Product cordiality of Path union of shell related graph

Mukund V. Bapat

Abstract

In this paper we discuss path union obtained from shell graph and shell graph with fused pendent edges to it. We show that $P_{m}\left(G^{\prime}\right)$ where $G^{\prime}=S_{4}, B u l l\left(S_{4}\right), S_{4}{ }^{+}, S_{4}$ with two pendent vertices at a point etc and show that they are product cordial graphs under respective conditions.

Keywords: labeling, cordial, product, bull graph, crown, tail graph.
Subject Classification: 05C78
Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [9], A dynamic survey of graph labeling by J.Gallian [8] and Clark, Holton.[6]. I.Cahit introduced the concept of cordial labeling [7].There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [10] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to $\{0,1\}$ such that if each edge (uv) is assigned the label $f(u) f(v)$, the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 , and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a product cordial labeling is called a product cordial graph. We use $v_{f}(0,1)=(a, b)$ to denote the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $\mathrm{e}_{\mathrm{f}}(0,1)=(x, y)$.
A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian [8].We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); K1,mUK1,n; WmU $K 1, n ; W m \cup P n ; W m \cup C n$; the total graph of $P n$ (the total graph of Pn has vertex set $V(P n) \cup E(P n)$ with two vertices adjacent whenever they are neighbors in Pn); C_{n} if and only if n is odd; $\mathrm{C}_{\mathrm{n}}{ }^{(t)}$, the one-point union of t copies of C_{n}, provided t is even or both t and n are even; $K 2+m K 1$ if and only if m is odd; $C_{m} \cup P_{n}$ if and only if $m+n$ is odd; $K_{m, n} \cup P s$ if $s>m n ; C n+2 \cup K 1, n$; $\mathrm{Kn} \cup \mathrm{Kn},(\mathrm{n}-1) / 2$ when n is odd; $\mathrm{Kn} \cup \mathrm{Kn}-1, \mathrm{n} / 2$ when n is even; and P 2 n if and only if n is odd. They also prove that $\mathrm{K}_{\mathrm{m}, \mathrm{n}}(\mathrm{m}, \mathrm{n}>$ 2), $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}(\mathrm{m}, \mathrm{n}>2)$ and wheels are not product cordial and if a (p, q)-graph is product cordial graph, then $\mathrm{q} 6(\mathrm{p}-1)(\mathrm{p}+1) / 4+1$. In this paper we show that path union $P_{m}\left(G^{\prime}\right)$ where $G^{\prime}=S_{4}, B u l l\left(S_{4}\right), S_{4}{ }^{+}, S_{n}{ }^{++}, S_{4}$ with two pendent vertices at a point etc are product cordial graphs and obtain the condition for same.

Preliminaries:
3.1 Fusion of vertex. Let G be a (p, q) graph. Let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has $\mathrm{p}-1$ vertices and at least $q-1$ edges. If $u \in G_{1}$ and $v \in G_{2}$, where G_{1} is $\left(p_{1}, q_{1}\right)$ and G_{2} is $\left(p_{2}, q_{2}\right)$ graph. Take a new yertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_{1}+p_{2}-1$ vertices and $q_{1}+q_{2}$ edges. Sometimes this is referred as u is identified with the concept is well elaborated in John Clark, Holton[6]
3.2 Crown graph. It is $\mathrm{C}_{\mathrm{n}} \square \mathrm{K}_{2}$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph $\mathrm{G} \mathrm{K}_{2}$. It has a pendent edge attached to each of it's vertex. If G is a (p, q) graph then crown (G) has $q+p$ edges and $2 p$ vertices.
3.3 Flag of a graph G denoted by $\mathrm{FL}(\mathrm{G})$ is obtained by taking a graph $\mathrm{G}=\mathrm{G}(\mathrm{p}, \mathrm{q})$. At suitable vertex of G attach a pendent edge. It has $p+1$ vertices and $q+1$ edges.
3.4 A bull graph bull (G) was initially defined for a C_{3}-bull.It has a copy of G with an pendent edge each fused with any two adjacent vertices of G . For G is a (p, q) graph, bull (G) has $\mathrm{p}+2$ vertices and $\mathrm{q}+2$ edges.
3.5 A tail graph (also called as antenna graph) is obtained by fusing a path p_{k} to some vertex of G. This is denoted by tail(G, $\left.P_{k}\right)$. If there are t number of tails of equal length say $(k-1)$ then it is denoted by tail $\left(G, t p_{k}\right)$. If G is a (p, q) graph and a tail P_{k} is attached to it then tail $\left(\mathrm{G}, \mathrm{P}_{\mathrm{k}}\right)$ has $\mathrm{p}+\mathrm{k}-1$ vertices and $\mathrm{q}+\mathrm{k}-1$ edges 4 .
3.6 Path union of G,i.e. (G) is obtained by taking a path p_{m} and take m copies of graph G. Then fuse a copy each of G at every vertex of path at given fixed point on G. It has $m p$ vertices and $m q+m-1$ edges. Where G is a (p, q) graph.

2. Main Results:

Theorem 4.1 $\quad P_{m}\left(S_{n}\right)$ is product cordial iff m is even number.
Proof: The path P_{m} is defined as $\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}\right)$. The copy of S_{n} fused at $i^{\text {th }}$ vertex of P_{m} is defined as: the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right)$; the chord $\left(u_{i, 1}, u_{i, 3}\right) ; i=1,2, \ldots m$. Note that $u_{i, 1}$ is $v_{i}, i=1,2$, ..m.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows.
Case $\mathrm{i}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=0$ for all $i=1,2, . . x$ and $j=1,2,3,4 . ;$
$f\left(u_{i, j}\right)=1$ for $\mathrm{i}=\mathrm{x}+1, \mathrm{x}+2, .2 \mathrm{x}$, and $\mathrm{j}=1,2,3$, 4. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(4 \mathrm{x}, 4 \mathrm{x})$;
$e_{f}(0,1)=(6 x, 6 x-1)$.If we change the vertex on S_{4} to three degree vertex on S_{4}, we get product cordial path union with the same f.

All vertices label equql to 1
\xrightarrow{l}

All vertices label equql to 0

Fig 4.1: $\mathrm{P}_{4}\left(\mathrm{~S}_{4}\right)$: product cordial graph :
$\mathrm{v}_{\mathrm{f}}(0,1)=(8,8) ; \mathrm{e}_{\mathrm{f}}(0,1)=(12,11)$.
Case $\mathrm{m}=2 \mathrm{x}+1$.
All vertices label equql to 0

Fig 4.2: $\mathrm{P}_{4}\left(\mathrm{~S}_{4}\right)$: not product cordial graph :
$\mathrm{V}_{\mathrm{f}}(0,1)=(10,10) ; \mathrm{e}_{f}(0,1)=(16,13)$.
If we try to fulfill the condition $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ on vertices the condition for edges is spoiled. Even if we change the point of contact of P_{m} and S_{4} from 3-degree vertex to 2-degree vertex, there is no $f: V(G) \rightarrow\{0,1\}$ that will label $P_{(2 x+1)}\left(s_{4}\right)$ as product cordial.

Thus the graph $\mathrm{P}_{2 \mathrm{x}+1}\left(\mathrm{~S}_{4}\right)$ is not product cordial.
\#
Theorem 4.2. Let G^{\prime} be a flag graph $F L\left(S_{4}\right)$, then path union of G^{\prime} given by $P_{m}\left(G^{\prime}\right)$ is product cordial for all m.
Proof: The path P_{m} is defined as $\left(v_{1}\right.$, $\left.e_{1}, v_{2}, e_{2}, . ., v_{m}\right)$. The copy of S_{4} fused at $i^{\text {th }}$ vertex of P_{m} is defined as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}\right.$,$\left.u_{i, 1}\right) U\left\{u_{i, 5}\right\}$, the chord $\left(u_{i, 1} u_{i, 3}\right) ; ; i=1,2, \ldots m$. Note that $u_{i, 1}$ is $v_{i}, i=1,2$,..m. Further in structure 1 the pendent vertex is attached at 2-degree vertex of S_{4} by edge $\left(u_{i, 2} u_{i, 5}\right)$ or by edge $\left(u_{i, 4} u_{i, 5}\right)$. when the pendent vertex is attached at degree 3 vertex of S_{4} by edge $\left(u_{i, 3} u_{i, 5}\right)$ or by $\left(u_{i, 1} u_{i, 5}\right)$, we call it as structure 2 . Further v_{i} is same as $u_{i, 1}$.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows,
Case $\mathrm{i}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=0$ for all $i=1,2, . . x$ and $j=1,2,3,4,5$;
$f\left(u_{i, j}\right)=1$ for $i=x+1, x+2, . .2 x$, and $j=1,2,3,4,5$.
The label number distribution is $v_{f}(0,1)=(5 x, 5 x) ; e_{f}(0,1)=(7 x, 7 x-1)$.
Case $\mathrm{i}=2 \mathrm{x}+1$

All vertices label equql to 0 All vertices label equql to 1

Fig 4.3: $\mathrm{P}_{5}\left(\mathrm{FL}\left(\mathrm{S}_{4}\right)\right.$: product cordial graph :
$\mathrm{v}_{\mathrm{f}}(0,1)=(12,12) ; \mathrm{e}_{\mathrm{f}}(0,1)=(14,13)$.
To obtain a labeled copy of $\mathrm{P}_{2 x+1}\left(\mathrm{FL}\left(\mathrm{S}_{4}\right)\right.$ we first follow the labeling on $\mathrm{P}_{2 x}\left(\mathrm{FL}\left(\mathrm{S}_{4}\right)\right.$ part as given above.
For $\mathrm{i}=2 \mathrm{x}+1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=0 ; \mathrm{j}=2,5$.
$f\left(u_{i, j}\right)=1$ for $\mathrm{j}=1,3,4$,
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}+2,5 \mathrm{x}+3) ; \mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}+3,7 \mathrm{x}+3)$.

Theorem 4.3 Let G' be a bull graph bull($\left.\mathrm{S}_{4}\right)$, then path union of G^{\prime} given by $\mathrm{P}_{\mathrm{m}}\left(\mathrm{G}^{\prime}\right)$ is product cordial for all m .
Proof: The path P_{m} is defined as ($\mathrm{v}_{1}, \mathrm{e}_{1}, \mathrm{v}_{2}, \mathrm{e}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$). The copy of S_{4} fused at $\mathrm{i}^{\text {th }}$ vertex of P_{m} is defined as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right) U\left\{u_{i, 5}, u_{i, 6}\right\} ; i=1,2, . . m$. Note that $u_{i, 1}$ is $v_{i}, i=1,2$, ..m. Further in structure 1 the pendent vertices are attached at $u_{i, 2}$ and $u_{i, 3}$ of S_{4} by edges $\left(u_{i, 2} u_{i, 5}\right)$ and by edge $\left(u_{i, 3} u_{i, 6}\right)$.when the pendent vertex is attached at degree 3 vertex of S_{4} by edge $\left(u_{i, 1} u_{i, 5}\right)$ or by ($u_{i, 3} u_{i, 6}$, we call it as structure 2 . Further v_{i} is same as $u_{i, 1}$.

Define f: $\mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows, $|\mathrm{V}(\mathrm{G})|=6 \mathrm{~m},|\mathrm{E}(\mathrm{G})|=8 \mathrm{~m}-1$.
Case $\mathrm{i}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=0$ for all $i=1,2, . . x$ and $j=1,2,3,4,5,6$
$f\left(u_{i, j}\right)=1$ for $i=x+1, x+2, . .2 x$, and $j=1,2,3,4,5,6$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{x}, 6 \mathrm{x}) ; \mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{x}, 8 \mathrm{x}-1)$.
All vertices label equql to $0 \quad$ All vertices label equql to 1

Case $m=2 x+1$
To obtain a labeled copy of $\mathrm{P}_{2 \mathrm{x}+1}\left(\right.$ bull $\left(\mathrm{S}_{4}\right)$ we first follow the labeling on $\mathrm{P}_{2 \mathrm{x}}\left(\right.$ bull $\left(\mathrm{S}_{4}\right)$ part as given above. For $\mathrm{i}=2 \mathrm{x}+1$ we have,
$f\left(u_{i, j}\right)=1$ for $j=1,3,4$,
$f\left(u_{i, j}\right)=0$ for $\mathrm{j}=2,5,6$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{x}+3,6 \mathrm{x}+3) ; \mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{x}+4,8 \mathrm{x}+3)$.
Theorem 4.4 Let G^{\prime} crown on S_{4}, given by $S_{4}{ }^{+}$then path union of G^{\prime} given by $P_{m}\left(G^{\prime}\right)$ is product cordial for all m .

Proof: The path P_{m} is defined as $\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}\right)$. The copy of S_{4} fused at $i^{\text {th }}$ vertex of P_{m} is defined as: the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right) U\left\{u_{i, 5}, u_{i, 6}, u_{i, 7}, u_{i, 8}\right\}$, the chord $\left(u_{i, 1}, u_{i, 3}\right), i=1,2$, ..m. Note that $u_{i, 1}$ is $v_{i} ; i=1,2$, ..m. the pendent edges are attached at $u_{i, 1}, u_{i, 2}$ and $u_{i, 3}, u_{i, 4}$ and are given by $\left.\left(u_{i, 1} u_{i, 5}\right),\left(u_{i, 2} u_{i, 6}\right), u_{i, 3} u_{i, 7}\right)$ and edge $\left(u_{i, 4} u_{i, 8}\right)$. Further v_{i} is same as $u_{i, 1}$.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows,
Case $\mathrm{i}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=1$ for all $i=1,2, . . x$ and $j=1,2,3,4,5,6,7,8$.
$f\left(u_{i, j}\right)=0$ for $i=x+1, x+2, . .2 x$, and $j=1,2,3,4,5,6,7,8$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}, 8 \mathrm{x}) ; \mathrm{e}_{\mathrm{f}}(0,1)=(10 \mathrm{x}, 10 \mathrm{x}-1)$.

Case $m=2 x+1$. To obtain a labeled copy of $\mathrm{P}_{2 \mathrm{x}+1}\left(\mathrm{~S}_{4}{ }^{+}\right)$we first follow the labeling on $\mathrm{P}_{2 \mathrm{x}}\left(\mathrm{S}_{4}{ }^{+}\right)$part as given above. $\mathrm{i}=2 \mathrm{x}+1$
$f\left(u_{i, j}\right)=1$ for $\mathrm{j}=1,2,3,4$,
$f\left(u_{i, j}\right)=0$ for $\mathrm{j}=5,6,7,8$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}+4,8 \mathrm{x}+4) ; \mathrm{e}_{\mathrm{f}}(0,1)=(10 \mathrm{x}+5,10 \mathrm{x}+4)$.
Thus the graph G is product cordial for all m
\#.
Theorem 4.5 Let G^{\prime} be tail $\left(S_{4}, 2 P_{2}\right)$ then path union of G^{\prime} given by $G=P_{m}\left(G^{\prime}\right)$ is product cordial for all m. Proof: The path P_{m} is defined as $\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}\right)$. The copy of S_{4} fused at $i^{\text {th }}$ vertex of P_{m} is defined as: the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}\right.$, $\left.u_{i, 4, c_{i, 4}}, u_{i, 1}\right) U\left\{u_{i, 5}, u_{i, 6},\right\}$, the chord $\left(u_{i, 1} u_{i, 3}\right), i=1,2, \ldots m$. Note that $u_{i, 1} i_{i} v_{i} ; i=1,2$, ..m; the pendent edges are attached at $u_{i, 1}$ are $\left(u_{i, 1} u_{i, 5}\right),\left(u_{i, 1} u_{i, 6}\right) . . \quad$ Note that $|V(G)|=\quad 6 m ; \quad|E(G)|=8 m-1$

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows,
Case $\mathrm{m}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=0$ for all $i=1,2, . . x$ and $j=1,2,3,4,5,6$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for $\mathrm{i}=\mathrm{x}+1, \mathrm{x}+2, . .2 \mathrm{x}$, and $\mathrm{j}=1,2,3,4,5,6$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{x}, 6 \mathrm{x}) ; \mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{x}, 8 \mathrm{x}-1)$.

Fig 4.6: $\mathrm{P}_{4}\left(\mathrm{tail}\left(\mathrm{S}_{4}, 2 \mathrm{P}_{2}\right)\right.$: product cordial graph : $\mathrm{v}_{\mathrm{f}}(0,1)=(12,12) ; \mathrm{e}_{\mathrm{f}}(0,1)=(16,15)$.

Case $m=2 x+1$
To obtain a labeled copy of $\mathrm{P}_{2 x+1}\left(\operatorname{tail}\left(\mathrm{~S}_{4}, 2 \mathrm{P}_{2}\right)\right)$ we first follow the labeling on $\mathrm{P}_{2 x}\left(\operatorname{tail}\left(\mathrm{~S}_{4} .2 \mathrm{P}_{2}\right)\right)$ part as given above.

For $\mathrm{i}=2 \mathrm{x}+1 \quad \mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1 \mathrm{j}=1,3,4$,
$f\left(u_{i, j}\right)=0 j=2,5,6$
The label number distribution is $v_{f}(0,1)=(6 x+3,6 x+3) ; e_{f}(0,1)=(8 x+4,8 x+3) . \#$
Theorem 4.6 Let G^{\prime} be a graph obtained from S_{4} by fusing 2 pendent edges each at one pair of adjacent vertices. Then path union of G^{\prime} given by $\mathrm{G}=\mathrm{P}_{\mathrm{m}}\left(\mathrm{G}^{\prime}\right)$ is product cordial for all m .

Proof: The path P_{m} is defined as ($\mathrm{v}_{1}, \mathrm{e}_{1}, \mathrm{v}_{2}, \mathrm{e}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$). The copy of S_{4} fused at $\mathrm{i}^{\text {th }}$ vertex of P_{m} is defined as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right) U\left\{u_{i, 5}, u_{i, 6}, u_{i, 7}, u_{i, 8}\right\}$, the chord $\left(u_{i, 1} u_{i, 3}\right), i=1,2, . . m$. Note that $u_{i, 1}$ is $v_{i} ; i=1,2$, ..m; the pendent edges are attached at $u_{i, 1}$ are $\left(u_{i, 1} u_{i, 5}\right),\left(u_{i, 1} u_{i, 6}\right)$ and at $u_{i, 2}$ are $\left(u_{i, 2} u_{i, 7}\right),\left(u_{i, 2} u_{i, 8}\right)$. Further v_{i} is same as $u_{i, 1}$.

Note that $|\mathrm{V}(\mathrm{G})|=16 \mathrm{x}$ for $\mathrm{m}=2 \mathrm{x} . \quad|\mathrm{E}(\mathrm{G})|=20 \mathrm{x}-1$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows,
Case $\mathrm{i}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=0$ for all $i=1,2, . . x$ and $j=1,2,3,4,5,6,7,8$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=1$ for $\mathrm{i}=\mathrm{x}+1, \mathrm{x}+2, . .2 \mathrm{x}$, and $\mathrm{j}=1,2,3,4,5,6,7,8$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}, 8 \mathrm{x}) ; \mathrm{e}_{\mathrm{f}}(0,1)=(10 \mathrm{x}, 10 \mathrm{x}-1)$.
Case $\mathrm{m}=2 \mathrm{x}+1$
To obtain a labeled copy of $\mathrm{P}_{2 x+1}\left(\mathrm{G}^{\prime}\right)$ we first follow the labeling on $\mathrm{P}_{2 x}\left(\mathrm{G}^{\prime}\right)$ part as given above.

For $\mathrm{i}=2 \mathrm{x}+1$
$f\left(u_{i, j}\right)=1$ for $\mathrm{j}=1,3,4,5$
$f\left(u_{i, j}\right)=0$ for $\mathrm{j}=2,6,7,8$
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}+4,8 \mathrm{x}+4) ; \mathrm{e}_{\mathrm{f}}(0,1)=(10 \mathrm{x}+5,10 \mathrm{x}+4)$.
Theorem 4.7 Let G^{\prime} be a graph obtained from S_{4} by fusing 2 pendent edges each at every vertex of S_{4}. Then path union of G^{\prime} given by $G=P_{m}\left(G^{\prime}\right)$ is product cordial for all m.

Proof: The path P_{m} is defined as $\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}\right)$. The copy of S_{4} fused at $t^{\text {th }}$ vertex of P_{m} is defined as : the cycle C_{4} of S_{4} as $\left(u_{i, 1}, c_{i, 1}, u_{i, 2}, c_{i, 2}, u_{i, 3}, c_{i, 3}, u_{i, 4}, c_{i, 4}, u_{i, 1}\right) U\left\{u_{i, 5}, u_{i, 6}, u_{i, 7}, u_{i, 8}, u_{i, 9}, u_{i, 10}, u_{i, 11}, u_{i, 12}\right\}$, the chord $\left(u_{i, 1} u_{i, 3}\right), i=1,2, \ldots m$. Note that $u_{i, 1}$ is $v_{i} ; i=$ 1,2 ,..m; the pendent edges are attached at $u_{i, 1}$ are $\left(u_{i, 1} u_{i, 5}\right),\left(u_{i, 1} u_{i, 6}\right)$ and at $u_{i, 2}$ are $\left(u_{i, 2} u_{i, 7}\right),\left(u_{i, 2} u_{i, 8}\right)$.

Note that $|\mathrm{V}(\mathrm{G})|=12 \mathrm{~m}$ and $|\mathrm{E}(\mathrm{G})|=14 \mathrm{~m}-1$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows,
Case $\mathrm{i}=2 \mathrm{x}$.
$f\left(u_{i, j}\right)=1$ for all $i=1,2, . . x$ and $j=1,2, \ldots 12$.
$f\left(u_{i, j}\right)=0$ for $\mathrm{i}=\mathrm{x}+1, \mathrm{x}+2, . .2 \mathrm{x}$, and $\mathrm{j}=1,2, \ldots 12$.
The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(12 \mathrm{x}, 12 \mathrm{x}) ; \mathrm{e}_{\mathrm{f}}(0,1)=(14 \mathrm{x}, 14 \mathrm{x}-1)$.
Case $\mathrm{i}=2 \mathrm{x}+1$
$f\left(u_{i, j}\right)=1$ for all $i=1,2, \ldots x$ and $j=1,2, \ldots 12$,
$f\left(u_{i, j}\right)=0$ for $i=x+1, x+2, . .2 x$, and $j=1,2 \ldots 12$;
$\left(u_{i, j}\right)=1$ for $i=x+1$ and $j=1,2,3,4,5,6$;
$f\left(u_{i, j}\right)=0$ for $i=x+1 ; j=7,8, \ldots 12$.

The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(12 \mathrm{x}+6,12 \mathrm{x}+6)$; $\mathrm{e}_{\mathrm{f}}(0,1)=(14 \mathrm{x}+7,14 \mathrm{x}+6)$.
Conclusions: In this paper we discuss path union graph $P_{m}(G)$ where G is obtained from $S 4$ by attaching up to two pendent vertices at each vertex of S_{4}. Weshow that :

1) $\quad P_{m}\left(S_{n}\right)$ is product cordial iff m is even number.
2) Let G' be a flag graph $\operatorname{FL}\left(\mathrm{S}_{4}\right)$, then path union of G^{\prime} given by $\mathrm{P}_{\mathrm{m}}\left(\mathrm{G}^{\prime}\right)$ is product cordial for all m .
3) Let G^{\prime} be a bull graph bull($\left(S_{4}\right)$, then path union of G^{\prime} given by $P_{m}\left(G^{\prime}\right)$ is product cordial for for all
4) Let G^{\prime} crown on S_{4}, given by $S_{4}{ }^{+}$then path union of G^{\prime} given by $P_{m}\left(G^{\prime}\right)$ is product cordial for all m.
5) Let G^{\prime} be tail $\left(\mathrm{S}_{4}, 2 \mathrm{P}_{2}\right)$ then path union of G^{\prime} given by $\mathrm{G}=\mathrm{P}_{\mathrm{m}}\left(\mathrm{G}^{\prime}\right)$ is product cordial for for all m .
6) Let G' be a graph obtained from S_{4} by fusing 2 pendent edges each at one pair of adjacent vertices. Then path union of G^{\prime} given by $G=P_{m}\left(G^{\prime}\right)$ is product cordial for even m only.
7) Let G^{\prime} be a graph obtained from S_{4} by fusing 2 pendent edges each at every vertex of S_{4}. Then path union of G' given by $G=P_{m}\left(G^{\prime}\right)$ is product cordial for all m.

These results shows that path unions taken on $\mathrm{S}_{4}{ }^{+\mathrm{t}}$ are product cordial for all $\mathrm{m}(\mathrm{t}=1,2)$ and all other path unions taken on G such that G is not isomorphic to $S_{4}{ }^{+t}$ for some t are product cordial for even m only. This tempts us to say that $P_{m}\left(S_{4}{ }^{+t}\right)$ for all t and all m are product cordial.

References:

[1] Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore , 110-115
[2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT
[3] Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 issue 2 july-Dec 2018.
[4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archives IJMA Sept 2017 issue
[5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004.
John Clark and D. Holton, A book " A first look at graph Theory", world scientific.
[7] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.Harary, Theory, Narosa publishing, New Delhi
[8] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016
[9] Harary, Graph Theory, Narosa publishing, New Delhi
[10] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155-163, 2004.
${ }^{1}$ Bapat Mukund V.
At and Post: Hindale, Tal. : Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.

