DESIGN AND ANALYSIS OF EARTHQUAKE RESISTANCE COMMERCIAL BUILDING

${ }^{1}$ Amrendra Swarnakar, ${ }^{2}$ Dr. D S V PRASAD
${ }^{1}$ Student, ${ }^{2}$ Head of Department \& Principal Department of Civil Engineering
BVC Engineering College, Odalarevu, Amalapuram JNTUK University, Kakinada, India

Abstract

Earthquake is a very serious problem since they harm human life and tall structures, building and all. So, proper construction is required with proper implementation of IS code. In this project, it includes the seismic analysis of structure for static and dynamic analysis in ordinary resisting frame and special moment resisting frame. The project will be carried out manually and will be validated by SAP 2000 software. The present paper deals with analysis and design of structures which resists earthquake and reduce some disastrous incidents.

I. INTRODUCTION

This project work is for the Structural Analysis and Design of twelve storied Earthquake Resistant Building. As we have experienced the disastrous earthquake repeatedly in Nepal, this work has given opportunity to develop the integrated design concept for making the building earthquake resilient to the students. Structural analysis is the backbone of civil engineering. During recent years, there has been a growing emphasis on using computer aided software and tools to analyze the structures. The importance of this project is to be familiar to the increased use of the professional computer software in analysis and design. These developments are most welcome, as they relieve the engineer of the often lengthy calculations and procedures required to be followed while large or complicated structures are analyzed using classical methods. This project report covers the structural design works carried out which discuss, briefly, the design criteria, assumptions, analysis and design of different components of the building that will be able to resist the earthquake motions.

This project consists of structural analysis, design and structural dealing of a twelve storied building for earthquake resistance.
The general features of this proposed building are as follows:

1. Name of project
2. Utility of building
3. Location
4. Structure system
5. Plinth area
6. No. of stories
7. Floor to floor height
8. Types of slab
9. Types of beam
10. Types of column
11. Types of foundation
12. No. of staircase
13. No. of lifts
14. Method of design
15. Design concept
16. Concrete grade
17. Reinforcement
18. Dead load
19. Live load
20. Seismic load
21. Soil type
22. Topography

Structural Analysis and Design of twelve stories
Earthquake Resistant Building
Commercial complex
Kathmandu, Nepal
RCC framed structure
807.79 sq. m.
$2 \mathrm{~B}+\mathrm{G}+10$ stories
3.5 m
two way (125 mm thickness)
rectangular; $350 \mathrm{~mm} \times 650 \mathrm{~mm}$
(Secondary beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$)
square; $650 \mathrm{~mm} \times 650 \mathrm{~mm}$
Matt foundation
3 (one dog legged, one steel staircase and one open well)
3
SAP 2000 V16
limit state design
M25
Fe415
as per IS 1893(part 1): 2002
as per IS 1893(part 2): 2002
as per IS 1893(part 1): 2002
soft soil
hilly terrain

II. LITERATURE REVIEW

- Ashraf M. EI-Shahhat et.al (3) investigated the safety of multistory buildings during construction. The safety of the structure, in these early days of its life is greatly influenced by a large no of factors including the loads, the geometry, and the material properties of the building and the method of construction. The probability of failure of the building during its relatively short period of construction is greater than that of its service life.
- Arindam Sahu1, Rohit Bose2, Indrasish Mukherjee3 and Sahil Hossain Mondal have done sap analysis on multi stories buildings.
- V.Varalaxmi: The design \& analysis of multistored G+4 building at Kukatpally, Hyderabad, India. The study includes design \& analysis of columns, beams, footings \& slabs by using well known civil engineering software named as SAP2000.
- Journal published on www.irjet.net on "TO STUDY THE EARTHQUAKE RESISTANT DESIGN OF STRUCTURE" Ishita Arora, Er. Rajinder Singh
- www.ijbssnet.com : "Construction of Earthquake Resistant Buildings and Infrastructure Implementing Seismic Design and Building Code in Northern Pakistan 2005 Earthquake Affected Area." They discussed the building construction found and the reasons and causes for large scale destruction to the buildings and infrastructure. The buildings were built without implementing code. Then they discussed the building code of Pakistan (including seismic provisions), particularly for the earthquake affected area, and its implementation. They also discussed the building code and seismic design for construction in Japan and compared it with the practices in Pakistan. They described the seismic design and how to use seismic design in different kind of building structures to make the building structures more resistant to earthquakes. In this paper, they suggested some solutions for the construction of building structures in Pakistan to make the building structures more resistant to earthquake and to lessen the damage.
- A Report on the Workshop on Earthquake Resistant Construction in Civil Engineering Curriculum Newsletter of the Indian Society of Earthquake Technology, January 1998. C.V.R. Murty1, Ravi Sinha2, and Sudhir K. Jain3
- Earthquake Resistant Designs: Nimita A. Tijore1 Rushabh A. Shah2 1M. E., Construction management 2Asst. professor, Civil Engineering Department S.N.P.I.T. \& R. C, Umrakh, Bardoli, India They talked about serious problem caused by earthquake and preventive measures by constructing earthquake resistance building. Involving different technique like base isolation, concept of frame structures and so on.
- International Journal of Engineering Trends and Technology (IJETT) - Volume 33 Number 9- March 2016 ISSN: 22315381: Study on Earthquake Resistant Building (Base Isolation) Prashika Tamang1 Bijay Kumar Gupta2, Bidisha Rai3, Karsang Chukey Bhutia4, Chungku Sherpa5 They explained the effects of earthquake and its preventive measures. They explained the adoption of base isolation using lead rubber bearing at foundation is done in project for the protection of buildings and lives from the fatal earthquake vibration. It also preserves the economic and social state of a country.
- Future trends in earthquake-resistant design of structures: Durgesh C. Rai Department of Earthquake Engineering, University of Roorkee, Roorkee 247 667, India. In this project he has explained about disaster done earthquake and preventive way like, construction with energy dissipation system, active control system, base isolation and etc.

III. METHODOLOGY

In order to achieve the objective of the project as mentioned above, the following procedures are adopted in Analysis and Design of Building for Earthquake Resistance.

3.1 Preliminary Design

The approximate sizes of the structural elements were determined through preliminary design so that after analysis the pre-assumed dimensions might not deviated considerably, thus making the final design for both safe and economical purpose. Approximate size of various elements has been determined as follows.

3.1.1 Slab

For slab, preliminary design is done according to deflection criteria as specified in IS: $\overline{456}-\overline{2} 000$ Clause 23.2.1.
Span $/ \mathrm{d}_{\text {eff }}=\alpha \beta \delta \gamma \lambda$
Where,
$\alpha=$ basic value of span to effective depth ratios for spans up to 10 m
$=7$ for cantilever
$=20$ for simply supported
$=26$ for continuous
$\beta=$ a factor which accounts for correction in the values of α for spans greater than 10 m .
$=10 /$ span, where span is in meter.
$\delta=$ a factor which depends on the area of compression reinforcement.
$\gamma=$ a modification factor which depends on the stress at service and amount of steel for tension reinforcement
$\lambda=$ a factor for fanged beams which depends on the ratio of web width to the flange width.

3.1.2 Beam

The preliminary design of beam has been performed using thumb rule of 1 " to 12 "
i.e.

$$
\mathrm{d}_{\mathrm{eff}}=\mathrm{span} / 12 \text { to span/15 }
$$

Basic is adopted to consider the preliminary design of the beam section with ratio:

$$
\mathrm{b} / \mathrm{D}=1 / 2 \text { or } 2 / 3 \text {. }
$$

3.1.3 Column

Preliminary design of column is done considering column of grid as shown below. For the load acting in the column, live load is decreased according to IS 975: 1978(part 2) and then design is carried out using SP-16.

3.2 Load Calculations

Load calculation for superimposed load and dead load are done by the IS: 875-1987(part 1 and part 2) as reference. The exact value of unit weights of the material used in the building has been extracted from the code and was used in calculations. Thickness of materials was taken as per design requirement.

According to IS: 1893-2002, Nepal lies on the fifth zone. Hence, the effect of earthquake is predominant than the wind load. So, the frame is analyzed for the earthquake as lateral load. For the determination of lateral load, it is assumed that the mass to be lumped at the floor level and lumped mass having the value corresponding to the mass of floor, part of the support system above and below the floor and reduced live load, base shear $\left(\mathrm{V}_{\mathrm{B}}\right)$ is then calculated using the coefficient design method of IS: 1893-2002.

Identification of loads:

- Dead loads are calculated as per IS: 1893 (Part 1) - 2002
- Imposed loads according to IS: 1893 (Part 2) - 2002
- Seismic load according to IS: 1893 (Part 1): 2002 considering Kathmandu located at Zone V.

There are two methods to determine the earthquake force in a building.

1. Seismic coefficient method (static method)
2. Response spectrum method or modal analysis method of spectral acceleration method (dynamic method)

3.2.1 Response Spectrum Method:

Response spectrum of any building gives us a plot of peak or steady state response(Displacement, Velocity or Acceleration) of a series of oscillators of a varying natural frequency, that are forced into motion by the same base vibration or shock. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of oscillation. Response spectrum analysis requires that isolator units be modeled using amplitude- dependent values of effective stiffness.

3.2.2 Methods of analysis:

The building is modeled as a space frame. SAP 2000 V16 is adopted as the basic tool for the execution of analysis. SAP 2000 V16 program is based on Finite Element Method. Due to possible actions in the building, the stresses, displacements and fundamental time periods are obtained using SAP 2000 V16 which are used for the design of the members.
IS 1893-2002 (part 1) is followed for the seismic analysis of the building. The fundamental time period of the structure is calculated as specified in code.
The following combinations are considered for the analysis.

Load Combination:

1) $1.5(\mathrm{DL}+\mathrm{LL})$ along x and y direction
2) $1.2(\mathbf{D L}+\mathbf{L L} \pm \mathbf{E Q})$ along x and y direction
3) $1.5(\mathrm{DL} \pm \mathrm{EQ})$ along x and y direction
4)0.9DL $\pm 1.5 \mathrm{EQ}$ along x and y direction

3.3 Design:

The following materials are adopted for the design of the elements:

- Concrete Grade: M25
- M25 for Beam, Column, Mat foundation, Stair case and Slab.
- Reinforcement Steel (Deformed Bars) - Fe415
- Fe 415 for longitudinal as well as for lateral ties

Limit state method is used for the design of RC elements.

3.4 Detailing:

The structure is designed with due consideration to provide ductile behavior and comply with the requirements given in IS: 4562000: IS: 1893-2002, IS 13920:1993. Detailing was done by determining number, size, layout and location of reinforcement giving the element dimension and areas of steel required.

IV. RESULTS AND DISCUSSION

4.1 Preliminary Design

For analysis of the building, it requires the rough idea on the member sizes used in the building as beam, column and slab. According to which the contributed dead load of the member to the structure could be estimated.
The size of the members is dependent on the Limit state of Serviceability on Deflection and Cracking. For this, the IS code 4562000 is referred to make sure.

4.1.1 MAIN BEAM

In Y-direction,

Maximum longer span $=8000 \mathrm{~mm}$
Maximum longer span/effective depth $=12-15$
$8000 / 13=\mathrm{d}$
Therefore $\mathrm{d}=615.38 \mathrm{~mm}$, adopt $=620 \mathrm{~mm}$
Take effective cover $=30 \mathrm{~mm}$
Therefore, overall depth $(\mathrm{D})=650 \mathrm{~mm}$
Take $\mathrm{b}=\mathrm{D} / 2$ or $2 * \mathrm{D} / 3$

$$
\begin{aligned}
& =650 / 2=325 \mathrm{~mm} \text { OR } 2 * 650 / 3=433 \mathrm{~mm} \\
& =325 \mathrm{~mm} \text { to } 433 \mathrm{~mm}
\end{aligned}
$$

Take width of the beam $=350 \mathrm{~mm}$
Therefore, Main beam =350 mm x $\mathbf{6 5 0} \mathbf{~ m m}$

4.1.2 SLAB

$\%$ of steel $(0.1 \%$ to $0.4 \%)=0.3 \%$ (assumed)
Using the deflection criteria for the continuous slab,

Where, \quad| Span $/ \mathrm{d} \leq \alpha \beta \delta \gamma \lambda$ | |
| :--- | :--- |
| $\alpha=26$ | $\delta=1$ |
| $\beta=1$ | $\lambda=1$ |

Now for the modification factor γ for tension reinforcement,
Let, $\mathrm{f}_{\mathrm{y}}=415 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{f}_{\mathrm{s}}=0.58 * \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{st}}$ of X-section of steel required/Area of X-section of steel provided

$$
=0.58 * 415 * 1
$$

$=240.7 \mathrm{~N} / \mathrm{mm}^{2}$
So, $\gamma=1.64$ from fig. 4
Effective depth of slab $(d)=1_{x} / \alpha \beta \delta \gamma \lambda$

$$
\begin{aligned}
& =5000 /(26 * 1 * 1.64 * 1) \\
& =117.26 \mathrm{~mm}
\end{aligned}
$$

Provide effective cover $=20 \mathrm{~mm}$
Therefore, Total depth of slab $(D)=137 \mathrm{~mm}$; Adopt $\mathbf{1 2 5} \mathbf{~ m m}$ as slab thickness.
Since thickness of slab is more than 125 mm , we will adopt 125 mm as slab thickness. To compensate this, secondary beam is designed since the longest span of beam is 8000 mm .

4.1.3 SECONDARY BEAM

In Y direction, longest span of beam $=8000 \mathrm{~mm}$
So, Span/ effective depth= 17
d= 8000/17

$$
=470.58 \mathrm{~mm}
$$

Taking effective cover $=20 \mathrm{~mm}$
Overall depth, $\mathrm{D}=470.58+20=490.58 \mathrm{~mm}$
Adopt overall depth, $\mathrm{D}=500 \mathrm{~mm}$
For width of beam (b),
$\mathrm{b}=0.5 \mathrm{D}$ to 0.67 D
$=250 \mathrm{~mm}$ to 333.33 mm
Adopt width of beam, $b=300 \mathrm{~mm}$
Therefore, section of secondary beam along X - axis $=300 \mathrm{~mm} * 500 \mathrm{~mm}$ at spacing $8000 / 3=2667 \mathrm{~mm}$ c/c.

4.1.4 COLUMN

Critical column
$\begin{aligned} \text { Area } & =(2.75 \mathrm{~m}+4.0 \mathrm{~m}) *(2.5 \mathrm{~m}+2.5 \mathrm{~m}) \\ & =33.75 \mathrm{~m}^{2}\end{aligned}$

Dead Load Calculations:

1. Beam:

Load $=(6.150+4.400) * 0.350 * 0.650 * 25$

$$
=120.006 \mathrm{KN}
$$

2. Slab:

Load $=33.75 * 0.125 * 25$

$$
=105.468 \mathrm{KN}
$$

3. Assume ($600 * 600$) mm column

Self-weight of column $=0.6 * 0.6 * 3 * 25$

$$
=27 \mathrm{KN}
$$

Total dead load $=120.006+105.468+27$

$$
=252.457 \mathrm{KN}
$$

Floor finish (thickness $=\mathbf{2 0} \mathbf{~ m m}$)
Dead load $=33.75 * 0.02 * 20=13.5 \mathrm{KN}$
Assume thickness of plaster $=\mathbf{1 2} \mathbf{~ m m}$ thick
Dead load $=33.75 * 0.012 * 20=8.1 \mathrm{KN}$
Total dead load for floor finish $=13.5+8.1 \mathrm{KN}$

$$
=21.6 \mathrm{KN}
$$

Total dead load $=252.457+21.6=274.057 \mathrm{KN}$

For 12 stories,

Total dead load $=12 * 274.057$

$$
=3288.684 \mathrm{KN}
$$

Live load calculations

S.N.	Floor	Live load (KN)
1	Lower basement	0
2	Upper basement	$5^{*} 33.75^{*} 1=168.75$
3	Ground	$4^{*} 33.75^{*} 0.9=121.5$
4	First floor	$4^{*} 33.75^{*} 0.8=108$
5	Second floor	$3^{*} 33.75^{*} 0.7=70.875$
6	Third floor	$4^{*} 33.75^{*} 0.6=81$
7	Fourth floor	$4^{*} 33.75^{*} 0.6=81$
8	Fifth floor	$4^{*} 33.75^{*} 0.6=81$
9	Sixth floor	$4^{*} 33.75^{*} 0.6=81$
10	Seventh floor	$4^{*} 33.75^{*} 0.6=81$
11	Eighth floor	$4^{*} 33.75^{*} 0.6=81$
12	Ninth floor	$1.5^{*} 33.75^{*} 0.5=25.31$

Total LL= 1061.435 KN
Total load = dead load + live load

$$
=3288.684+1061.435=3051.288 \mathrm{KN}
$$

Factored load, $\mathbf{P}_{\mathbf{u}}=1.5 * 3051.288$

$$
=6525.178 \mathrm{KN}
$$

For earthquake load, 20\% addition
Total $\mathrm{P}_{\mathrm{u}}=1.2 * 6525.178$

$$
=7830.214 \mathrm{KN}
$$

Assume 3.5\% steel,
From
$\mathrm{P}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}}=0.4 \mathrm{f}_{\mathrm{ck}}+(\mathrm{p} / 100)\left(0.67 \mathrm{f}_{\mathrm{y}}-0.4 \mathrm{f}_{\mathrm{ck}}\right)$
$\mathrm{A}_{\mathrm{g}}=\left[7830.214^{*} 10^{3}\right] /[0.4 * 25+0.035 *(0.67 * 415-0.4 * 25)]$ $=426366.1094 \mathrm{~mm}^{2}$
Assuming square column,
$\mathrm{L}=\mathrm{B}=\mathrm{A}_{\mathrm{g}}{ }^{1 / 2}$

$$
=648.22 \mathrm{~mm} \text {; adopt } 650 \mathrm{~mm} .
$$

Size of column $=\mathbf{6 5 0} \mathbf{~ m m} \times 650 \mathrm{~mm}$

4.2 STRUCTURAL DESIGN

SAP2000 v16.0.0 - File:analysis and design of commercial building - 3-D View - KN, mm, C Units

4.2.1 DESIGN OF BEAM

SAP2000

SAP2000 v16.0.0 - File:analysis and design of commercial building - Longitudinal Reinforcing Area (Indian IS 456-2000) - KN,

SAP2000 v16.0.0 - File:analysis and design of commercial building - Longitudinal Reinforcing Area (Indian IS 456-2000) - KN,

Calculations:

All the ends of members are designed as rectangular section.
Size of beam $=650 \mathrm{~mm} * 350 \mathrm{~mm}$
From SP 16, Limiting moment $\left(\mathrm{Mu}_{\mathrm{lim}}\right)=0.36 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{Xu}_{\max }\left(\mathrm{d}-0.42 * \mathrm{Xu}_{\max }\right)$
If $\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$, section is designed as singly reinforcement.
If $\mathrm{Mu} \geq \mathrm{Mu}_{\mathrm{lim}}$, section is designed as doubly reinforcement.

BEAM 1629:

HOGGING MOMENT:

From diagram, $\mathrm{Mu}=83798.01 \mathrm{KN}-\mathrm{mm}=83.798 \mathrm{KN}-\mathrm{m}$
Now,
$\mathrm{Mu}_{\text {lim }}=0.36 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{Xu}_{\max }\left(\mathrm{d}-0.42 * \mathrm{Xu}_{\max }\right)$
Also,
$\mathrm{Xu}_{\text {max }}=0.48 * \mathrm{~d}$
Where d $=$ effective depth $=\mathrm{D}-\mathrm{cc}-\emptyset / 2$
$X_{u_{\text {max }}}=0.48 * 565=271.2 \mathrm{~mm}$
$\mathrm{Mu}_{\mathrm{lim}}=0.36 * 25 * 350 * 271.2(565-0.42 * 271.2)$

$$
=385362290.9 \mathrm{~N}-\mathrm{mm}
$$

$$
=385.362 \mathrm{KN}-\mathrm{m}
$$

Here $\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$ so section design is singly beam section.
Again, $\mathrm{d}^{\prime} / \mathrm{d}=35 / 565=0.062$, taking higher value of 0.1 , from table 7.1 IS: 456-1978
$\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$
Now,
Area of tension steel (A_{st}):
$\mathrm{A}_{\mathrm{st}}=\mathrm{Mu}_{\text {lim }} / 0.87 \mathrm{f}_{\mathrm{y}}\left(\mathrm{d}-0.42 \mathrm{Xu}_{\text {max }}\right)$
$\mathrm{A}_{\text {st }}=385.362 * 10^{6} / 0.87 * 415(565-0.42 * 271.2)$

$$
=2366.1 \mathrm{~mm}^{2}
$$

Let us provide 20 mm dia. bars of 8 bars.
From IS: 456-1978 Table no. 95
$\mathrm{A}_{\text {st }}$ provided $=2512 \mathrm{~mm} 2$

CHECK FOR DEFLECTION:

$1 / \mathrm{d} \leq \alpha \beta \gamma \partial$
Where $\alpha=20$ for simply supported beam
For modification factor γ :
$\mathrm{P}_{\mathrm{t}}=100 * \mathrm{~A}_{\mathrm{st}} t(\mathrm{~b} * \mathrm{~d})$
$=100 * 2512 /(350 * 565)$
$=1.27 \%$
$\mathrm{f}_{\mathrm{s}}=0.58 \mathrm{f}_{\mathrm{y}}\left(\mathrm{A}_{\text {st, req }} / \mathrm{A}_{\text {st, provided }}\right)$

$$
=0.58 * 415 *(2366.1 / 2512)=226.72 \mathrm{~N} / \mathrm{mm}^{2}
$$

Using $\mathrm{P}_{\mathrm{t}}=1.27 \%$ and $\mathrm{f}_{\mathrm{s}}=226.72 \mathrm{~N} / \mathrm{mm}^{2}$, from IS $456-1978$
$\gamma=1.02$

Then,
$1 / \mathrm{d}=8650 / 565 \leq 20^{*} 1.02=20.4$
$15.31<20.4$ (ok)

SHEAR CHECK:

Shear force, $\mathrm{V}_{\mathrm{u}}=60.883 \mathrm{KN}$
Now, shear stress $\left(\tau_{\mathrm{u}}\right)=\mathrm{V}_{\mathrm{u}} / \mathrm{bd}$

$$
\begin{aligned}
& =60.883 * 10^{3} /(350 * 565) \\
& =0.308 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

From IS 456-2000 Table 20:
$\tau_{\text {cmax }}=3.1 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{u}}=0.308 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{ok})$
$\mathrm{A}_{\text {st }}$ at supports $=2512 \mathrm{~mm}^{2}$
We have, percentage of steel $\mathrm{P}_{\mathrm{t}}=1.27 \%$
For M25 concrete and $\mathrm{p}_{\mathrm{t}}=1.27 \%$, interpolate in table for τ_{c} in IS 456-2000 Table 19

P	$\tau_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
1.25	0.70
1.27	x
1.50	0.74

After interpolation, $\tau_{c}=x=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Thus, $\tau_{\mathrm{u}}=0.308 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{\mathrm{c}}=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Hence, minimum shear reinforcement is to be provided.
Therefore, provide 8 mm dia. 2- legged vertical stirrups at 150 mm spacing.

CHECK FOR DEVELOPMENT LENGTH (L_{d}):

$\left(\mathrm{M}_{1}\right) / \mathrm{V}_{\mathrm{u}}+\mathrm{L}_{0}=\mathrm{L}_{\mathrm{d}}$
Also, $\mathrm{L}_{\mathrm{d}}=0.87 \mathrm{f}_{\mathrm{y}} \emptyset /\left(4 \tau_{\mathrm{bd}}\right)$

$$
\begin{aligned}
& =0.87 * 415 * \emptyset /(4 * 2.24) \\
& =40.296 \emptyset
\end{aligned}
$$

Here, $L_{o}=16 \emptyset$ (provide U- bent at the end of bars at centre of supports.)
$\mathrm{M}_{1}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\left(\mathrm{d}-\left(\mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} / \mathrm{f}_{\mathrm{ck}} \mathrm{b}\right)\right)$

$$
\begin{aligned}
& =0.87 * 415 * 2512 *(565-(415 * 2512 / 25 * 350)) * 10^{-6} \\
& =403.468 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Then
$\left(403.468 * 10^{6} / 60.883 * 10^{3}\right)+16 \emptyset \geq 40.296 \emptyset$
$6626.94+16 \emptyset \geq 40.296 \emptyset$ (ok)
$\mathrm{L}_{\mathrm{d}}=0.87 * 415 * 25 /(4 * 2.24)$
$=1007.394 \mathrm{~mm} \approx 1010 \mathrm{~mm}$
ispacing.

FOR SAGGING MOMENT:

From diagram, $\mathrm{Mu}=41270.11 \mathrm{KN}-\mathrm{mm}=41.27 \mathrm{KN}-\mathrm{m}$
Now,
$\mathrm{Mu}_{\text {lim }}=0.36 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{Xu}_{\max }\left(\mathrm{d}-0.42 * \mathrm{Xu}_{\max }\right)$
Also, $\mathrm{Xu}_{\text {max }}=0.48 * \mathrm{~d}$
Where d = effective depth $=\mathrm{D}-\mathrm{cc}-\emptyset / 2$
$\mathrm{Xu}_{\text {max }}=0.48 * 565=271.2 \mathrm{~mm}$
$\mathrm{Mu}_{\mathrm{lim}}=0.36 * 25 * 350 * 271.2(565-0.42 * 271.2)$

$$
=385362290.9 \mathrm{~N}-\mathrm{mm}
$$

$$
=385.362 \mathrm{KN}-\mathrm{m}
$$

Here $\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$ so section design is singly beam section.
Again, $\mathrm{d}^{\prime} / \mathrm{d}=35 / 565=0.062$, taking higher value of 0.1, from table 7.1 IS: 456-1978
$\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$
Now,
Area of tension steel $\left(\mathrm{A}_{\mathrm{st}}\right)$:
$\mathrm{A}_{\text {st }}=\mathrm{Mu}_{\text {lim }} / 0.87 \mathrm{f}_{\mathrm{y}}\left(\mathrm{d}-0.42 \mathrm{Xu}_{\text {max }}\right)$
$\mathrm{A}_{\text {st }}=385.362 * 10^{6} / 0.87 * 415(565-0.42 * 271.2)$

$$
=2366.1 \mathrm{~mm}^{2}
$$

Let us provide 20 mm dia. bars of 8 bars.
From IS: 456-1978 Table no. 95
A_{st} provided $=2512 \mathrm{~mm} 2$

CHECK FOR DEFLECTION:

$1 / \mathrm{d} \leq \alpha \beta \gamma \partial$
Where $\alpha=20$ for simply supported beam
For modification factor γ :
$\mathrm{P}_{\mathrm{t}}=100 * \mathrm{~A}_{\mathrm{st}}(\mathrm{b} * \mathrm{~d})$

$$
=100 * 2512 /(350 * 565)
$$

$$
=1.27 \%
$$

$\mathrm{f}_{\mathrm{s}}=0.58 \mathrm{f}_{\mathrm{y}}\left(\mathrm{A}_{\text {st, req }} / \mathrm{A}_{\text {st, provided }}\right)$

$$
=0.58 * 415 *(2366.1 / 2512)
$$

$$
=226.72 \mathrm{~N} / \mathrm{mm}^{2}
$$

Using $\mathrm{P}_{\mathrm{t}}=1.27 \%$ and $\mathrm{f}_{\mathrm{s}}=226.72 \mathrm{~N} / \mathrm{mm}^{2}$, from IS $456-1978$
$\gamma=1.02$
Then,
$1 / \mathrm{d}=8650 / 565 \leq 20 * 1.02=20.4$
$15.31<20.4$ (ok)

SHEAR CHECK:

Shear force, $\mathrm{V}_{\mathrm{u}}=55.457 \mathrm{KN}$
Now, shear stress $\left(\tau_{\mathrm{u}}\right)=\mathrm{V}_{\mathrm{u}} / \mathrm{bd}$

$$
\begin{aligned}
& =55.475 * 10^{3} /(350 * 565) \\
& =0.281 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

From IS 456-2000 Table 20:
$\tau_{\text {cmax }}=3.1 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{u}}=0.281 \mathrm{~N} / \mathrm{mm}^{2}$ (ok)
$\mathrm{A}_{\text {st }}$ at supports $=2512 \mathrm{~mm}^{2}$
We have, percentage of steel $\mathrm{P}_{\mathrm{t}}=1.27 \%$
For M25 concrete and $\mathrm{p}_{\mathrm{t}}=1.27 \%$, interpolate in table for τ_{c} in IS 456-2000 Table 19

P		$\tau_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
1.25		0.70
1.27		x
1.50		0.74

After interpolation, $\tau_{c}=x=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Thus, $\tau_{\mathrm{u}}=0.281 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{\mathrm{c}}=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Hence, minimum shear reinforcement is to be provided.
Therefore, provide 8 mm dia. 2-legged vertical stirrups at 150 mm spacing.
CHECK FOR DEVELOPMENT LENGTH (L_{d}):
$\left(\mathrm{M}_{1}\right) / \mathrm{V}_{\mathrm{u}}+\mathrm{L}_{0}=\mathrm{L}_{\mathrm{d}}$
Also, $\mathrm{L}_{\mathrm{d}}=0.87 \mathrm{f}_{\mathrm{y}} \varnothing /\left(4 \tau_{\mathrm{bd}}\right)$

$$
\begin{aligned}
& =0.87 * 415 * \emptyset /(4 * 2.24) \\
& =40.296 \emptyset
\end{aligned}
$$

Here, $L_{0}=16 \varnothing$ (provide U - bent at the end of bars at centre of supports.)

```
\(\mathrm{M}_{1}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\left(\mathrm{d}-\left(\mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} / \mathrm{f}_{\mathrm{ck}} \mathrm{b}\right)\right)\)
    \(=0.87 * 415 * 2512 *(565-(415 * 2512 / 25 * 350)) * 10^{-6}\)
    \(=403.468 \mathrm{KN}-\mathrm{m}\)
```

Then
$\left(403.468 * 10^{6} / 55.475 * 10^{3}\right)+16 \emptyset \geq 40.296 \emptyset$
$7272.97+16 \emptyset \geq 40.296 \emptyset$ (ok)
$\mathrm{L}_{\mathrm{d}}=0.87 * 415 * 25 /(4 * 2.24)$
$=1007.394 \mathrm{~mm} \approx 1010 \mathrm{~mm}$

BEAM 1848: (length $=5 \mathrm{~m}$)

HOGGING MOMENT:

From diagram, $\mathrm{Mu}=211014.67 \mathrm{KN}-\mathrm{mm}=211.015 \mathrm{KN}-\mathrm{m}$
Now,
$\mathrm{Mu}_{\text {lim }}=0.36 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{Xu}_{\max }\left(\mathrm{d}-0.42 * \mathrm{Xu}_{\max }\right)$
Also,
$X u_{\text {max }}=0.48^{*} \mathrm{~d}$
Where $\mathrm{d}=$ effective depth $=\mathrm{D}-\mathrm{cc}-\emptyset / 2$
$\mathrm{Xu}_{\text {max }}=0.48 * 565=271.2 \mathrm{~mm}$
$\mathrm{Mu}_{\mathrm{lim}}=0.36 * 25 * 350 * 271.2(565-0.42 * 271.2)$

$$
=385362290.9 \mathrm{~N}-\mathrm{mm} \quad=385.362 \mathrm{KN}-\mathrm{m}
$$

Here $\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$ so section design is singly beam section.
Again, $\mathrm{d}^{\prime} / \mathrm{d}=35 / 565=0.062$, taking higher value of 0.1 , from table 7.1 IS: 456-1978
$\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$
Now,
Area of tension steel (A_{st}):
$\mathrm{A}_{\text {st }}=\mathrm{Mu}_{\text {lim }} / 0.87 \mathrm{f}_{\mathrm{y}}\left(\mathrm{d}-0.42 \mathrm{Xu}_{\text {max }}\right)$
$\mathrm{A}_{\text {st }}=385.362 * 10^{6} / 0.87 * 415(565-0.42 * 271.2)$

$$
=2366.1 \mathrm{~mm}^{2}
$$

Let us provide 20 mm dia. bars of 8 bars.
From IS: 456-1978 Table no. 95
A_{st} provided $=2512 \mathrm{~mm} 2$

CHECK FOR DEFLECTION:

$1 / \mathrm{d} \leq \alpha \beta \gamma \partial$
Where $\alpha=20$ for simply supported beam
For modification factor γ :
$\mathrm{P}_{\mathrm{t}}=100 * \mathrm{~A}_{\mathrm{st}}(\mathrm{b} * \mathrm{~d})$
$=100 * 2512 /(350 * 565)$
$=1.27 \%$
$\mathrm{f}_{\mathrm{s}}=0.58 \mathrm{f}_{\mathrm{y}}\left(\mathrm{A}_{\mathrm{st}, \text { req }} / \mathrm{A}_{\text {st, provided }}\right)$
$=0.58 * 415 *(2366.1 / 2512)$

$$
=226.72 \mathrm{~N} / \mathrm{mm}^{2}
$$

Using $P_{t}=1.27 \%$ and $f_{s}=226.72 \mathrm{~N} / \mathrm{mm}^{2}$, from IS $456-1978$
$\gamma=1.02$
Then,
$1 / \mathrm{d}=5650 / 565 \leq 20 * 1.02=20.4$
10 < 20.4 (ok)

SHEAR CHECK:

Shear force, $\mathrm{V}_{\mathrm{u}}=204.673 \mathrm{KN}$
Now, shear stress $\left(\tau_{\mathrm{u}}\right)=\mathrm{V}_{\mathrm{u}} / \mathrm{bd}$

$$
\begin{aligned}
& =204.673 * 10^{3} /(350 * 565) \\
& =1.035 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

From IS 456- 2000 Table 20:
$\tau_{\text {cmax }}=3.1 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{u}}=1.035 \mathrm{~N} / \mathrm{mm}^{2}$ (ok)
$\mathrm{A}_{\text {st }}$ at supports $=2512 \mathrm{~mm}^{2}$
We have, percentage of steel $\mathrm{P}_{\mathrm{t}}=1.27 \%$
For M25 concrete and $p_{t}=1.27 \%$, interpolate in table for τ_{c} in IS 456-2000 Table 19

P	$\tau_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
1.25	0.70
1.27	X
1.50	0.74

After interpolation, $\tau_{\mathrm{c}}=\mathrm{x}=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Thus, $\tau_{\mathrm{u}}=1.035 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{c}}=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Hence, shear reinforcement is to be provided.
Using 8 mm dia. 2- legged vertical stirrups.
$\begin{aligned} \mathrm{A}_{\mathrm{sv}} & =2 * \pi^{*} 8^{2} / 4 \\ & =100.5 \mathrm{~mm}^{2}\end{aligned}$
Shear resistance of the reinforcement:
$\mathrm{V}_{\mathrm{us}}=\mathrm{V}_{\mathrm{u}}-\tau_{\mathrm{c}} * \mathrm{~b} * \mathrm{~d}$

$$
\begin{aligned}
& =204.673 * 10^{3}-0.7032 * 350 * 565 \\
& =65615.2 \mathrm{~N}=65.615 \mathrm{KN}
\end{aligned}
$$

Now, Spacing of vertical stirrups:
$\mathrm{S}_{\mathrm{v}}=0.87 * \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{sv}} * \mathrm{~d} / \mathrm{V}_{\mathrm{us}}$

$$
=0.87 * 415 * 100.5 * 565 / 65615.2=312.448 \mathrm{~mm}
$$

Spacing as per the nominal reinforcement:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{v}} & =0.87 \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{sv}} /(0.4 * \mathrm{~b}) \\
& =0.87 * 415 * 100.5 /(0.4 * 350) \\
& =259.182 \mathrm{~mm}
\end{aligned}
$$

Maximum spacing should be less than following:

$$
\begin{array}{ll}
\text { i. } & 0.75 * \mathrm{~d}=0.75 * 565=423.75 \mathrm{~mm} \\
\text { ii. } & 300 \mathrm{~mm}
\end{array}
$$

So provide 2-legged $8 \mathrm{~mm} \emptyset$ vertical stirrups at 200 mm spacing.

CHECK FOR DEVELOPMENT LENGTH (L_{d}):

$\left(\mathrm{M}_{1}\right) / \mathrm{V}_{\mathrm{u}}+\mathrm{L}_{0}=\mathrm{L}_{\mathrm{d}}$
Also, $\mathrm{L}_{\mathrm{d}}=0.87 \mathrm{f}_{\mathrm{y}} \varnothing /\left(4 \tau_{\mathrm{bd}}\right)$

$$
\begin{aligned}
& =0.87 * 415 * \emptyset /(4 * 2.24) \\
& =40.296 \emptyset
\end{aligned}
$$

Here, $L_{0}=16 \varnothing$ (provide U- bent at the end of bars at centre of supports.)
$\mathrm{M}_{1}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\left(\mathrm{d}-\left(\mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}} / \mathrm{f}_{\mathrm{ck}} \mathrm{b}\right)\right)$

$$
\begin{aligned}
& =0.87 * 415 * 2512 *(565-(415 * 2512 / 25 * 350)) * 10^{-6} \\
& =403.468 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Then
($\left.403.468 * 10^{6} / 204.673 * 10^{3}\right)+16 \emptyset \geq 40.296 \emptyset$
$1971.281+16 \emptyset \geq 40.296 \emptyset$ (ok)
Thus,

$$
\begin{aligned}
\mathrm{L}_{\mathrm{d}} & =0.87 * 415 * 25 /(4 * 2.24) \\
& =1007.394 \mathrm{~mm} \approx 1010 \mathrm{~mm}
\end{aligned}
$$

FOR SAGGING MOMENT:

From diagram, $\mathrm{Mu}=318226.04 \mathrm{KN}-\mathrm{mm}=318.226 \mathrm{KN}-\mathrm{m}$
Now,
$\mathrm{Mu}_{\text {lim }}=0.36 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b}^{*} \mathrm{Xu}_{\max }\left(\mathrm{d}-0.42 * \mathrm{Xu}_{\max }\right)$
Also, $\mathrm{Xu}_{\text {max }}=0.48^{*} \mathrm{~d}$
Where d $=$ effective depth $=\mathrm{D}-\mathrm{cc}-\emptyset / 2$
$\mathrm{Xu}_{\text {max }}=0.48 * 565=271.2 \mathrm{~mm}$
$\mathrm{Mu}_{\mathrm{lim}}=0.36 * 25 * 350 * 271.2(565-0.42 * 271.2)$

$$
=385362290.9 \mathrm{~N}-\mathrm{mm}
$$

$=385.362 \mathrm{KN}-\mathrm{m}$
Here $\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$ so section design is singly beam section.
Again, $\mathrm{d}^{\prime} / \mathrm{d}=35 / 565=0.062$, taking higher value of 0.1 , from table 7.1 IS: 456-1978
$\mathrm{f}_{\mathrm{sc}}=353 \mathrm{~N} / \mathrm{mm}^{2}$
Now,
Area of tension steel (A_{st}):
$\mathrm{A}_{\text {st }}=\mathrm{Mu}_{\text {lim }} / 0.87 \mathrm{f}_{\mathrm{y}}\left(\mathrm{d}-0.42 \mathrm{Xu}_{\text {max }}\right)$
$\mathrm{A}_{\text {st }}=385.362 * 10^{6} / 0.87 * 415$ (565-0.42*271.2)

$$
=2366.1 \mathrm{~mm}^{2}
$$

Let us provide 20 mm dia. bars of 8 bars.
From IS: 456-1978 Table no. 95
A_{st} provided $=2512 \mathrm{~mm} 2$

CHECK FOR DEFLECTION:

$1 / d \leq \alpha \beta \gamma \partial$
Where $\alpha=20$ for simply supported beam
For modification factor γ :
$\mathrm{P}_{\mathrm{t}}=100 * \mathrm{~A}_{\mathrm{st}} t(\mathrm{~b} * \mathrm{~d})$
$=100 * 2512 /(350 * 565)$
$=1.27 \%$
$\mathrm{f}_{\mathrm{s}}=0.58 \mathrm{f}_{\mathrm{y}}\left(\mathrm{A}_{\text {st, req }} / \mathrm{A}_{\text {st, provided }}\right)$
$=0.58 * 415 *(2366.1 / 2512)$
$=226.72 \mathrm{~N} / \mathrm{mm}^{2}$
Using $\mathrm{P}_{\mathrm{t}}=1.27 \%$ and $\mathrm{f}_{\mathrm{s}}=226.72 \mathrm{~N} / \mathrm{mm}^{2}$, from IS $456-1978$
$\gamma=1.02$
Then,
$1 / \mathrm{d}=5650 / 565 \leq 20 * 1.02=20.4$
$10.0<20.4$ (ok)

SHEAR CHECK:

Shear force, $\mathrm{V}_{\mathrm{u}}=220.956 \mathrm{KN}$
Now, shear stress $\left(\tau_{\mathrm{u}}\right)=\mathrm{V}_{\mathrm{u}} / \mathrm{bd}$

$$
\begin{aligned}
& =220.956^{*} 10^{3} /(350 * 565) \\
& =1.117 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

From IS 456- 2000 Table 20:
$\tau_{\text {cmax }}=3.1 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{u}}=1.117 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{ok})$
A_{st} at supports $=2512 \mathrm{~mm}^{2}$
We have, percentage of steel $P_{t}=1.27 \%$
For M25 concrete and $\mathrm{p}_{\mathrm{t}}=1.27 \%$, interpolate in table for τ_{c} in IS 456-2000 Table 19

P	$\tau_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
1.25	0.70
1.27	x
1.50	0.74

After interpolation, $\tau_{\mathrm{c}}=\mathrm{x}=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Thus, $\tau_{\mathrm{u}}=1.117 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{c}}=0.7032 \mathrm{~N} / \mathrm{mm}^{2}$
Hence, shear reinforcement is to be provided.
Using 8 mm dia. 2 - legged vertical stirrups.
$\mathrm{A}_{\mathrm{sv}}=2 * \pi^{*} 8^{2} / 4$
$=100.5 \mathrm{~mm}^{2}$

Shear resistance of the reinforcement:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{us}} & =\mathrm{V}_{\mathrm{u}}-\tau_{\mathrm{c}} * \mathrm{~b}^{*} * \mathrm{~d} \\
& =220.956 * 10^{3}-0.7032 * 350 * 565 \\
& =81898.2 \mathrm{~N}=81.898 \mathrm{KN}
\end{aligned}
$$

Now, Spacing of vertical stirrups:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{v}} & =0.87 * \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{ss}} * \mathrm{~d} / \mathrm{V}_{\mathrm{us}} \\
& =0.87 * 415 * 100.5 * 565 / 81898.2 \\
& =250.327 \mathrm{~mm}
\end{aligned}
$$

Spacing as per the nominal reinforcement:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{v}} & =0.87 \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{sv}} /(0.4 * \mathrm{~b}) \\
& =0.87 * 415 * 100.5 /(0.4 * 350) \\
& =259.182 \mathrm{~mm}
\end{aligned}
$$

Maximum spacing should be less than following:
i. $\quad 0.75 * \mathrm{~d}=0.75 * 565=423.75 \mathrm{~mm}$
ii. $\quad 300 \mathrm{~mm}$

So provide 2-legged $8 \mathrm{~mm} \emptyset$ vertical stirrups at 200 mm spacing.

CHECK FOR DEVELOPMENT LENGTH (L_{d}):

$\left(\mathrm{M}_{1}\right) / \mathrm{V}_{\mathrm{u}}+\mathrm{L}_{0}=\mathrm{L}_{\mathrm{d}}$

$$
\text { Also, } \begin{aligned}
\mathrm{L}_{\mathrm{d}} & =0.87 \mathrm{f}_{\mathrm{y}} \varnothing /\left(4 \tau_{\mathrm{bd}}\right) \\
& =0.87 * 415 * \emptyset /(4 * 2.24) \\
& =40.296 \varnothing
\end{aligned}
$$

Here, $1_{o}=16 \varnothing$ (provide U- bent at the end of bars at centre of supports.)

$$
\begin{aligned}
\mathrm{M}_{1} & =0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\left(\mathrm{~d}-\left(\mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}} / \mathrm{f}_{\mathrm{ck}} \mathrm{~b}\right)\right) \\
& =0.87 * 415 * 2512 *(565-(415 * 2512 / 25 * 350)) * 10^{-6} \\
& =403.468 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Then,
$\left(403.468 * 10^{6} / 220.956 * 10^{3}\right)+16 \emptyset \geq 40.296 \emptyset$
$1826.01+16 \emptyset \geq 40.296 \emptyset$ (ok)
Thus, $\mathrm{L}_{\mathrm{d}}=0.87 * 415 * 25 /(4 * 2.24)$
$=1007.394 \mathrm{~mm} \approx 1010 \mathrm{~mm}$

4.2.2 DESIGN OF SLAB

Slab is a flexural element and there are mainly two types of slab based on the ratio of longer to shorter span of room. They are as follow:
i. One way slab: It is a slab with the ratio of longer to shorter span greater than 2 and the coefficient for it can be used from Table 26. b (IS 456:2000).
ii. Two way slab: It is the slab with the ratio of longer to shorter span less than or equal to 2 and the coefficient for it can be used from table 26. a (IS456:2000).
There are ten types of two way continuous slab depending upon the length and the discontinuous edge. The conditions to be satisfied for use of these conditions are
a) The loading of the adjacent span should be the same.
b) The span in each direction should be approximately equal.

The span moment per unit width (which are considered as positive in sign) and the negative moments at continuous edge for these slabs are calculated from the equation:

$$
\begin{array}{ll}
M_{x}=\alpha_{x} w l_{x}^{2} & \text { from span } 1_{x} \\
M_{y}=\alpha_{y} w l_{x}^{2} & \text { from span } l_{y}
\end{array}
$$

Spacing of bars on slab:
A. Maximum spacing in main bar:

1. 3 times the effective depth
2. 300 mm , ; whichever is less
B. Maximum spacing in distribution bars
3. 5 times the effective depth
4. 450 mm , ; whichever is less

Reinforcement requirement in slab:
i. Maximum reinforcement:
$\mathrm{A}_{\mathrm{st} \max }=4 \%$ of area of slab
ii. Minimum reinforcement:
$\mathrm{A}_{\mathrm{st} \text { min }}=0.12 \%$ of area of slab

DESIGN OF SLAB (ONE LONG EDGE DISCONTINUOUS)

$\mathrm{l}_{\mathrm{y}}($ long span $)=8 \mathrm{~m}$
$1_{x}($ short span $)=5 \mathrm{~m}$
$1_{y} / 1_{x=}=1.58<2$
Hence, it is a two way slab. Slab is one edge continuous.
For bending moment coefficients,
From table 26 IS 456:2000,

$$
M_{x}=\alpha_{x} W_{u} l_{x}^{2}
$$

$M_{y}=\alpha_{y} W_{u} l_{x}{ }^{2}$

$\alpha_{x}=0.0702$	$\alpha_{y-}=0.037$
$\alpha_{x+}=0.0535$	$\alpha_{y+}=0.028$

$\mathrm{M}_{\mathrm{x}-}$	$=0.043 * 11.7 * 3.49^{2}$	$=22.208 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{x}+}$	$=0.032 * 11.7 * 3.49^{2}$	$=16.925 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{y}-}$	$=0.037 * 11.7 * 3.49^{2}$	$=29.548 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{y}+}$	$=0.028 * 11.7 * 3.49^{2}$	$=22.361 \mathrm{KNm}$

Maximum bending moment, $\mathrm{M}_{\mathrm{u}}=29.548 \mathrm{KNm}$

DESIGN LOAD

Dead load:
Self-weight $=25 * 0.125 * 1=3.125 \mathrm{KN} / \mathrm{m}$
Floor finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
Total dead load=4.125 KN/m
Live load $=4 \mathrm{KN} / \mathrm{m}$
Total design load $=8.125 \mathrm{KN} / \mathrm{m}$
Factored load $\left(\mathrm{W}_{\mathrm{u}}\right)=1.5 * 8.125 \mathrm{KN} / \mathrm{m}=12.187 \mathrm{KN} / \mathrm{m}$

BENDING MOMENT:

Maximum bending moment, $\mathrm{M}_{\mathrm{u}}=29.548 \mathrm{KNm}$
$\mathrm{D}=125 \mathrm{~mm}$
$\mathrm{d}=95 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{ex}}=\mathrm{L}_{\mathrm{cx}}+\mathrm{d} / 2+\mathrm{d} / 2=5.095 \mathrm{~m}$
$L_{e y}=L_{c y}+d / 2+d / 2=8.095 m$

CHECK FOR EFFECTIVE DEPTH FOR MAXIMUM BENDING MOMENT:

For $\mathrm{f}_{\mathrm{y}}=415 \mathrm{MPa} \& \mathrm{f}_{\mathrm{ck}}=25 \mathrm{MPa}$
$\mathrm{M}_{\text {max }}=0.138 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{~d}^{2}$
$29.548 * 10^{6}=0.138 * 25 * 1000 * \mathrm{~d}^{2}$
$\mathrm{d}=92.54 \mathrm{~mm}<95 \mathrm{~mm}$
Then, adopt $\mathrm{d}=95 \mathrm{~mm}, \mathrm{D}=125 \mathrm{~mm}$ and $\mathrm{b}=1000 \mathrm{~mm}$.

STEEL CALCULATIONS:

We have,
B.M. $=0.87 * \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{st}} *\left(\mathrm{~d}-\frac{\mathrm{fy} * \mathrm{Ast}}{\mathrm{fck} * \mathrm{~b}}\right)$

1. For shorter span,
(B.M) $)_{x, \max }=22.208 \mathrm{KNm}$
$22.208 * 10^{6}=0.87 * 415 * \mathrm{~A}_{\mathrm{stx}} *\left(120-\frac{415 * \text { Astx }}{25 * 1000}\right)$
$\mathrm{A}_{\mathrm{stx}}=739.59 \mathrm{~mm}^{2}$
Provide 10 mm bars,
Area of one bar $\left(\mathrm{A}_{0}\right)=78.54 \mathrm{~mm}^{2}$
Spacing $\left(\mathrm{S}_{\mathrm{x}}\right)=1000 * \mathrm{~A}_{0} / \mathrm{A}_{\text {stx }}$

$$
=106.19 \mathrm{~mm}>100 \mathrm{~mm} \quad(\mathrm{OK})
$$

Adopt 106 mm as spacing in shorter span.
Also $\mathrm{S}_{\mathrm{x}}<3 * \mathrm{~d}=3 * 95=285 \mathrm{~mm}>106 \mathrm{~mm}$
(OK)
Provide 10 mm diameter bars@ $106 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
Thus, $\left(\mathrm{A}_{\mathrm{st}}\right)$ provided $=1000 * 78.54 / 106$

$$
=740.94 \mathrm{~mm}^{2}
$$

Use $10 \mathrm{~mm} \phi$ bars @ 106 mm along short span
Minimum reinforcement, $\left(\mathrm{A}_{\mathrm{st}}\right) \mathrm{min}=0.12 \%$ of $\mathrm{b}^{* d}$

$$
\begin{aligned}
& =(0.12 / 100) * 1000 * 125 \\
& =150 \mathrm{~mm}^{2}<714 \mathrm{~mm}^{2} \quad \text { Hence OK }
\end{aligned}
$$

2. Along longer span,

$\mathrm{d}^{\prime}=\mathrm{d}-\phi_{\mathrm{s}}=95-10=85 \mathrm{~mm}$
$(\mathrm{BM})_{\mathrm{y}, \text { max }}=29.584 \mathrm{KNm}$
$29.584 * 10^{6}=0.87 * 415 * \mathrm{~A}_{\text {sty }}\left(85-415 * \mathrm{~A}_{\text {sty }} / 25 * 1000\right)$
$\left(\mathrm{A}_{\text {sty }}\right)$ required $=1265.39 \mathrm{~mm}^{2}$
Use 10 mm bars,
$S_{y}=1000 * 78.54 / 1265.39=62.06<100 \mathrm{~mm}$
So adopt $\mathrm{S}_{\mathrm{y}}=150 \mathrm{~mm}$

$$
>100 \mathrm{~mm}
$$

$$
<5 * \mathrm{~d}=5 * 95=475 \mathrm{~mm}, \text { Hence okay. }
$$

Provide $\phi-10 \mathrm{~mm} @ 150 \mathrm{~mm}$ c/c along longer span in middle strip
$\left(\mathrm{A}_{\text {st }}\right)$ provided $=1000 * 78.54 / 150$

$$
=523.6 \mathrm{~mm}^{2}>\left(\mathrm{A}_{\mathrm{st}}\right)_{\min }
$$

(OK)

CHECK FOR SHEAR:

We have factored shear force,
$\mathrm{V}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \mathrm{L}_{\mathrm{x}} / 2$

$$
\begin{aligned}
& =12.187 * 5 / 2 \\
& =30.467 \mathrm{KN} .
\end{aligned}
$$

Nominal shear stress $\left(\tau_{\mathrm{v}}\right)=\mathrm{V}_{\mathrm{u}} / \mathrm{b}^{*} \mathrm{~d}$

$$
=30.467 /(1000 * 95)=0.32 \mathrm{MPa}
$$

Also, $\mathrm{p}=\left(100^{*} \mathrm{~A}_{\text {sty }} / 2\right) / \mathrm{b}^{*} \mathrm{~d}$

$$
=(100 * 523.6 / 2) /(1000 * 95)
$$

$$
=0.275 \%
$$

Therefore, shear strength of concrete is:
$\tau_{\mathrm{c}}=3.1 \mathrm{MPa}$ (for M25 concrete)
Also, modified $\tau_{\mathrm{c}}{ }^{\prime}=\mathrm{k}^{*} \tau_{\mathrm{c}}$

$$
\begin{array}{l|l}
=1.3 * 3.1 \\
=4.03 \mathrm{MPa}
\end{array} \quad(\mathrm{k}=1.3 \text { for } \mathrm{d} \leq 150 \mathrm{~mm} \text {; from B-5.2.1.1 of IS 456: 2000) }
$$

Since, $\tau_{v}<\tau_{c}$ ', no shear reinforcement is required.

CHECK FOR DEVELOPMENT LENGTH:

We know,
$\mathrm{L}_{\mathrm{d}}=\left[\left(1.3 \mathrm{M}_{1}\right) / \mathrm{V}_{\mathrm{u}}\right]+\mathrm{L}_{\mathrm{o}}$
Development length of bar:
For 90° bent, $\mathrm{L}_{0}=8 \phi$
(IS: 456-2000, clause 26.2.1)

$$
\begin{aligned}
\mathrm{M}_{1}= & 0.87 * \text { fy* } \mathrm{A}_{\text {sty }}\left[\mathrm{d}-\left(\mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\text {sty }}\right) /\left(\mathrm{f}_{\mathrm{ck}} * \mathrm{~b}\right)\right] \\
& =0.87 * 415 * 523.6[85-(415 * 523.6) /(25 * 1000)] \\
& =14.425 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Also, $\mathrm{L}_{\mathrm{d}}=\left(0.87 * \mathrm{f}_{\mathrm{y}} * \Phi\right) /\left(4 * \tau_{\text {bd }}\right)$
For $\mathrm{f}_{\mathrm{ck}}=25 \mathrm{MPa}, \tau_{\mathrm{bd}}=2.24 \mathrm{MPa} \quad\left[\tau_{\mathrm{bd}}=1.4 \mathrm{MPa}\right.$ but increased by 60% due to deformed bars]
Then,
$\mathrm{L}_{\mathrm{d}}=1.3 * \mathrm{M}_{1} / \mathrm{V}_{\mathrm{u}}+8 \phi$
$(0.87 * 415 * \phi) /(4 * 2.24)=\left(1.3 * 14.425 * 10^{6}\right) /\left(30.467 * 10^{3}\right)+8 * \phi$
$\phi=19.06 \mathrm{~mm}>\phi_{\text {provided }} \quad(\mathrm{OK})$
Hence, it is safe in development length.
Then, $\mathrm{L}_{\mathrm{d}}=(0.87 * 415 * 10) /(4 * 2.24)$

$$
=402.95 \mathrm{~mm}
$$

Adopt $\mathrm{L}_{\mathrm{d}}=405 \mathrm{~mm}$.

CHECK FOR DEFLECTION

Minimum effective depth $(\mathrm{d})=1_{\mathrm{X}} /(\alpha \beta \gamma \delta \lambda)$

Here, $\alpha=(20+26) / 2=23$ (simply supported plus continuous)
$\beta=1($ span $<10 \mathrm{~m})$
for γ,
$\mathrm{f}_{\mathrm{s}}=0.58 * \mathrm{f}_{\mathrm{y}} *$ (area of steel required / area of steel provided)
$\mathrm{f}_{\mathrm{s}}=0.58 * 415 *(739.59 / 740.94)=240.26 \mathrm{MPa}$
$\mathrm{p} \%=\left(\mathrm{A}_{\mathrm{st}}\right)$ provided $\left.* 100\right) /(\mathrm{b} * \mathrm{~d})=(740.94 * 100) /(1000 * 95)=0.77 \%$
From fig. (4), IS 456:2000, $\gamma=1.1$
$\delta=1$ and $\lambda=1$ for slab.
Then,
$\mathrm{d}_{\mathrm{req}}>\operatorname{span} / \alpha \beta \gamma \delta \lambda=(5 * 1000) /(23 * 1 * 1.1 * 1 * 1)=117.628 \mathrm{~mm}>125 \mathrm{~mm}$.
Hence it is not safe in deflection.
So adopt d=125 mm and provide secondary beam of size $300 \mathrm{~mm} * 500 \mathrm{~mm}$ with singly reinforced bars in 4 no.s -16 mm diameter bars.

4.2.3 DESIGN OF COLUMN

A column may be classified as follows based on types of loading:
a. Axially loaded column
b. A column subjected to axial load and uniaxial bending and
c. A column subjected to axial load and biaxial bending

The design of column section for given axial load and biaxial moments can be made by pre-assigning the section geometry from axially loaded consideration and then checking adequacy for given eccentricity and moments.

The minimum eccentricity specified by the IS 456-2000(clause 39.2) is:

$$
\mathrm{e}_{\min }=\frac{\mathrm{L}_{\mathrm{o}}}{500}+\frac{D}{300}
$$

Where, $\mathrm{L}_{0}=$ unsupported length of column $\mathrm{D}=$ lateral dimension in plane of bending
If $\mathrm{e}_{\text {min }}$ is less than $0.05^{*} \mathrm{D}$, then column can be designed as axially loaded column. Else it is to be designed for both moment and axial load.

COLUMN NO. 3248 [LOAD COMBINATION: 1.2 (DL+LL)

From sap analysis,

$\mathrm{P}_{\mathrm{u}}=6118.73 \mathrm{KN}$
$\mathrm{M}_{\mathrm{ux}}=135.85 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{uy}}=151.68 \mathrm{KNm}$
We have,
$\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm}^{2}$
Column size $=650 \mathrm{~mm} * 650 \mathrm{~mm}$

Check for short or long column,

$\mathrm{L}_{\mathrm{ex}} / \mathrm{D}$ and $\mathrm{L}_{\text {ey }} / \mathrm{d}<12$ for short column
$\mathrm{L}_{\mathrm{ex}} / \mathrm{D}$ and $\mathrm{L}_{\mathrm{ey}} / \mathrm{d}>12$ for long column

Unsupported length $(\mathrm{L})=3000-650$

$$
=2350 \mathrm{~mm}
$$

Effective length $\left(L_{\text {eff }}\right)=0.65 * 2350$

$$
=1527.5 \mathrm{~mm}
$$

$\mathrm{L}_{\text {eff }} / \mathrm{D}=1527.5 / 650$
$=2.35<12$ so the column is short column.
Calculated minimum eccentricity,
$\mathrm{e}_{\text {min }}=\mathrm{L} / 500+\mathrm{D} / 30>20 \mathrm{~mm}$

$$
\begin{aligned}
& =2350 / 500+650 / 30>20 \mathrm{~m} \\
& =26.36 \mathrm{~mm}>20 \mathrm{~mm}
\end{aligned}
$$

Also,
$\mathrm{e}_{\text {min }} \ngtr 0.05^{*} 650=32.5 \mathrm{~mm}$
Hence the column is designed for axial load only.
As per clause 39.3, IS 456:2000, if minimum eccentricity is not greater than 0.05D then factored load is written as,
$\mathrm{P}_{\mathrm{u}}=0.4 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~A}_{\mathrm{c}}+0.67 * \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{sc}}$
Where, $\mathrm{A}_{\mathrm{c}}=\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{sc}}$

$$
=650 * 650-\mathrm{A}_{\mathrm{sc}}=422500-\mathrm{A}_{\mathrm{sc}}
$$

Then,
$6118.73 * 10^{3}=0.4^{*} 25^{*}\left(422500-\mathrm{A}_{\mathrm{sc}}\right)+0.67 * 415^{*} \mathrm{~A}_{\mathrm{sc}}$ $6118730=4225000-10 \mathrm{~A}_{\mathrm{sc}}+278.05 \mathrm{~A}_{\mathrm{sc}}$
$268.05 \mathrm{~A}_{\mathrm{sc}}=1893730$
$\mathrm{A}_{\mathrm{sc}}=7064.83 \mathrm{~mm}^{2}$
As SAP analysis provide around $14000 \mathrm{~mm}^{2}$ of reinforcement, lets us provide 16 numbers of $32 \mathrm{~mm} \phi$ bar .

DESIGN OF TRAVERSE REINFORCEMENT:-

As per Clause 26.5.3.2 of IS 456-2000

Diameter of lateral ties ($\phi \mathrm{t}$) \geq L $\mathrm{L} / 4=32 / 4=8 \mathrm{~mm}$
Hence provide $8 \mathrm{~mm} \phi$ lateral ties.
Pitch distance \leq least lateral dimension $=350 \mathrm{~mm}$

$$
\begin{aligned}
& \leq 16 * \text { smallest diameter of longitudinal reinforcement } \\
& =16 * 20=320 \mathrm{~mm} \\
& \leq 300 \mathrm{~mm}
\end{aligned}
$$

Hence, provide lateral ties \& hooks of $\phi-8 \mathrm{~mm} @ 300 \mathrm{~mm}$.

4.2.4 DESIGN OF FOUNDATION

Raft foundation is designed for this building because the loads transmitted by the columns in this structure are so heavy and the allowable soil bearing pressure so small that individual footing would cover more than about one half of the area. The raft foundation is divided into series of continuous strip. The shear and bending moment diagrams may be drawn using continuous beam analysis or coefficients for each strip. The depth is selected to satisfy shear requirements. The steel requirements will vary from strips. This method generally gives a conservative design since the interaction of adjacent strips is neglected.

Load Calculation

The loads from the column footings are calculated from SAP, the loads are assumed to be distributed uniformly by the slab to the foundation soil.

Data Obtained From Sap Analysis:

TABLE: Joint Reactions

Joint	OutputCase	CaseType	F3 (KN)
A1	UDCON2	Combination	5118.481
A2	UDCON2	Combination	5360.121
A3	UDCON2	Combination	2902.891
A4	UDCON2	Combination	4090.279
A5	UDCON2	Combination	4466.677
A6	UDCON2	Combination	5192.556
B1	UDCON2	Combination	6556.209
B2	UDCON2	Combination	6929.087
B3	UDCON2	Combination	8370.574
B4	UDCON2	Combination	7565.529
B5	UDCON2	Combination	6303.152
B6	UDCON2	Combination	6486.414
C1	UDCON2	Combination	6453.461
C2	UDCON2	Combination	6936.941
C3	UDCON2	Combination	8017.887
C4	UDCON2	Combination	7781.535
C5	UDCON2	Combination	6714.603
C6	UDCON2	Combination	6542.008
D1	UDCON2	Combination	4163.216
D2	UDCON2	Combination	3650.559
D3	UDCON2	Combination	7263.141
D4	UDCON2	Combination	7712.675
D5	UDCON2	Combination	6735.076
D6	UDCON2	Combination	6130.163
F1	UDCON2	Combination	3566.829

F2	UDCON2	Combination	5277.387
F3	UDCON2	Combination	6989.556
F4	UDCON2	Combination	6914.215
F5	UDCON2	Combination	5940.435
F6	UDCON2	Combination	3744.594
G1	UDCON2	Combination	2099.817
G2	UDCON2	Combination	3653.785
G3	UDCON2	Combination	4404.259
G4	UDCON2	Combination	4210.839
G5	UDCON2	Combination	2449.691
G6	UDCON2	Combination	1518.701

INPUT DATA

Bearing capacity of soil $=150 \mathrm{KN} / \mathrm{m}^{2}$
Compressive strength of concrete used $=25 \mathrm{KN} / \mathrm{m}^{2}$
Strength of reinforcement use $=415 \mathrm{KN} / \mathrm{m}^{2}$
It is decided to select Raft footing since the area covered by the individual isolated footing is more than 50% of the plinth area.

CALCULATIONS:

\bar{y}
$=$
$[(6556.209+6929.087+8370.574+76565.529+6303.152+6486.414) * 5.5+6543.461+6936.941+8017.857+7781.535+6714.503+65$
$2.008) * 13.5+(4163.216+3650.559+7263.141+7712.675+6735.076+6130.163) * 19+(3566.829+5277.38+6989.556+6914.215+594$
$0.465+3744.594) * 27+(2099.81+3653.785+4404.259+4210.839+2449.691+1518.701) * 32.5 / 198213.3$
= 2954275/198213.3
$=14.90$
$e_{y}=16.245-14.90$
$=1.35$
$\overline{\mathrm{x}}$
$=$
$[(5360.121+6929.08+6936.941+3650.559+5277.38+3653.785) * 5+(2902.891+8370.574+8017.887+7263.141+6989.556+4404.25$ $9 * 10.5+(490.279+7565.529+7781.535+7712.675+6914.215+4210.8369) * 15.5+(4466.67+63.3 .152+6714.603+6735.076+5940.4$ $35+2449.691) * 20.5+(5192.556+6486.414+6542.008+6130.163+3744.594+1518.701) * 25.5 / 198213.3$
$e_{x}=12764-12.75$

$$
=0.014
$$

$\mathrm{I}_{\mathrm{y}}=33.8^{*} 26.8^{3} / 12=54217.54$
$A=26.8 * 33.8=905.84$
$\mathrm{M}_{\mathrm{x}}=\mathrm{P} * \mathrm{e}_{\mathrm{y}}=\left(198213.3^{*} 1.35\right)=267587.955 \mathrm{KNm}$
$M_{y}=198213.3^{*} 0.014=2774.9862 \mathrm{KNm}$
Soil pressure at different points as follows

$$
\begin{aligned}
\sigma= & \frac{P}{A} \pm \frac{M y}{I y} * x \pm \frac{M x}{I x} * y \\
& =198213.3 / 905.84 \pm(267587.955 / 54217.54) * \mathrm{x} \pm(267587.955 / 86238.98) * \mathrm{y} \\
& =218.81 \pm 4.93 \mathrm{x} \pm 3.10 \mathrm{y}
\end{aligned}
$$

Calculation Table

S.N.	Column	P/A	My/Iy	$\mathbf{M x} / \mathbf{I x}$	\mathbf{X}	\mathbf{Y}	Stress
1	A1	218.18	4.93	3.1	-13.4	-16.25	335.247
2	B1	218.18	4.93	3.1	-13.4	-10.75	318.197
3	C1	218.18	4.93	3.1	-13.4	-2.75	293.397

4	D1	218.18	4.93	3.1	-13.4	2.75	276.347
5	F1	218.18	4.93	3.1	-13.4	10.75	251.547
6	G1	218.18	4.93	3.1	-13.4	16.25	234.497
7	A6	218.18	4.93	3.1	13.4	-16.25	203.123
8	B6	218.18	4.93	3.1	13.4	-10.25	184.523
9	C6	218.18	4.93	3.1	13.4	-2.75	161.273
10	D6	218.18	4.93	3.1	13.4	2.75	144.223
11	F6	218.18	4.93	3.1	13.4	10.25	120.973
12	G6	218.18	4.93	3.1	13.4	16.25	102.373

Maximum soil pressure is at, $\mathrm{A} 1=335.247 \mathrm{KN} / \mathrm{m}^{2}$

$$
\mathrm{B}_{6}=335.247 \mathrm{KN} / \mathrm{m}^{2}
$$

Moment at $\mathrm{A}-\mathrm{A}=838.11=335.247 * 0.5^{2} / 10$
Moment at $\mathrm{B}-\mathrm{B}=(335.4+318.197) * 0.5 * 5^{2} / 10=795.49$
Moment at C-C $=(318.197+293.397) 0.5^{*} 5^{2} / 10=764.4925$
Moment at D-D $=(293.397+276.347) * 0.5^{2} 5^{2} / 10=712.18$
Moment at $\mathrm{E}-\mathrm{E}=(276.347+251.547) * 0.5 * 5^{2} / 10=659.86$
Moment at $\mathrm{F}-\mathrm{F}=(251.547+234.497) * 5^{2} / 10=607.555$
Moment at Strip A-A=335.247*5.5 ${ }^{2} / 10=1014.12$
$\tau^{\prime}=0.25 \sqrt{25}$
$=1.25 \mathrm{~N} / \mathrm{mm}^{2}$
For corner load
Perimeter: $b_{o}=2 *(0.5 d+0.975)$

$$
=d+1950
$$

$\tau_{\mathrm{v}}=\mathrm{V}_{\mathrm{x}} /(\mathrm{bo}+\mathrm{d})$
$1.25=(5118.481 * 1000) /(\mathrm{d}+1950) * \mathrm{~d}$
$\mathrm{X} 1=1271.1$
$\mathrm{D}=1271.1 \mathrm{~mm}$
In raft foundation d should not be less than 600 mm so $\mathrm{d}=1271.1 \mathrm{~mm}$ is okay.
Let us adopt $\mathrm{d}=1300 \mathrm{~mm}$
$\mathrm{D}=1300+50 \mathrm{~mm}=1350 \mathrm{~mm}$
For edge column B6,
Perimeter $\left(b_{o}\right)=2 *(0.5 * d+1200)+(400+d)$

$$
=2 \mathrm{~d}+2800
$$

REINFORCEMENT:

Maximum moment $=1014.122 \mathrm{KNm}$
$1014.122 * 10^{6}=0.87 * 415 * \mathrm{~A}_{\mathrm{st}} *\left[1300-\left\{\left(415 * \mathrm{~A}_{\mathrm{st}}\right) /(25 * 1000)\right\}\right]$
$1014.122 * 10^{6}=361$ [1300-415Ast/25*1000]

$$
\begin{aligned}
& =361 \text { Ast }[1300-0.0166] \\
& =469300 \text { Ast- } 5.9926 \text { Ast }^{2}
\end{aligned}
$$

$\mathrm{X} 1=76089.16 \mathrm{~mm} 2$
$\mathrm{X} 2=2224.08$
Let us adopt value of $76089.16 \mathrm{~mm}^{2}$, then no. of longitudinal bar required;
Total area / 25 mm dia. bar area gives nearly 155 of bars along 26.88 m .
Adopting $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (from general spacing calculation)
Similarly along $33.8 \mathrm{~m}, 154$ no. of bar is provided with 220 mm c/c distance.

4.2.5 DESIGN OF STAIRCASE

4.2.5.1 OPEN WELL STAIRCASE

Floor height $=3500 \mathrm{~mm}$
Size of stair hall= $5100 \mathrm{~mm} * 4900 \mathrm{~m}$
Assume 2 flights,
Height of one flight= total floor height/ no. of flight

$$
=3500 / 2
$$

$$
=1750 \mathrm{~m}
$$

As this building is a commercial complex, let us adopt the height of riser of 150 mm and tread of 300 mm .
Keeping two flights, no. of riser in each flight= $1 / 2 *(3500) / 150$

$$
=12
$$

Therefore, no. of treads in each flight $=12-1=11$
Let us take width of landing A and $B=1525 \mathrm{~mm}$.
Horizontal distance required to accommodate these $=(300 * 11+1525)$

$$
=4825 \mathrm{~mm}
$$

Width of passage $=5100-4825=275 \mathrm{~mm}$, which is not sufficient. Also, in commercial building, no. of treads in one flight is limited to 9 .

Therefore, open well staircase is preferable.
Hence, let us provide 7 treads in the landing portion, which can be easily accommodated in a width $=7 * 300=2100 \mathrm{~mm}$, which will be equal to the width of well.
Provide 6 treads in each flight. Thus, there will be total of $6+6+7=19$ treads.
The stairs will be of quarter landing type. Total no. of risers to accommodate 19 treads in three flights will be $=19+3=22$ risers. Height of riser $=3500 / 22=159 \mathrm{~mm}$.

Thus, the steps will have risers of 159 mm and treads of 300 mm . Horizontal space required for 6 treads $=300 * 6=1800 \mathrm{~mm}$. Therefore, width of passage left $=5100-(1800+1525)$

$$
=1775 \mathrm{~mm} .
$$

ARRANGEMENT OF STAIRS:

Plan of open well staircase

Stair hall dimension $=5100 \mathrm{~mm} * 4900 \mathrm{~mm}$
Floor height $=3500 \mathrm{~mm}$
Riser (R) $=159 \mathrm{~mm}$
Tread (T) $=300 \mathrm{~mm}$
No. of treads= 19
No. of riser $=22$
Landing size $=1525 \mathrm{~mm} * 1500 \mathrm{~mm}$
Type of staircase= open well staircase
Grade of concrete used $=$ M25
Grade of steel= Fe 415

LOAD CALCULATIONS:

Let us provide waist slab of 150 mm thickness.
Dead load of waist slab $=b * D * 1 * 25$ [density of concrete $=25 \mathrm{KN} / \mathrm{m}^{3}$] $=150 * 25$
$=3750 \mathrm{~N} / \mathrm{m}^{2}$ in inclined form
Ceiling finish $=300 \mathrm{~N} / \mathrm{m}^{2}$
Total load from waist slab, $W_{s}=3750+300=4050 \mathrm{~N} / \mathrm{m}^{2}$

Corresponding load per sq. m. on plan (Load in horizontal slab),
$\mathrm{W}=\mathrm{W}_{\mathrm{s}} * \sqrt{ }\left(\mathrm{R}^{2}+\mathrm{T}^{2}\right) / \mathrm{T}$
$=4583.66 \mathrm{~N} / \mathrm{m}^{2}$
Load per sq. m. on plan:
Waist and ceiling finish $=4583.66 \mathrm{~N} / \mathrm{m}^{2}$
Dead load of step $(159 / 2 \mathrm{~mm}$ average $)=79.5 * 25$

$$
=1987.5 \mathrm{~N} / \mathrm{m}^{2}
$$

Top finish $=300 \mathrm{~N} / \mathrm{m}^{2}$
Live load $=3000 \mathrm{~N} / \mathrm{m}^{2}$
Total load $=4583.66+1987.5+300+3000=9871.16 \mathrm{~N} / \mathrm{m}^{2}$
Since the landing slab is two way slab, the load on the landing slab may be taken as

$$
\begin{aligned}
& =9871.16 / 2 \\
& =4935.58 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

SHEAR FORCE AND BENDING MOMENT

Flight AB:

Loading on face $A B$

Effective span= centre line of landing A to the centre line of landing B

$$
=775+2100+775=3650 \mathrm{~mm}
$$

Consider a 1000 mm wide strip of flight,
Reaction at supports $=(4935.58 * 1550+9871.16 * 2100) / 2$

$$
=14189.79 \mathrm{~N}
$$

Maximum bending moment,
$\mathrm{M}=(14189.79 * 3.650) / 2+4938.58 * 0.775^{*}(0.755+2.1) / 2+9871.16^{*}\left(1.05^{2} / 2\right)$

$$
=15004.158 \mathrm{Nm}
$$

Ultimate moment, $\mathrm{M}_{\mathrm{u}}=1.5^{*} 15004.158=22506.237 \mathrm{Nm}$
Also, $\mathrm{M}_{\mathrm{u}}=0.138 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b}^{*} \mathrm{~d}^{2}$

$$
\begin{aligned}
& 22506.237 * 1000=0.138 * 25 * 1000 * \mathrm{~d}^{2} \\
& \mathrm{~d}=80.76 \mathrm{~mm}
\end{aligned}
$$

Providing 10 mm diameter bars at a clear span of 25 mm ,
Effective depth available $=\mathrm{d}=150-30=120 \mathrm{~mm}$.
Now,
$\mathrm{M}_{\mathrm{u}} / \mathrm{b}^{*} \mathrm{~d}^{2}=22506.237 * 1000 /\left(1000 * 120^{2}\right)=1.56$
Percentage of steel, $\mathrm{P}_{\mathrm{t}}=50 * \frac{1-\sqrt{1-\frac{4.6 * M u}{f f k * * b * d^{2}}}}{\frac{f y}{f c k}}$

$$
=0.468 \%
$$

$\mathrm{A}_{\mathrm{st}}=(0.468 * 1000 * 120) / 100$

$$
=561.6 \mathrm{~mm}^{2}
$$

Area of one 10 mm diameter bar $=78.54 \mathrm{~mm}^{2}$
Spacing of 10 mm dia. Bars= $(78.54 * 1000) / 561.6=140 \mathrm{~mm}$
Hence provide 10 mm diameter bars @ 140 mm c/c.
Flight DA= distance from centre of beam to centre of bearing on wall

$$
=(325+1500+1800+115) \mathrm{mm}=3740 \mathrm{~mm}
$$

$9871.16 \mathrm{~N} / \mathrm{m} 2$

Loading on face DA

Load on landing $=4935.58 \mathrm{~N} / \mathrm{m}^{2}$
Load on waist slab $=9871.16 \mathrm{~N} / \mathrm{m}^{2}$
Consider a 1000 mm strip width of the flight. Fig. 2 shows the loading on the strip.
Taking moment about D ,
$\mathrm{V}_{\mathrm{a}} * 3.74=9871.16 * 1.915^{2} / 2+4935.58 *(1.825 / 2) *\{1.915+(1.825 / 2)\}$
$\mathrm{V}_{\mathrm{a}}=8244.42 \mathrm{~N}$
$+\uparrow \sum \mathbf{F}_{\mathbf{y}}=\mathbf{0}$
$\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{a}}=9871.16 * 1.915+4935.58 * 1.825$
$\mathrm{V}_{\mathrm{d}}=19666.28 \mathrm{~N}$
Let the shear force be zero at a distance of $\mathrm{x} m$ from D .
Then, 19666.28-9871.16* $\mathrm{x}=0$
Therefore, $x=1.99 \mathrm{~m}$.
Maximum bending moment $=19666.28^{*} 1.99-8244.42^{*} 1.99^{2} / 2$

$$
=22811.53 \mathrm{Nm}
$$

Ultimate moment, $\mathrm{M}_{\mathrm{u}}=1.5 * 22811.53=34217.30 \mathrm{Nm}$
$\mathrm{M}_{\mathrm{u}} / \mathrm{b}^{*} \mathrm{~d}^{2}=(34217.30 * 1000) /\left(1000 * 120^{2}\right)=2.376$
Percentage of steel, $\mathrm{P}_{\mathrm{t}}=50 * \frac{1-\sqrt{1-\frac{4.6 * M u}{f c k * b * d^{2}}}}{\frac{f y}{f c k}}$

$$
=0.75 \%
$$

$\mathrm{A}_{\mathrm{st}}=(0.75 * 1000 * 120) / 100$
$=900 \mathrm{~mm}^{2}$
Spacing of 10 mm diameter bars $=(78.54 * 1000) / 900=87.26 \mathrm{~mm}$
Hence provide 10 mm diameter bars @ $87.26 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

4.2.5.2 DOG LEGGED STAIRCASE

Plan of dog legged staircase

Stair hall dimension $=3740 \mathrm{~mm} * 4780 \mathrm{~mm}$
Height of each flight $=3500 / 2=1750 \mathrm{~mm}$
Choosing the dimension of riser and tread as used in open well staircase, we get
Riser $(\mathrm{R})=159 \mathrm{~mm}$
Tread (T) $=300 \mathrm{~mm}$
Then, no. of risers $=1750 / 159=11$ risers
No. of treads= $11-1=10$ treads
Now, width of landing $=4780-(300 * 10)=1780 \mathrm{~mm}$

Design of flight AB:

Let the bearing for the flight be,
Effective horizontal span $=3000+1780=4780 \mathrm{~mm}$
LOADS:
Dead load of 150 mm waist slab $=25^{*} 150=3750 \mathrm{~N} / \mathrm{m}^{2}$
Ceiling finish $(12.5 \mathrm{~mm})=24 * 12.5=300 \mathrm{~N} / \mathrm{m}^{2}$

Total $=4050 \mathrm{~N} / \mathrm{m}^{2}$

Corresponding load per sq. m . on plan $=4050 * \sqrt{ }\left(\mathrm{R}^{2}+\mathrm{T}^{2}\right) / \mathrm{T}$

$$
=4583.66 \mathrm{~N} / \mathrm{m}^{2}
$$

Hence the actual load per sq. m. of plan area will consist of following:
Waist and ceiling finish $=4583.66 \mathrm{~N} / \mathrm{m}^{2}$
Dead load of steps $(159 / 2$ average $)=79.5 * 25=1987.5 \mathrm{~N} / \mathrm{m}^{2}$
Top finish $(12.5 \mathrm{~mm})=12.5 * 24=300 \mathrm{~N} / \mathrm{m}^{2}$
Live load $=3000 \mathrm{~N} / \mathrm{m}^{2}$
Total load $=9871.16 \mathrm{~N} / \mathrm{m}^{2}$
Maximum bending moment per metre width of stairs $=\left(9871.16 * 4.78^{2}\right) / 2$

$$
=28192.53 \mathrm{~N} / \mathrm{m}^{2}
$$

Ultimate moment, $\mathrm{M}_{\mathrm{u}}=1.5^{*} 28192.53=42288.79 \mathrm{Nm}$
That is, $0.138 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~b} * \mathrm{~d}^{2}=42288.79 * 10^{3}$
That is, $\mathrm{d}=110.71 \mathrm{~mm}$
Providing 10 mm diameter bars with 30 mm clear cover,
Overall depth required $=110.71+30=140.71 \mathrm{~mm}$
Hence provide an overall depth of 150 mm .
Therefore, effective depth, $\mathrm{d}=150-30=120 \mathrm{~mm}$.

Now,
$\mathrm{M}_{\mathrm{u}} / \mathrm{b}^{*} \mathrm{~d}^{2}=42288.79 * 10^{3} /\left(1000 * 120^{2}\right)=2.936$
Percentage of steel, $\mathrm{P}_{\mathrm{t}}=50 * \frac{1-\sqrt{1-\frac{4.6 * M u}{f c k * b * d^{2}}}}{\frac{f y}{f c k}}$

$$
=0.96 \%
$$

$\mathrm{A}_{\mathrm{st}}=(0.96 * 1000 * 120) / 100=1152 \mathrm{~mm}^{2}$
Spacing of 10 mm diameter bars $=78.54 * 1000 / 1152$

$$
=68.17 \mathrm{~mm}
$$

Hence provide 10 mm diameter bars @ 68.17 mm .

V. CONCLUSION

This project was chosen because of the recent earthquake's disastrous damages to the houses and buildings in Nepal which caused tremendous loss of human life as well. Most of the loss of lives was because of the collapse of the building. Due to this catastrophic incident, we, as the future engineers, have to make the effect of the earthquake minimum. The goal being to try and make the buildings completely earthquake resistant so we can at lessen the loss of lives in future disasters.
From the analysis and design of the building that we did in this project, we came in conclusion that a building can withstand substantial amount of earthquake forces to let us stay safe at the moment earthquake strikes and allows insiders to prepare for safety measures. There is no technology that can guarantee that the building can withstand the earthquake forces to the fullest but we can at least make time to be safe from the damages if we design the building as per the proposed model.

REFERENCES

[1] REINFORCED CONCRETE (limit state design), Ashok K. Jain
[2] Indian Standard codes IS 456:2000 and SP-16
[3] Indián Standard code IS 1893:2002 (part 1 and 2)
[4] Indian Standard code IS 13920:1993
[5] Design of Concrete Structure, S. Ramamurthan.
[6] EARTHQUAKE RESISTANT DESIGN OF STRUCTURES, second edition, S.K. Duggal
[7] Staircases: Version 2 CE IIT, Kharagpur
[8] CSI, (2010), Structural Analysis Program (SAP) 2000, Version 14, Computers and Structures Inc., USA
[9] Compression Members: Version 2 CE IIT, Kharagpur
[10] A Study on Earthquake Resistant Construction Techniques ; Mohammad Adil Dar1, Prof (Dr) A.R. Dar2 , Asim Qureshi 3 ,Jayalakshmi Raju4 1PG
[11] Arya AS, Chandra B and Qamaruddin M, "A New Concept for Resistance of Masonry Buildings in Severe Earthquake Shocks", Journal of the Institution of Engineer's, India, Vol. 61, No. 2, Aug, 1981, pp. 302-308
[12] Chopra,A.K., (1982), Dynamics of Structures A Primer, Earthquake Engineering Research Institute, Oakland, California, USA
[13] Chopra,A.K., (2012), Dynamics of Structures - Theory and Application to Earthquake Engineering, Fourth Edition, Prentice Hall Inc, USA
[14] CSI, (2010), Structural Analysis Program (SAP) 2000, Version 14, Computers and Structures Inc., USA
[15] REINFORCED CEMENT CONCRETE DESIGN (limit state design), Neelam Sharma
[16] http://www.ijraset.com
[17] http://geofizika-journal.gfz.hr
[18] IAEE Manual

