8

The label number distribution is $v_f(0,1) = (8x+4,8x+4)$; $e_f(0,1) = (10x+5,10x+4)$.

Thus the graph G is product cordial for all m

Theorem 4.5 Let G' be tail(S₄,2P₂) then path union of G' given by $G = P_m(G')$ is product cordial for all m. Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S₄ fused at ith vertex of P_m is defined as : the cycle C₄ of S₄ as $(u_{i,1}, c_{i,1}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})U\{u_{i,5}, u_{i,6}, \}$, the chord $(u_{i,1}u_{i,3})$, i = 1, 2, ... Note that $u_{i,1}$ is v_i ; i = 1, 2, ...; the pendent edges are attached at $u_{i,1}$ are $(u_{i,1}u_{i,5})$, $(u_{i,1}u_{i,6})$. Note that |V(G)| = 6m; |E(G)| = 8m-1

#.

Define f:V(G) \rightarrow {0,1} as follows, Case m = 2x. f(u_{i,j}) = 0 for all i = 1, 2, ...x and j = 1, 2, 3, 4, 5,6 f(u_{i,j}) = 1 for i= x+1,x+2,...2x, and j = 1, 2, 3, 4, 5,6

The label number distribution is $v_f(0,1) = (6x,6x)$; $e_f(0,1) = (8x,8x-1)$.

Case m = 2x+1

To obtain a labeled copy of $P_{2x+1}(tail(S_4, 2P_2))$ we first follow the labeling on $P_{2x}(tail(S_4, 2P_2))$ part as given above.

For
$$i = 2x+1$$
 $f(u_{i,j}) = 1$ $j = 1, 3, 4$,

 $f(u_{i,j}) = 0 j = 2, 5, 6$

The label number distribution is $v_f(0,1) = (6x+3,6x+3)$; $e_f(0,1) = (8x+4,8x+3).#$

Theorem 4.6 Let G' be a graph obtained from S_4 by fusing 2 pendent edges each at one pair of adjacent vertices. Then path union of G' given by $G = P_m(G')$ is product cordial for all m.

Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S_4 fused at ith vertex of P_m is defined as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,2}, u_{i,2}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})U\{u_{i,5}, u_{i,6}, u_{i,7}, u_{i,8}\}$, the chord $(u_{i,1}u_{i,3})$, i = 1, 2, ...m. Note that $u_{i,1}$ is v_i ; i = 1, 2, ...m; the pendent edges are attached at $u_{i,1}$ are $(u_{i,1}u_{i,5})$, $(u_{i,1}u_{i,6})$ and at $u_{i,2}$ are $(u_{i,2}u_{i,7})$, $(u_{i,2}u_{i,8})$. Further v_i is same as $u_{i,1}$.

Note that |V(G)| = 16x for m = 2x. |E(G)| = 20x-1

Define f:V(G) \rightarrow {0,1} as follows,

Case i = 2x.

 $f(u_{i,j}) = 0$ for all i = 1, 2, ...x and j = 1, 2, 3, 4, 5, 6, 7, 8

 $f(u_{i,j}) = 1$ for i = x+1, x+2, ...2x, and j = 1, 2, 3, 4, 5, 6, 7, 8

The label number distribution is $v_f(0,1) = (8x,8x)$; $e_f(0,1) = (10x,10x-1)$.

Case m = 2x+1

To obtain a labeled copy of $P_{2x+1}(G')$ we first follow the labeling on $P_{2x}(G')$ part as given above.

For i = 2x+1

 $f(u_{i,j}) = 1$ for j = 1, 3, 4, 5

 $f(u_{i,j}) = 0$ for j = 2,6,7,8

The label number distribution is $v_f(0,1) = (8x+4,8x+4)$; $e_f(0,1) = (10x+5,10x+4)$.

Theorem 4.7 Let G' be a graph obtained from S_4 by fusing 2 pendent edges each at every vertex of S_4 . Then path union of G' given by $G = P_m(G')$ is product cordial for all m.

Proof: The path P_m is defined as $(v_1, e_1, v_2, e_2, ..., v_m)$. The copy of S_4 fused at i^{th} vertex of P_m is defined as : the cycle C_4 of S_4 as $(u_{i,1}, c_{i,2}, u_{i,3}, c_{i,3}, u_{i,4}, c_{i,4}, u_{i,1})U\{u_{i,5}, u_{i,6}, u_{i,7}, u_{i,8}, u_{i,9}, u_{i,10}, u_{i,11}, u_{i,12}\}$, the chord $(u_{i,1}u_{i,3})$, i = 1, 2, ...m. Note that $u_{i,1}$ is v_i ; i = 1, 2, ...m; the pendent edges are attached at $u_{i,1}$ are $(u_{i,1}u_{i,5})$, $(u_{i,1}u_{i,6})$ and at $u_{i,2}$ are $(u_{i,2}u_{i,7})$, $(u_{i,2}u_{i,8})$. Note that |V(G)| = 12m and |E(G)| = 14m-1

Define f:V(G) \rightarrow {0,1} as follows,

Case i = 2x.

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x and j = 1, 2, ...12.

 $f(u_{i,j}) = 0$ for i = x+1, x+2, ...2x, and j = 1, 2,12.

The label number distribution is $v_f(0,1) = (12x,12x)$; $e_f(0,1) = (14x,14x-1)$.

Case i = 2x+1

 $f(u_{i,j}) = 1$ for all i = 1, 2, ...x and j = 1, 2, ...12,

 $f(u_{i,j}) = 0$ for i = x+1, x+2, ...2x, and j = 1, 2....12;

 $(u_{i,j}) = 1$ for i = x+1 and j = 1, 2, 3, 4, 5, 6;

 $f(u_{i,j}) = 0$ for i = x+1; j = 7, 8, ... 12.

The label number distribution is $v_f(0,1) = (12x+6,12x+6); e_f(0,1) = (14x+7,14x+6).$

Conclusions: In this paper we discuss path union graph $P_m(G)$ where G is obtained from S4 by attaching up to two pendent vertices at each vertex of S₄. We show that :

1) $P_m(S_n)$ is product cordial iff m is even number.

2) Let G' be a flag graph $FL(S_4)$, then path union of G' given by $P_m(G')$ is product cordial for all m.

3) Let G' be a bull graph $bull(S_4)$, then path union of G' given by $P_m(G')$ is product cordial for for all

4) Let G' crown on S₄, given by S_4^+ then path union of G' given by $P_m(G')$ is product cordial for all m.

5) Let G' be tail(S_{4} ,2 P_{2}) then path union of G' given by $G = P_m(G')$ is product cordial for for all m.

6) Let G' be a graph obtained from S_4 by fusing 2 pendent edges each at one pair of adjacent vertices. Then path union of G' given by $G = P_m(G')$ is product cordial for even m only.

7) Let G' be a graph obtained from S_4 by fusing 2 pendent edges each at every vertex of S_4 . Then path union of G' given by $G = P_m(G')$ is product cordial for all m.

[6]

These results shows that path unions taken on S_4^{+t} are product cordial for all m (t =1,2) and all other path unions taken on G such that G is not isomorphic to S_4^{+t} for some t are product cordial for even m only. This tempts us to say that $P_m(S_4^{+t})$ for all t and all m are product cordial.

References:

[1] Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore ,110-115

[2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT

[3] Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 issue 2 july-Dec 2018.

[4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue

[5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004.John Clark and D. Holton, A book " A first look at graph Theory", world scientific.

[7] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.Harary, Theory, Narosa publishing, New Delhi

[8] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016

[9] Harary, Graph Theory, Narosa publishing, New Delhi

[10] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155–163, 2004. ¹Bapat Mukund V.

At and Post: Hindale, Tal. : Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.

