Simulation and performance analysis of microwave sensor for high power stray radiation

¹Vaishali R Panchal, ²Prof. K.R.Sheth

EC Department LD College of Engineering Ahmedabad, India

Abstract— High power microwave will be used in extensively in fusion research machine like Tokamak for variety of purpose such as plasma heating, control and diagnostic. Under certain plasma conditions all power is not fully absorbed and there is some stray radiation that leads to damage of microwave and millimeter wave components. Therefore, it is necessary to monitor the power level of the stray radiation. For monitoring the stray radiation, the detector based on the theory of bolometer is design and developed. The simulation is performed to design the detector. This paper gives the simulation results and method of the detector design.

Keywords—bolometer, sensetivity, mircowave, thermocouple, silicon carbide.

I. INTRODUCTION

The two major contributors to the microwave power in the vacuum vessel are the Electron Cyclotron Heating (ECH) and the Collective Thomson Scattering (CTS) with frequencies of 170 GHz and 60 GHz respectively. This power can damage in-vessel components and diagnostics directly through electromagnetic overloading or indirectly through absorption of the power causing overheating. Microwave detectors distributed over the vacuum vessel are proposed to monitor this microwave power and give alerts in case the power density level reaches a critical threshold.

The primary goal of these detectors is protection against overheating and sensitive diagnostics.

II. MESUREMENT OPTIONS

A. Schottky-diode detector

The most common detector used for measuring microwave power is a Schottky-diode detector. This method has the advantage of having a very fast response time due to the direct conversion of the microwave power into a voltage in the diode but main disadvantage is that diodes are semiconductors which need to be shielded very well from neutrons [1].

B. Pyroelectric sensors

Second possibility is to use far infrared pyroelectric sensor. However, this method will probably be difficult due to neutron irradiation which can damage the pyroelectric crystal and the electrical circuit and cause unresolvable heat disturbances in the crystal [1].

C. Bolometer

This is the third option of bolometry. Sketch of the bolometer principle is given in fig 1.1. The working principle is that the microwave power is absorbed by a fluid or a solid whose temperature rise can be measured with an RTD (Resistance Temperature Detector) or a thermocouple. It have advantage of very stable output [1].

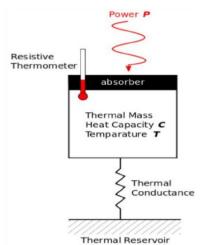


Figure 1. Sketch of the measurement principle of a bolometer. Conduction is used here for cooling

III. METHODOLOGY FOR DETECTOR

The Goal of the microwave detector is to measure the microwave power density. This must be deduced from the output of the detector which is a voltage. For a detector based on bolometry there is an intermediate quantity which the temperature. A relation between the temperature and the voltage can be found with the thermo-electric Seebeck effect.

The Seebeck effect is a phenomenon in which a temperature difference between two dissimilar electrical conductors or semiconductors produces a voltage difference between the two substances.

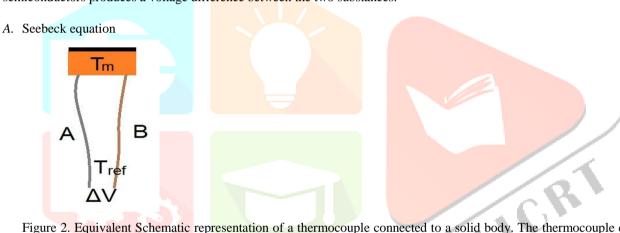


Figure 2. Equivalent Schematic representation of a thermocouple connected to a solid body. The thermocouple consists of two wires A and B with different Seebeck coefficients. This temperature T_m can be determined by measuring the voltage ΔV at temperature T_{ref} [2].

$$\Delta V = -\int dV = \int S dT.$$

$$\Delta V = \int_{T_{ref}}^{T_m} S_A dT + \int_{T_m}^{T_{ref}} S_B dT = \int_{T_{ref}}^{T_m} (S_A - S_B) dT.$$
(1)
(2)

B. Detector criteria

For an analytical analysis of the microwave detector the lumped capacitance method, in which it is assumed that the body temperatures are uniform, is very useful. As a rule of thumb, this method can be used when the Biot number is smaller than 0.1 [3]

$$Bi = \frac{hL_c}{k_{int}} \tag{3}$$

where Lc is the characteristic length which is defined as the ratio between the volume V of the body and its exposed surface S and where kint is the internal thermal conductivity. The heat transfer coe cient h is defined as

$$h = \frac{q}{T - T_{sur}},\tag{4}$$

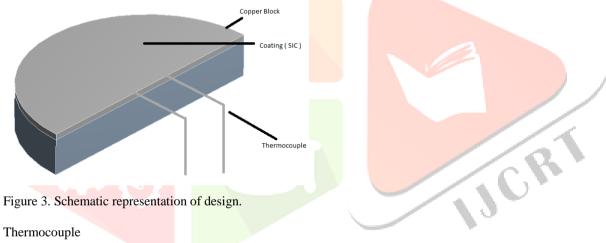
in which q is the total heat flux through the body, T the temperature of the body and Tsur that of its surroundings. In the case of the bolometer bodies there is a net heat flux $q\mu$ - qr (i.e. microwave heating minus thermal radiation) coming in at the top surface while a heat flux qc is conducted away at the bottom. So for the bolometer bodies q is given by [3]

$$q = q_{\mu} - q_r + q_c = \alpha p - \epsilon \sigma (T^4 - T_{sur}^4) + U(T - T_{sur})/A,$$

Filling in equation 2.8 in equation 2.6 gives the first criterion for the detector

$$Bi = \frac{L_c}{k_{int}} \left| \frac{\alpha p}{T - T_{sur}} - \varepsilon \sigma (T_{max} + T_{sur}) (T_{max}^2 + T_{sur}^2) + \frac{U}{A} \right| < 0.1,$$
(6)

the second criterion is that the typical response time should be


$$\tau = \frac{\rho c L_c^2}{k_{int}} \ll t_{int} \tag{7}$$

And third criteria is sensitivity of the detector

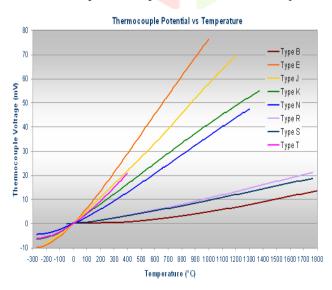
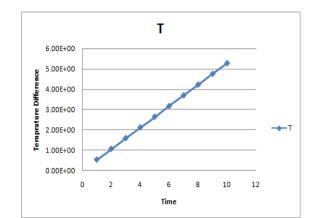
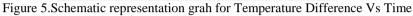
$$\rho c V \frac{dT}{dt} = \alpha p S. \tag{8}$$
$$\frac{1}{p} \frac{d}{dt} \frac{T}{dt} \approx \frac{\alpha S}{\rho c V} \cdot \tag{9}$$

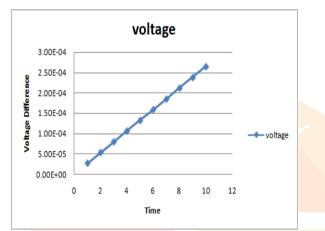
C. Design of detector

The solid body is made from the copper for its good thermal conductivity and relatively high melting point. For ease of manufacturing and for a uniform temperature at a certain Hight, cylindrical bolometers are recommended. An SIC (silicon carbide) [4] can be used for absorbing body. This coating has high absorbed power fraction and its easily available in market.

D. Thermocouple

Thermocouple is a temperature sensor that uses a junction formed by dissimilar metals


Figure 4. Schematic representation of thermocouple.

(5)

IV. THEORETICAL CALCULATIONS AND RESULTS

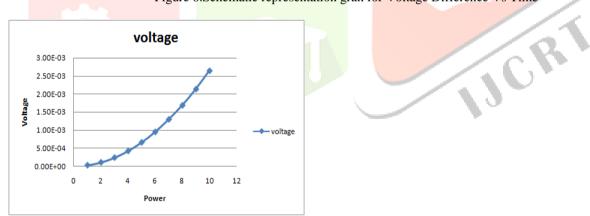
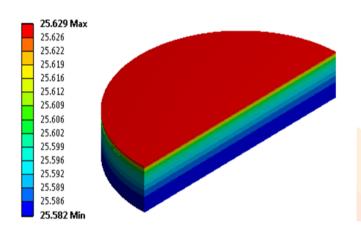


Figure 7.Schematic representation grah for Voltage difference Vs Time

V. SIMULATION

Simulation is done in ansys workbanch software, in which the temperature of the copper plate is mesured.

Properties of Outline Row 3: Copper Alloy						
	А	В	С			
1	Property	Value	Unit			
2	🚰 Density	8300	kg m^-3 🛛 💌			
3	🚰 Isotropic Thermal Conductivity	401	₩ m^-1 💌			
4	🚰 Specific Heat	385	J kg^-1 💌			


Figure 8. Properies of copper

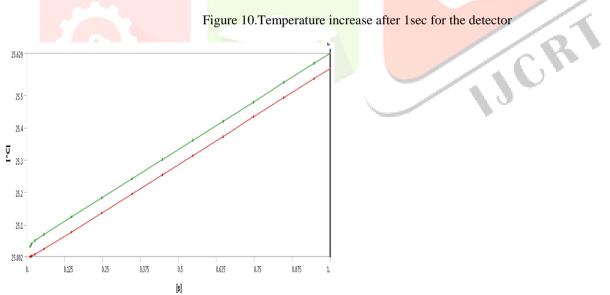

Properti	es of Outline Row 4: Silicon Carbide		
	A	В	C Unit
1	Property	Value	
2	🚰 Density	3100	kg m^-3 📘
3	🚰 Isotropic Thermal Conductivity	120	₩ m^-1 💽
4	🚰 Specific Heat	750	J kg^-1

Figure 9.Properies of Silicon Carbide

B: Transient Thermal

Temperature Type: Temperature Unit: °C Time: 1

Tabular Data					
	Time [s]	Minimum [°C]	🔽 Maximum [°C]		
1	1.e-002	25.002	25.032		
2	1.3333e-002	25.002	25.038		
3	1.6667e-002	25.003	25.042		
4	2.6667e-002	25.007	25.051		
5	5.6667e-002	25.024	25.07		
6	0.14667	25.077	25.124		
7	0.24667	25.136	25.183		
8	0.34667	25.195	25.242		
9	0.44667	25.255	25.301		
10	0.54667	25.314	25.361		
11	0.64667	25.373	25.42		
12	0.74667	25.432	25.479		
13	0.84667	25.491	25.538		
14	0.94667	25.551	25.598		
15	1.	25.582	25.629		

Figure 12. Table from of the data for 1 sec

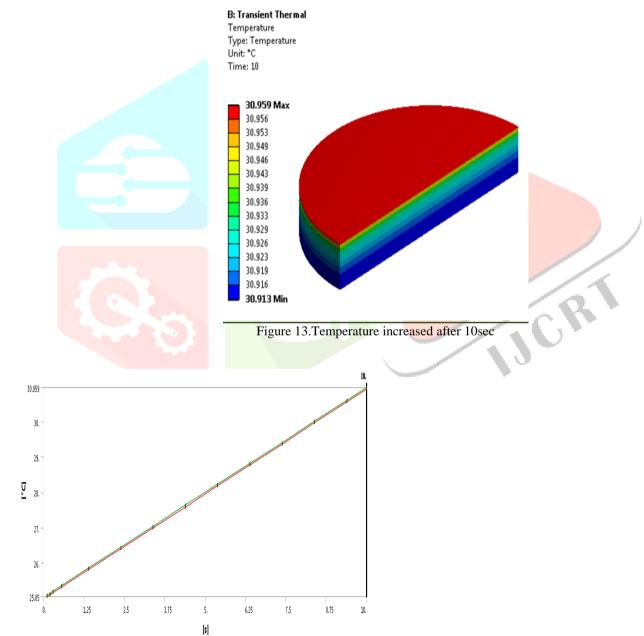


Figure 14. Temperature Vs Time for 10sec

	Time [s]	Minimum [°C]	Maximum [°C]
1	0.1	25.05	25.094
2	0.19179	25.104	25.15
3	0.28358	25.158	25.205
4	0.55895	25.321	25.368
5	1.385	25.81	25.857
6	2.385	26.403	26.449
7	3.385	26.995	27.042
8	4.385	27.587	27.634
9	5.385	28.179	28.226
10	6.385	28.772	28.819
11	7.385	29.364	29.411
12	8.385	29.956	30.003
13	9.385	30.548	30.595
14	10.	30.913	30.959

Figure 15.Table from of the data for 10 sec

VI. CONCLUSION

- Solid body is made from copper for its good thermal conductivity and relatively high melting point.
- SIC (Silicon Carbide) coating will be used for the absorbing body. This coating has high absorbed power [4].
- J-Type thermocouple is taken which have seebeck coefficients of 50 mV/C
- Microwave detector based on solid body bolometer which can measure up to 1w power having response time 0.1 sec is designed.
- When we give 1w power to the copper plate for 10 sec, then we will get 5 degree increasing temperature and 0.25 volt from seeback effect.
- After simulation we get the same degree of the temperature increase with the theoretical calculation.

VII. ACKNOWLEDGEMENT

We would like thanks to Dr Hitesh Pandya for continues support and suggestion for the research for microwave ditector.

REFERENCES

- [1] M. Hirsch, H. P. Laqua, and D. Hathiramani, The impact of microwave stray radiation to in-vessel diagnostic components, AIP Conference Proceedings 1612, 39 (2014)
- [2] Wikipedia: seebeack coefficient
- [3] Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, and David P. Dewitt.Principles of heat and mass transfer. John Wiley & Sons, Ltd, 7th intern edition, 2012.
- [4] M R meshram, Nawal K agrawal, Characterization of ferrite and silicon carbide based microwave absorber using FSS structure and X-band, Indian Journal of Radio & Space Physics, vol. 34 February 2005