Cordiality of Mixed Graphs' One Point Union

Mukund V. Bapat

Abstract: Instead of taking one point union on a graph G alone we take it on two graphs G_1 and G_2 . This structure is denoted by $G = (G_1, G_2)^{(k)}$. Care is taken that G_1 and G_2 are repeated in G in a certain sequence. If both G_1 and G_2 appear alternately then the graph G is balanced graph and for given k the number of copies of G_1 and that of G_2 differ at most by 1 in G. We discuss cordiality of G by taking G_1 and G_2 from C3, C_4 , C_5 and house graph.

Keywords: mixed graphs, cordial labeling, cycle graph, union, structure.

Subject Classification: 05C78

Introduction:

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5]. f:V(G) \rightarrow {0,1} be a function. From this label of any edge (uv) is given by |f(u)-f(v)|. Further number of vertices labeled with 0 i.e $v_f(0)$ and the number of vertices labeled with 1 i.e. $v_f(1)$ differ at most by one. Similarly number of edges labeled with 0 i.e. $e_f(0)$ and number of edges labeled with 1 i.e. $e_f(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; K_n is cordial if and only if $n \le 3$; $K_{m,n}$ is cordial for all m and n; the friendship graph $C_3^{(0)}$ (i.e., the one-point union of t copies of C₃) is cordial if and only if t is not congruent to 2 (mod 4); all fans are cordial; the wheel W_n is cordial if and only if n is not congruent to 3 (mod 4). A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [8]. Let G_1 and G_2 be any two graphs. $G^{(k)}$ is one point union of k copies of G in which a fixed vertex x of G is chosen and K copies of G are fused together at x. By $G = (G_1, G_2)^{(k)}$ we have taken one point union of G_1 and G_2 and not G alone. For that a fixed vertex from G_1 say p and a fixed vertex from G_2 say q is chosen at which m copies of G_1 and n copies of G_2 are fused together to obtain $G = (G_1, G_2)^{(k)}$. Note that m+n=k. If both G_1 and G_2 appear alternately then the graph G is balanced graph and for given k the number of copies of G_1 and that of G_2 differ at most by 1 in G. i.e. $|m-n| \le 1$. We have taken G_1 and G_2 from C_3 , C_4 , house graph and C_5 .

4. Theorems proved:

4.1 Theorem. Mixed one point union of C₃ and C₅ given by $G^{(k)} = (C_3, C_5)^{(k)}$ is cordial.

Proof: Define f:V(G) \rightarrow {0,1} as follows. f gives different types of labeled copies of C₃ and C₅ as given below.

Fig 4.2 labeled copy of C_3 v_f(0,1) =(1,2), e_f(0,1) = (1,2)

In construction of labeled copy of $G^{(k)} = (C_3, C_5)^{(k)}$ we use ith copy as labeled copy of C_5 as in fig.4.1 when $i \equiv 1 \pmod{2}$ and when i $\equiv 0 \pmod{2}$ we use labeled copy of C_3 as in fig 4.2. Both copies are fused at vertex 'a' on it. The label numbers are as follows: On vertices we have $v_f(0,1) = (2+3x,3+3x)$, and on edges : $e_f(0,1) = (4x+3,4x+2)$ for k is of type 2x+1 x = 0,1,2,... If k = 2x, x=1, 2, 3... $v_f(0,1) = (3x,1+3x)$, and $e_f(0,1) = (4x,4x)$. G^(k) is balanced graph as alternate copies are C_5 and C_3 in labeled copy of G.

4.2 Theorem: Mixed one point union of C_3 and house graph given by $G^{(k)} = (C_3, house)^{(k)}$ is cordial.

Proof: Define f:V(G) \rightarrow {0,1} as follows. f gives different types of labeled copies of C₃ and house as given below. In construction of G^(k), when k =1 Type A copy of house is used. For k =2, labeled copy in fig 4.5 is used. For all rest of i when i \geq 3, the ith copy in G^(k) is Type A label if i \equiv 3(mod 4), Type B label if i \equiv 0 (mod 4), labeled copy of C₃ if i \equiv 1, 2 (mod 4). The label numbers in resultant graph are as follows: On vertices we have v_f(0,1) =(2,3), and on edges :e_f(0,1) = (3,3) for k= 1, for k= 2 we have v_f(0,1) =(3,4), and on edges : e_f(0,1) = (4,5), for all k \geq 3 we have:

2084

4.3 Theorem: Mixed one point union of C_3 and house graph given by $G^{(k)} = (C_5, C_6)^{(k)}$ is cordial. Proof: Define f:V(G) \rightarrow {0,1} as follows. f gives different types of labeled copies of C_5 and C_6 as given below.

To construct one point union two or more copies are fused at point 'a' on it.

When i) k=1 we have Type A to be used.

ii) When k =2 type B is to be used and label numbers are $v_f(0,1) = (5,5)$, $e_f(0,1) = (5,6)$. iii) If k = 3 (mod 6) Type A is used. Write k = 6x+3, x =0, 1, 2, ..., we have label distribution given by $v_f(0,1) = (13x+7,13x+7)$, $e_f(0,1) = (16x+8,16x+8)$.

iv) If k = 4 (mod 6) Type A is used. Write k = 6x+4, x = 0, 1, 2, ... we have label distribution given by $v_f(0,1) = (13x+9,13x+9)$, $e_f(0,1) = (16x+11,16x+10)$.

v) If $k \equiv 5 \pmod{6}$ Type B is used. Write k = 6x+5, x = 0, 1, 2, ... we have label distribution given by $v_f(0,1) = (13x+12,13x+11)$, $e_f(0,1) = (16x+13,16x+14)$.

vi) If $k \equiv 0 \pmod{6}$ Type A is used. Write k = 6x, x = 1, 2, ... we have label distribution given by $v_f(0,1) = (13(x-1)+14,13(x-1)+13), e_f(0,1) = (16(x-1)+16,16(-1)x+16).$

vii) If $k \equiv 1 \pmod{6}$ Type A is used. Write k = 6x+1, x = 1, 2, ... we have label distribution given by $v_f(0,1) = (13(x-1)+16,13(x-1)+15), e_f(0,1) = (16(x-1)+19,16(x-1)+18).$

viii) If $k \equiv 2 \pmod{6}$ Type C is used. Write k = 6x+2, x = 1, 2, ... we have label distribution given by $v_f(0,1) = (13(x-1)+18,13(x-1)+18), e_f(0,1) = (16(x-1)+21,16(x-1)+22)$. Thus the mixed graphs one point union is cordial.

4.4 Theorem: Mixed one point union of C_5 and house graph given by $G^{(k)} = (C_5, house)^{(k)}$ is cordial. Proof: Define f:V(G) \rightarrow {0,1} as follows. f gives different types of labeled copies of C₃ and house as given below. To construct one point union two or more two or more copies are fused at point 'a' on it. In construction of $G^{(k)}$, when $k \equiv 0 \pmod{4}$ then k = 4x, x = 1,2. Fuse Type B with Type C at point 'a' on it. We have,

label numbers given by $v_f(0,1) = (8x, 8x+1), e_f(0,1) = (11x, 11x).$

When $k \equiv 2 \pmod{4}$ then k = 4x + 2. First obtain labeled copy for k = 4x and fuse a copy of type B at vertex 'a' on it with vertex 'a' on $G^{(4x)}$. We have label numbers given by $v_f(0,1) = (8x+4,8x+5)$, $e_f(0,1) = (11x+5,11x+6)$. When $k \equiv 1 \pmod{4}$ then k = 4x + 1, x = 0,1,2... First obtain labeled copy of $G^{(4x)}$ and fuse it at vertex 'a' on it with Type A label at vertex 'a' on it. We have label

numbers given by $v_f(0,1) = (8x+2,8x+3)$, $e_f(0,1) = (11x+3,11x+3)$. When $k \equiv 3 \pmod{4}$ then k = 4x + 3. First obtain labeled copy of $G^{(4x+2)}$ and fuse it at vertex 'a' on it with Type A label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (8x+6,8x+7)$, $e_f(0,1) = (11x+8,11x+9)$. Thus $G^{(k)}$ is balanced and cordial.

4.5 Theorem: Mixed one point union of C_6 and C_3 graph given by $G^{(k)} = (C_6, C_3)^{(k)}$ is cordial.

Proof: Define f:V(G) \rightarrow {0,1} as follows. f gives different types of labeled copies of C₃ and C₆ as given below.

In design of $G^{(k)}$ When we first obtain a block of $G^{(6)}$. Fuse Type A, Type B and two copies of Type C at vertex 'a' on it to obtain $G^{(6)}$. We use this block repeatedly to obtain $G^{(6x)}$. At this stage we have label numbers given by $v_f(0,1) = (9x,9x+1)$, $e_f(0,1) = (12x,12x)$. where k= 6x, x=1, 2, ...

1) If k=1+6x, x=0,1, ... First obtain labeled block on 6x copies as above. Fuse it with a copy of type C label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (9x+1,9x+2)$, $e_f(0,1) = (12x+1,12x+2)$. 2) k=6x+2, x=0,1, ... First obtain labeled block on 6x copies as above. Fuse it with a copy of type B label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (9x+4,9x+4)$, $e_f(0,1) = (12x+5,12x+4)$. 3) k=6x+3, x=0,1, ... First obtain labeled block on 6x copies as above. Fuse it with a copy of type A label and type C label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (12x+5,12x+4)$. 4) k=6x+4, x=0,1, ... First obtain labeled block on 6x copies as above. Fuse it with a copy of type A label and type C label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (9x+5,9x+5)$, $e_f(0,1) = (12x+6,12x+6)$.

First obtain labeled block on 6x copies as above. Fuse it with a copy of type A label and two copies of type C label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (9x+6,9x+6), e_f(0,1) = (12x+7,12x+8).$

5) k=6x+5, x=0,1,... First obtain labeled block on 6x copies as above. Fuse it with a copy of type A label, one copy of type B label and a copy of C label at vertex 'a' on it. We have label numbers given by $v_f(0,1) = (9x+8,9x+9)$, $e_f(0,1) = (12x+11,12x+10)$. This is not balanced graph. It is cordial graph.

4.6 Theorem: Mixed one point union of C_6 and house graph given by $G^{(k)} = (C_{6II}, house)^{(k)}$ is cordial. Proof: Define f:V(G) \rightarrow {0,1} as follows. f gives different types of labeled copies of C_6 and house as given below.

In designing a labeled copy of $G^{(k)}$, Different label types are fused at point 'a' on it. When k =1 we use Type C label. $G^{(4x)}$ is obtained by fusing x copies of Type A and x copies of Type B at vertex 'a'. At this stage the label number distribution is $v_f(0,1) = (9x,9x+1)$, $e_f(0,1) = (12x,12x)$. Where k= 6x, x=1, 2, ... When k = 1+4x, x= 0,1, ... first obtain labeled block of $G^{(4x)}$. To this fuse type C at vertex 'a'. At this stage the label number distribution is $v_f(0,1) = (9x+2,9x+3)$, $e_f(0,1) = (12x+3,12x+3)$. When k = 4x+2, x= 0,1, ... first obtain labeled block of $G^{(4x)}$. To this fuse type A at vertex 'a'. At this stage the label number distribution is $v_f(0,1) = (9x+5,9x+5)$, $e_f(0,1) = (12x+6,12x+6)$. When k = 4x+3, x= 0,1, ... first obtain labeled block of $G^{(4x+3)}$ as above .To this fuse type C at vertex 'a'. At this stage the label number distribution is $v_f(0,1) = (9x+2,9x+2)$, $e_f(0,1) = (12x+9,12x+9)$.

The graph is balanced and cordial.

Conclusions. We have discussed mixed one point union on C_3 , C_5 , C_6 and house graph by taking two of them together for cordial labeling. It is necessary to investigate the cordial labeling for taking three or more copies together.

References:

[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]

- [2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77 (2005) 245-259. [135]
- [3] Bapat Mukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
- [4] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, accepted IJSAM feb.2018 issue.
- [5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
- [6] Harary, Graph Theory, Narosa publishing , New Delhi
- [7] Yilmaz, Cahit ,E-cordial graphs, Ars combina, 46, 251-256.
- [8] J.Gallian, Dynamic survey of graph labeling, E.J.C 2017
- [9] D. WEST, Introduction to Graph Theory , Pearson Education Asia.

