Some Crown of Wheel related Path union families of product cordial graphs

Mukund V. Bapat ${ }^{1}$
Abstract: We show that for crown graphs $\mathrm{W}_{4}{ }^{+}, \mathrm{W}_{5}{ }^{+}, \mathbf{W}_{6}{ }^{+}$path union of families are product cordial graphs. Further we show that $\mathrm{W}_{\mathrm{n}}{ }^{+}$is product cordial.

Keywords: labeling, cordial, product, wheel, crown.
Subject Classification: 05C78
2. Introduction: The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [7] and Douglas West.[8]. I.Cahit introduced the concept of cordial labeling [5].There are variety of cordial labeling available in labeling of graphs. Sundaram, Ponraj, and Somasundaram [9] introduced the notion of product cordial labeling. A product cordial labeling of a graph G with vertex set V is a function f from V to $\{0,1\}$ such that if each edge u is assigned the label $f(u) f(v)$, the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 , and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a product cordial labeling is called a product cordial graph. We use $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to denote the number of vertices with label 1 are a in number and the number of vertices with label 0 are b in number. Similar notion on edges follows for $\mathrm{e}_{\mathrm{f}}(0,1)=(\mathrm{x}, \mathrm{y})$.
A lot of work is done in this type of labeling so far. One interested in survey may refer Dynamic survey in Graph labeling by J. Gallian.We mention a very short part of it. Sundaram, Ponraj, and Somasundaram have shown that trees; unicyclic graphs of odd order; triangular snakes; dragons; helms; PmUPn; CmUPn; PmUK1,n; WmUFn (Fn is the fan Pn+K1); K1,mUK1,n; WmU K1,n; Wm UPn; Wm UCn; the total graph of Pn (the total graph of Pn has vertex set V $(\mathrm{Pn}) \cup \mathrm{E}(\mathrm{Pn})$ with two vertices adjacent whenever they are neighbors in Pn); Cn if and only if n is odd; $\mathrm{C}_{\mathrm{n}}{ }^{(t)}$, the one-point union of t copies of C_{n}, provided t is even or both t and n are even; $K 2+m K 1$ if and only if m is odd; $C_{m} \cup P_{n}$ if and only if $m+n$ is odd; $K_{m, n} \cup P s$ if $s>m n ; C n+2 \cup K 1, n ; K n \cup K n,(n-1) / 2$ when n is odd; $K n \cup K n-1, n / 2$ when n is even; and $P 2 n$ if and only if n is odd. They also prove that $K_{m, n}(m, n>2), P_{m} \times P_{n}(m, n>$ 2) and wheels are not product cordial and if a (p, q)-graph is product cordial graph, then $\mathrm{q} 6(\mathrm{p}-1)(\mathrm{p}+1) / 4+1$. In this paper We show that path union of $\mathrm{W}_{4}{ }^{+}, \mathrm{W}_{5}^{+}, \mathrm{W}_{6}{ }^{+}$are families of product cordial graphs. Further we show that $\mathrm{w}_{\mathrm{n}}{ }^{+}$is also product cordial.

3. Preliminaries:

3.1 Fusion of vertex. Let G be a (p, q) graph. Let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p -1vertices and at least $q-1$ edges. If $u \in G_{1}$ and $v \in G_{2}$, where G_{1} is $\left(p_{1}, q_{1}\right)$ and G_{2} is $\left(p_{2}, q_{2}\right)$ graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_{1}+p_{2}-1$ vertices and $q_{1}+q_{2}$ edges. Sometimes this is referred as u is identified with the concept is well elaborated in D . West [9]
3.2 Path union of G i.e. $P_{m}(G)$ is obtained by taking a path P_{m} and m copies of graph G. Fuse a copy each of G at every vertex of path at given fixed point on G. It has $m p$ vertices and $m q+m-1$ edges, where G is a (p, q) graph. If we change the vertex on G that is fused with vertex of P_{m} then we generally get a path union non isomorphic to earlier structure. In this paper we define a product cordial function f that does not depends on which vertex of given graph G is used to obtain path union. This allows us to obtain path union in which the same graph G is fused with vertices of P_{m} at different vertices of G, as our choice and the same function f is applicable to all such structures that are possible on $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$.
3.3 Crown graph. It is $C_{n} \square K_{2}$. At each vertex of cycle a n edge was attached. We develop the concept further to obtain crown for any graph. Thus crown (G) is a graph $G \square K_{2}$. It has a pendent edge attached to each of it’s vertex. If G is a (p, q) graph then crown (G) has $q+p$ edges and $2 p$ vertices.

4. Main Results:

4.1 Theorem: $\quad G=P_{m}\left(w_{4}^{+}\right)$, the Path union of $w_{4}{ }^{+}$is product cordial.

Proof: To define $\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{4}{ }^{+}\right)$take a path $\mathrm{P}_{\mathrm{m}}=\left(\mathrm{v}_{1}, \mathrm{e}_{1}, \mathrm{v}_{2}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{m}-1}, \mathrm{v}_{\mathrm{m}}\right)$. At each vertex of it fuse a copy of $\mathrm{W}_{4}{ }^{+}$at given fixed vertex. The ordinary labeling of $i^{\text {th }}$ copy of w_{4}^{+}fused at $i^{\text {th }}$ vertex of P_{m} is given by hub is w_{i}, the cycle vertices $u_{i, 1}, u_{i, 2}, . . \quad u_{i, 4}$, cycle edges are $c_{i, j}=\left(u_{i, j} u_{i, j+1}\right)$ where $j=1,2,3,4$. and $j+1$ taken (modulo 4). The pendent vertices are $w_{i, 1}, w_{i, 2}, w_{i, 3}, w_{i, 4}, w_{i, 5}$ with $w_{i, j}$ adjacent to $u_{i, j}$ by edge $\left(u_{i, j} w_{i, j}\right)$ for $i=1,2,3,4$. And $w_{i, 5}$ adjacent to w_{i} by an edge $\left(w_{i} w_{i, 5}\right)$.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ given by:

Using f we get two type of labeling on $w_{4}{ }^{+}$Type A and Type B namely.Further On path Om label each vertex as ' 1 '.

Fig. $4.1: \mathrm{w}_{4}{ }^{+}$: vertex labels are shown. $e_{\mathrm{f}}(0,1)=(7,6) ; \mathrm{v}_{\mathrm{f}}(0,1)=(5,5)$

Fig. 4.2 : $\mathrm{w}_{4}{ }^{+}$: vertex labels are shown. $\mathrm{e}_{\mathrm{f}}(0,1)=(7,6) ; \mathrm{v}_{\mathrm{f}}(0,1)=(5,5)$

Fuse a copy of $\mathrm{w}_{4}{ }^{+}$(type A label) at each vertex of P_{m}. The point of fusion is vertex ' a ' on $\mathrm{w}_{4}{ }^{+}$.(refer fig.4.1).

The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{~m}, 5 \mathrm{~m})$ and $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{~m}, 7 \mathrm{~m}-1)$.
It is important to note that the same function f as above will produce product cordial but structurally different (up to isomorphism) path union resulting in same label distribution if we take path union at point ' d ' or ' w ' as shown in fig 4.1. If we have to take path union at point ' x ' we will use Type B labeling instead of Type A label in construction of path union. The function f and the label distribution will remain same.

Thus the graph is product cordial.

\#

4.2 Theorem. $\quad \mathrm{G}=\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{5}{ }^{+}\right)$, the Path union of $\mathrm{w}_{5}{ }^{+}$is product cordial.

Proof: To define $P_{m}\left(w_{5}{ }^{+}\right)$take a path $P_{m}=\left(v_{1}, e_{1}, v_{2}, e_{2}, . ., e_{m-1}, v_{m}\right)$. At each vertex of it fuse a copy of $\mathrm{w}_{4}{ }^{+}$at given fixed vertex. The ordinary labeling of $i^{\text {th }}$ copy of $w_{5}{ }^{+}$fused at $i^{\text {th }}$ vertex of P_{m} is given by hub is w_{i}, the cycle vertices $u_{i, 1}, u_{i, 2}, \ldots, u_{i, 5}$ And cycle edges are $\mathrm{c}_{\mathrm{i}, \mathrm{j}}=\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{i}, \mathrm{j}+1}\right)$ where $\mathrm{j}=1,2, \ldots 5$. and $\mathrm{j}+1$ taken (modulo 5). The pendent vertices are $\mathrm{w}_{\mathrm{i}, 1}, \mathrm{w}_{\mathrm{i}, 2}, \mathrm{w}_{\mathrm{i}, 3}, \mathrm{w}_{\mathrm{i}, 4}, \mathrm{w}_{\mathrm{i}, 5}, \mathrm{w}_{\mathrm{i}, 6}$ with $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$ adjacent to $u_{i, j}$ by edge $\left(u_{i, j} w_{i, j}\right)$ for $i=1,2,3,4,5$ And $w_{i, 6}$ adjacent to w_{i} by an edge ($w_{i} w_{i, 6}$). From type X label it follows that we can design four types of path unions on $W_{5}{ }^{+}$at points ' a ', ' c ' ' w ' and ' y '.

It is not possible to define product cordial labeling on path union at vertex w, the hub of $w_{5}{ }^{+}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ given by:

Fig. $4.3 v_{f}(0,1)=(6,6), e_{f}(0,1)=(8,8)$

Fig. $4.4 \mathrm{v}_{\mathrm{f}}(0,1)=(6,6), \mathrm{e}_{\mathrm{f}}(0,1)=(8,8)$

Fig. $4.5 v_{f}(0,1)=(6,6), e_{f}(0,1)=(8,8)$

We get three types of labels on $\mathrm{W}_{5}{ }^{+}$as Type A, type B, type C as above. The Path vertices are labeled as: $\mathrm{f}(\mathrm{v} 1)=\mathrm{f}(\mathrm{v} 2)=$ $1 ; f(v i)=0$ for $i \equiv 3(\bmod 4) ; f\left(v_{i}\right)=1$ for $i \equiv 0,1,2(\bmod 4) .(i \neq 1,2)$

Structure 1: To take path union at pendent vertex we use type A label at pendent vertex ' a ' on it and fuse it at path vertex v_{i} when $i \equiv 0,1,2(\bmod 4)$ further vertex ' b ' on type A label is used if $i \equiv 3(\bmod 4)$. Structure 2: Path union is taken at point c (fig. 4.3) of $W_{5}{ }^{+}$. we use type A label vertex ' c ' on it and fuse it at path vertex v_{i} when $i \equiv 0,1,2(\bmod 4)$ further vertex ' d ' on type A label is used if $\mathrm{i} \equiv 3(\bmod 4)$. Structure 3: Path union is taken at point y (fig. 4.3) of $\mathrm{W}_{5}{ }^{+}$. we use type B label at ' y ' on it and fuse it at
path vertex v_{i} when $i \equiv 0,1,2(\bmod 4)$ further vertex ' y ' on type A label is used if $i \equiv 3(\bmod 4)$. In all structures label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{~m}, 6 \mathrm{~m}), \mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{~m}+\mathrm{x}, 8 \mathrm{~m}+\mathrm{x}) ; \mathrm{m}=2 \mathrm{x}+1$ where m is an odd number. For even m we have $\mathrm{v}_{\mathrm{f}}(0,1)=(6 \mathrm{~m}, 6 \mathrm{~m}), \mathrm{e}_{\mathrm{f}}(0,1)=(8 \mathrm{~m}+\mathrm{x}-1,8 \mathrm{~m}+\mathrm{x}) ; \mathrm{m}=2 \mathrm{x}$ 4.3 Theorem $\quad \mathrm{G}=\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{6}{ }^{+}\right)$, the Path union of $\mathrm{w}_{6}{ }^{+}$is product cordial.

To define $\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{6}{ }^{+}\right)$take a path $\mathrm{P}_{\mathrm{m}}=\left(\mathrm{v}_{1}, \mathrm{e}_{1}, \mathrm{v}_{2}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{m}-1}, \mathrm{v}_{\mathrm{m}}\right)$. At each vertex of it fuse a copy of $\mathrm{w}_{6}{ }^{+}$at given fixed vertex. The ordinary labeling of $i^{\text {th }}$ copy of $w_{6}{ }^{+}$fused at $i^{\text {th }}$ vertex of P_{m} is given by hub is w_{i}, the cycle vertices $u_{i, 1}, u_{i, 2}, . . \quad u_{i, 5}, u_{i, 6}$ And cycle edges are $\mathrm{c}_{\mathrm{i}, \mathrm{j}}=\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{i}, \mathrm{j}+1}\right)$ where $\mathrm{j}=1,2, . .6$. and $\mathrm{j}+1$ taken (modulo 6). The pendent vertices are $\mathrm{w}_{\mathrm{i}, 1}, \mathrm{w}_{\mathrm{i}, 2}, w_{\mathrm{i}, 3}, w_{\mathrm{i}, 4}, \mathrm{w}_{\mathrm{i}, 5}, \mathrm{w}_{\mathrm{i}, 6,}, \mathrm{w}_{\mathrm{i}, 7}$ with w_{i} adjacent to $u_{i, j}$ by edge $\left(u_{i, j} w_{j}\right)$ for $i=1,2,,, m, j=1,2, . .6$ And $w_{i, 7}$ is adjacent to w_{i} by an edge $\left(w_{i} w_{i, 7}\right)$. From fig. 4.5 it follows that we can design four types of path unions on $W_{6}{ }^{+}$by taking fusion with path vertex v_{i} at points 'a', 'b' 'c' and ' d ' of $W_{6}{ }^{+}$.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$
given by: For path $f\left(v_{i}\right)=1$ for all $i=1,2, . ., m$.
For labeling of $\mathrm{i}^{\text {th }}$ copy follow the diagram 4.5.
Since the labeling of $W_{6}{ }^{+}$is independent of path labels. While fusing $W_{6}{ }^{+}$at vertex v_{i} of P_{m} care should be taken that fusing vertex label on copy of $\mathrm{W}_{6}{ }^{+}$is ' 1 '. In structure 1 we fuse $\mathrm{W}_{6}{ }^{+}$at vertex x on it with every vertex of path Pm . In structure 2 we fuse W_{6}^{+}at vertex y on it with every vertex of path Pm .
In structure 3 we fuse $\mathrm{W}_{6}{ }^{+}$at vertex c or hub vertex w_{i} on it with every vertex of path Pm .
In structure 4 we fuse $\mathrm{W}_{6}{ }^{+}$at vertex d on it with every vertex of path Pm . In all cases we get the label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(7 \mathrm{~m}, 7 \mathrm{~m}), \mathrm{e}_{\mathrm{f}}(0,1)=(10 \mathrm{~m}, 10 \mathrm{~m}-1) 4.4 \quad 4.4$ Theorem $\mathrm{W}_{\mathrm{n}}{ }^{+}$is product cordial.

Proof: We define $\mathrm{W}_{\mathrm{n}}{ }^{+}$as follows. Take cycle C_{n} given by $\left(\mathrm{v}_{1}, \mathrm{e}_{1}, \mathrm{v}_{2}, \mathrm{e}_{2}\right.$, .., $\left.e_{m-1}, v_{n}, e_{n}, v_{1}\right)$. Take a vertex w not on C_{n}. Take edges $c_{i}=\left(w v_{j}\right) ; j=1,2, \ldots, n$. Take new n vertices given by $u_{1}, u_{2}, . . u_{n}$ and u_{n+1}. Take edges $b_{i}=\left(v_{i} u_{i}\right) ; i=1,2$, .n. and $\left(w u_{n+1}\right)$.Thus the graph $G=W_{n}^{+}$has $2 n+2$ vertices and $3 n+1$ edges. Define a function f $: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ given by:
label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(2 \mathrm{x}+2,2 \mathrm{x}+2), \quad \mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{x}+2,3 \mathrm{x}+2)$,
Case $\mathrm{n}=2 \mathrm{x}, \mathrm{x}=2,3,4,$. $\mathrm{f}(\mathrm{w})=1$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1$ for $\mathrm{i}=1,2, \ldots, \mathrm{x}+1$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=0$ for $\mathrm{i}=\mathrm{x}+2, \mathrm{x}+3$, ..n.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$ for $\mathrm{i}=1,2, . .,(\mathrm{x}-1)$,

$$
\mathrm{f}(\mathrm{u})=0 \text { for } \mathrm{j}=\mathrm{x}, \mathrm{x}+1, \ldots \mathrm{n}
$$

$$
f\left(u_{n+1}\right)=0 ;
$$

The label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(2 \mathrm{x}+1,2 \mathrm{x}+1) ; \quad \mathrm{e}_{\mathrm{f}}(0,1)=(3 \mathrm{x}, 3 \mathrm{x}+1)$.
Conclusions: In this paper we have defined Crown graph for C_{n} given by $\mathrm{C}_{\mathrm{n}}{ }^{+}$, crown of W_{n} given by $\mathrm{W}_{\mathrm{n}}{ }^{+}$. We have shown that path union of $\mathrm{W}_{4}{ }^{+}, \mathrm{W}_{5}{ }^{+}, \mathrm{W}_{6}{ }^{+}$are families of product cordial graphs. We have also obtained particular product cordial labels of $\mathrm{C}_{\mathrm{n}}{ }^{+}$ and that of $\mathrm{W}_{\mathrm{n}}{ }^{+}$.In discussion on path union we obtain different structures and it depends which point on G is used to obtain path union. The product cordial function f we define gives particular product cordial label numbers for all such structure except for $\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{5}{ }^{+}\right)$where if path union is taken on hub, the product cordial labeling is not available. And this remains a challenge to meet in future.

Future Scope: We have to obtain product cordial labeling for $\left(\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{\mathrm{n}}{ }^{+}\right), \mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{8}{ }^{++}\right)\right.$, ,.. $\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{\mathrm{n}}{ }^{+t}\right)$. Where $\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{\mathrm{n}}{ }^{+t}\right)$ is obtained by fusing t pendent edges with each vertex w_{n}.

References:

[1] Bapat M.V. Some new families of product cordial graphs, Proceedings, Annual International conference, CMCGS 2017, Singapore , 110-115
[2] Bapat M.V. Some vertex prime graphs and a new type of graph labelling Vol 47 part 1 yr 2017 pg 23-29 IJMTT
[3] Bapat M. V. Some complete graph related families of product cordial graphs. Arya bhatta journal of mathematics and informatics vol 9 issue 2 july-Dec 2018.
[4] Bapat M.V. Extended Edge Vertex Cordial Labelling Of Graph ", International Journal Of Math Archieves IJMA Sept 2017 issue
[5] Bapat M.V. Ph.D. Thesis, University of Mumbai 2004.
[6] Harary, Theory, Narosa publishing, New Delhi
[7] J. Gallian Electronic Journal Of Graph Labeling (Dynamic survey)2016
[8] M. Sundaram, R. Ponraj, and S. Somasundaram, "Product cordial labeling of graph," Bulletin of Pure and Applied Science, vol. 23, pp. 155-163, 2004.
[9] Douglas West, Introduction to graph Theory, Pearson Education Singapore.
${ }^{1}$ Bapat Mukund V.
At and Post: Hindale, Tal.: Devgad, Dist.: Sindhudurg, Maharashtra. India 416630.

