Cordiality of Mixed Graphs’ One Point Union

Mukund V. Bapat

Abstract

Instead of taking one point union on a graph G alone we take it on two graphs G_{1} and G_{2}. This structure is denoted by $G=\left(G_{1}, G_{2}\right)^{(k)}$. Care is taken that G_{1} and G_{2} are repeated in G in a certain sequence. If both G_{1} and G_{2} appear alternately then the graph G is balanced graph and for given k the number of copies of G_{1} and that of $G_{\mathbf{2}}$ differ at most by 1 in G. We discuss cordiality of G by taking G_{1} and G_{2} from $C 3, C_{4}, C_{5}$ and house graph.

Keywords: mixed graphs, cordial labeling, cycle graph, union, structure.
Subject Classification: 05C78
Introduction:
The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5]. $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $\mid \mathrm{f}(\mathrm{u})$ - $\mathrm{f}(\mathrm{v}) \mid$. Further number of vertices labeled with 0 i.e $\mathrm{v}_{\mathrm{f}}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one . Similarly number of edges labeled with 0 i.e. $\mathrm{e}_{\mathrm{f}}(0)$ and number of edges labeled with 1 i.e. $\mathrm{e}_{\mathrm{f}}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; K_{n} is cordial if and only if $n \leq 3 ; K_{m, n}$ is cordial for all m and n; the friendship graph $C_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$.A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [8]. Let G_{1} and G_{2} be any two graphs. $G^{(k)}$ is one point union of k copies of G in which a fixed vertex x of G is chosen and K copies of G are fused together at x. $B y=\left(G_{1}, G_{2}\right)^{(k)}$ we have taken one point union of G_{1} and G_{2} and not G alone. For that a fixed vertex from G_{1} say p and a fixed vertex from G_{2} say q is chosen at which m copies of G_{1} and n copies of G_{2} are fused together to obtain $G=\left(G_{1}, G_{2}\right)^{(k)}$. Note that $m+n=k$. If both G_{1} and G_{2} appear alternately then the graph G is balanced graph and for given k the number of copies of G_{1} and that of G_{2} differ at most by 1 in G. i.e. $|m-n| \leq 1$. We have taken G_{1} and G_{2} from C_{3}, C_{4}, house graph and C_{5}.
4. Theorems proved:
4.1 Theorem. Mixed one point union of C_{3} and C_{5} given by $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{3}, \mathrm{C} 5\right)^{(\mathrm{k})}$ is cordial.

Proof: Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. f gives different types of labeled copies of C_{3} and C_{5} as given below.

In construction of labeled copy of $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{3}, \mathrm{C}_{5}\right)^{(\mathrm{k})}$ we use $\mathrm{i}^{\text {th }}$ copy as labeled copy of C_{5} as in fig.4.1 when $\mathrm{i} \equiv 1(\bmod 2)$ and when i $\equiv 0(\bmod 2)$ we use labeled copy of C_{3} as in fig 4.2. Both copies are fused at vertex ' a ' on it. The label numbers are as follows: On vertices we have $\mathrm{v}_{\mathrm{f}}(0,1)=(2+3 \mathrm{x}, 3+3 \mathrm{x})$, and on edges $: \mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{x}+3,4 \mathrm{x}+2)$ for k is of type $2 \mathrm{x}+1 \mathrm{x}=0,1,2, \ldots$ If $k=2 \mathrm{x}, \mathrm{x}=1$, 2, 3.. $\mathrm{v}_{\mathrm{f}}(0,1)=(3 \mathrm{x}, 1+3 \mathrm{x})$, and $\mathrm{e}_{\mathrm{f}}(0,1)=(4 \mathrm{x}, 4 \mathrm{x}) . \mathrm{G}^{(\mathrm{k})}$ is balanced graph as alternate copies are C_{5} and C_{3} in labeled copy of G .
4.2 Theorem: Mixed one point union of C_{3} and house graph given by $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{3} \text {, house }\right)^{(\mathrm{k})}$ is cordial.

Proof: Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. f gives different types of labeled copies of C_{3} and house as given below. In construction of $\mathrm{G}^{(\mathrm{k})}$, when $\mathrm{k}=1$ Type A copy of house is used. For $\mathrm{k}=2$, labeled copy in fig 4.5 is used. For all rest of i when $\mathrm{i} \geq 3$, the $\mathrm{i}^{\text {th }}$ copy in $G^{(k)}$ is Type A label if $i \equiv 3(\bmod 4)$, Type B label if $i \equiv 0(\bmod 4)$, labeled copy of C_{3} if $i \equiv 1,2(\bmod 4)$. The label numbers in resultant graph are as follows: On vertices we have $\mathrm{v}_{\mathrm{f}}(0,1)=(2,3)$, and on edges $: \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$ for $\mathrm{k}=1$, for $\mathrm{k}=2$ we have $\mathrm{v}_{\mathrm{f}}(0,1)=(3,4)$, and on edges : $\mathrm{e}_{\mathrm{f}}(0,1)=(4,5)$,for all $\mathrm{k} \geq 3$ we have:

$$
\begin{aligned}
& \text { i) if } k \text { is of type } 4 x+3, x=0,1,2, \ldots . . v_{f}(0,1)=(5+6 x, 6+6 x) \text {, and } e_{f}(0,1)=(7+9 x, 8+9 x) \text {. } \\
& \text { If } k=4 x, x=1,2,3 v_{f}(0,1)=\left(7+6(x-10,8+6(x-1)) \text {, and } e_{f}(0,1)=(11+9(x-1), 10+9(x-1)) \text {. iii) if } k\right. \text { is of type } \\
& 4 x+1, x=0,1,2 . . v_{f}(0,1)=(8+6 x, 9+6 x) \text {, and } e_{f}(0,1)=(12+9 x, 12+9 x) . \quad \text { iv) if } k \text { is of type } 4 x+2, x=0,1,2 . . v_{f}(0,1)=
\end{aligned}
$$

Fig 4.3 labeled copy of house:
$\mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig 4.4 labeled copy of house: $\mathrm{v}_{\mathrm{f}}(0,1)$
$=(2,3), e_{f}(0,1)=(4,2)$

Fig 4.5 labeled copy of C_{3}
$\mathrm{v}_{\mathrm{f}}(0,1)=(1,2), \mathrm{e}_{\mathrm{f}}(0,1)=(1,2)$

Thus G is cordial graph.
\#
4.3 Theorem: Mixed one point union of C_{3} and house graph given by $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{5}, \mathrm{C}_{6}\right)^{(\mathrm{k})}$ is cordial. Proof: Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. f gives different types of labeled copies of C_{5} and C_{6} as given below.

Fig 4.6 labeled copy of C_{5} $v_{f}(0,1)=(2,3), e_{f}(0,1)=(3,2)$

Fig 4.7 labeled copy of C_{6} $v_{f}(0,1)=(3,3), e_{f}(0,1)=(2,4)$

Fig 4.8 labeled copy of C_{6} $\mathrm{v}_{\mathrm{f}}(0,1)=(3,3), \mathrm{e}_{\mathrm{f}}(0,1)=(2,4)$

To construct one point union two or more copies are fused at point ' a ' on it.
When i) $k=1$ we have Type A to be used.
ii) When $k=2$ type B is to be used and label numbers are $\mathrm{v}_{\mathrm{f}}(0,1)=(5,5), \mathrm{e}_{\mathrm{f}}(0,1)=(5,6)$.
iii) If $k=3(\bmod 6)$ Type A is used. Write $k=6 x+3, x=0,1,2,, \ldots$ we have label distribution given by $v_{f}(0,1)=(13 x+7,13 x+7)$, $e_{f}(0,1)=(16 x+8,16 x+8)$.
iv) If $k \equiv 4(\bmod 6)$ Type A is used. Write $k=6 x+4, x=0,1,2,, \ldots$ we have label distribution given by $v_{f}(0,1)=(13 x+9,13 x+9)$, $\mathrm{e}_{\mathrm{f}}(0,1)=(16 x+11,16 x+10)$.
v) If $\mathrm{k} \equiv 5(\bmod 6)$ Type B is used. Write $k=6 x+5, x=0,1,2,, \ldots$ we have label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=$ $(13 x+12,13 x+11), e_{f}(0,1)=(16 x+13,16 x+14)$.
vi) If $\mathrm{k} \equiv 0(\bmod 6)$ Type A is used. Write $\mathrm{k}=6 \mathrm{x}, \mathrm{x}=1,2,, \ldots$ we have label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(13(\mathrm{x}-1)+14,13(\mathrm{x}-$ $1)+13), \mathrm{e}_{\mathrm{f}}(0,1)=(16(x-1)+16,16(-1) \mathrm{x}+16)$.
vii) If $k \equiv 1(\bmod 6)$ Type A is used. Write $k=6 x+1, x=1,2,,, .$. we have label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(13(\mathrm{x}-1)+16,13(\mathrm{x}-$ $1)+15), \mathrm{e}_{\mathrm{f}}(0,1)=(16(\mathrm{x}-1)+19,16(\mathrm{x}-1)+18)$.
viii) If $k \equiv 2(\bmod 6)$ Type C is used. Write $k=6 x+2, x=1,2,, \ldots$ we have label distribution given by $v_{f}(0,1)=(13(x-1)+18,13(x-$ $1)+18), \mathrm{e}_{\mathrm{f}}(0,1)=(16(\mathrm{x}-1)+21,16(\mathrm{x}-1)+22)$. Thus the mixed graphs one point union is cordial.
4.4 Theorem: Mixed one point union of C_{5} and house graph given by $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{5} \text {, house }\right)^{(\mathrm{k})}$ is cordial. Proof: Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. f gives different types of labeled copies of C_{3} and house as given below. To construct one point union two or more two or more copies are fused at point ' a ' on it. In construction of $G^{(k)}$, when $k \equiv 0(\bmod 4)$ then $k=4 x, x=1,2$.. Fuse Type B with Type C at point ' a ' on it. We have,

Fig 4.9 labeled copy of house: $v_{f}(0,1)=(2,3), e_{f}(0,1)=(3,3)$

Fig 4.10 labeled copy of house: $\mathrm{v}_{\mathrm{f}}(0,1)=(4,5), \mathrm{e}_{\mathrm{f}}(0,1)=$ (5 6)
label numbers given by $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}, 8 \mathrm{x}+1), \mathrm{e}_{\mathrm{f}}(0,1)=(11 \mathrm{x}, 11 \mathrm{x})$.
When $k \equiv 2(\bmod 4)$ then $k=4 x+2$. First obtain labeled copy for $k=4 x$ and fuse a copy of type B at vertex ' a ' on it with vertex ' a ' on $G^{(4 x)}$. We have label numbers given by $v_{f}(0,1)=(8 x+4,8 x+5), e_{f}(0,1)=(11 x+5,11 x+6)$. When $k \equiv 1(\bmod 4)$ then $k=4 x+1, x=$ $0,1,2 \ldots$ First obtain labeled copy of $\mathrm{G}^{(4 \mathrm{x})}$ and fuse it at vertex ' a ' on it with Type A label at vertex ' a ' on it. We have label
numbers given by $\mathrm{v}_{\mathrm{f}}(0,1)=(8 \mathrm{x}+2,8 \mathrm{x}+3), \mathrm{e}_{\mathrm{f}}(0,1)=(11 \mathrm{x}+3,11 \mathrm{x}+3)$. When $\mathrm{k} \equiv 3(\bmod 4)$ then $\mathrm{k}=4 \mathrm{x}+3$. First obtain labeled copy of $G^{(4 x+2)}$ and fuse it at vertex ' a ' on it with Type A label at vertex ' a ' on it. We have label numbers given by $v_{f}(0,1)=(8 x+6,8 x+7)$, $e_{f}(0,1)=(11 x+8,11 x+9)$. Thus $G^{(k)}$ is balanced and cordial.
4.5 Theorem: Mixed one point union of C_{6} and C_{3} graph given by $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{6}, \mathrm{C}_{3}\right)^{(\mathrm{k})}$ is cordial.

Proof: Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. f gives different types of labeled copies of C_{3} and C_{6} as given below.

Fig 4.12 labeled copy $\mathrm{v}_{\mathrm{f}}(0,1)$ $=(3,5), e_{f}(0,1)=(5,4)$

Fig 4.13 labeled copy $\mathrm{v}_{\mathrm{f}}(0,1)$ $=(4,4), e_{f}(0,1)=(5,4)$

In design of $G^{(k)}$ When we first obtain a block of $G^{(6)}$.Fuse Type A, Type B and two copies of Type C at vertex ' a ' on it to obtain $\mathrm{G}^{(6)}$. We use this block repeatedly to obtain $\mathrm{G}^{(6 x)}$. At this stage we haye label numbers given by $\mathrm{v}_{\mathrm{f}}(0,1)=(9 \mathrm{x}, 9 \mathrm{x}+1), \mathrm{e}_{\mathrm{f}}(0,1)=$ $(12 x, 12 x)$. where $k=6 x, x=1,2, .$.
1)If $k=1+6 x, x=0,1, .$. First obtain labeled block on $6 x$ copies as above. Fuse it with a copy of type C label at vertex 'a' on it. We have label numbers given by $\left.v_{f}(0,1)=(9 x+1,9 x+2), e_{f}(0,1)=(12 x+1,12 x+2) . \quad 2\right) k=6 x+2, x=0,1, .$. First obtain labeled block on $6 x$ copies as above. Fuse it with a copy of type B label at vertex ' a ' on it. We have label numbers given by $v_{f}(0,1)$
$=(9 x+4,9 x+4), e_{f}(0,1)=(12 x+5,12 x+4)$. 3) $k=6 x+3, x=0,1, \ldots$ First obtain labeled block on $6 x$ copies as above. Fuse it with a copy of type A label and type C label at vertex ' a ' on it. We have label numbers given by $v_{f}(0,1)=(9 x+5,9 x+5), e_{f}(0,1)=$ $(12 x+6,12 x+6)$.
4) $k=6 x+4, x=0,1, .$.

First obtain labeled block on $6 x$ copies as above. Fuse it with a copy of type A label and two copies of type C label at vertex ' a ' on it. We have label numbers given by $\mathrm{v}_{\mathrm{f}}(0,1)=(9 x+6,9 x+6), \mathrm{e}_{\mathrm{f}}(0,1)=(12 \mathrm{x}+7,12 \mathrm{x}+8)$.
5) $k=6 x+5, x=0,1, .$. First obtain labeled block on $6 x$ copies as above. Fuse it with a copy of type A label, one copy of type B label and a copy of C label at vertex ' a ' on it. We have label numbers given by $\mathrm{v}_{\mathrm{f}}(0,1)$ $=(9 x+8,9 x+9), e_{f}(0,1)=(12 x+11,12 x+10)$. This is not balanced graph. It is cordial graph.
4.6 Theorem: Mixed one point union of C_{6} and house graph given by $\mathrm{G}^{(\mathrm{k})}=\left(\mathrm{C}_{6 I} \text {, house }\right)^{(\mathrm{k})}$ is cordial. Proof: : Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. f gives different types of labeled copies of C_{6} and house as given below.

Fig 4.15 labeled copy of house: $v_{f}(0,1)=(5,5), e_{f}(0,1)=(6,6)$

Fig 4.16 labeled copy of house:
$\mathrm{v}_{\mathrm{f}}(0,1)=(4,6), \mathrm{e}_{\mathrm{f}}(0,1)=(6,6)$

In designing a labeled copy of $G^{(k)}$, Different label types are fused at point ' a ' on it.When $k=1$ we use Type C label. $G^{(4 x)}$ is obtained by fusing x copies of Type A and x copies of Type B at vertex ' a '. At this stage the label number distribution is $v_{f}(0,1)$ $=(9 x, 9 x+1), e_{f}(0,1)=(12 x, 12 x)$. Where $k=6 x, x=1,2, .$. When $k=1+4 x, x=0,1$, ..first obtain labeled block of $G^{(4 x)}$.To this fuse type C at vertex ' ${ }^{\prime}$ '. At this stage the label number distribution is $v_{f}(0,1)=(9 x+2,9 x+3), e_{f}(0,1)=(12 x+3,12 x+3)$. When $k=4 x+2$, $\mathrm{x}=0,1$, ..first obtain labeled block of $\mathrm{G}^{(4 \mathrm{x})}$. To this fuse type A at vertex ' ${ }^{\prime}$ '. At this stage the label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)$ $=(9 x+5,9 x+5), e_{f}(0,1)=(12 x+6,12 x+6)$. When $k=4 x+3, x=0,1$,..first obtain labeled block of $G^{(4 x+3)}$ as above .To this fuse type C at vertex ' a '. At this stage the label number distribution is $v_{f}(0,1)=(9 x+2,9 x+2), e_{f}(0,1)=(12 x+9,12 x+9)$.

The graph is balanced and cordial.
1
Conclusions. We have discussed mixed one point union on $\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}$ and house graph by taking two of them together for cordial labeling. It is necessary to investigate the cordial labeling for taking three or more copies together.

References:
[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117154. [134]
[2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77 (2005) 245-259. [135]
[3] Bapat Mukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
[4] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, accepted IJSAM feb. 2018 issue.
[5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
[6] Harary, Graph Theory,Narosa publishing ,New Delhi
[7] Yilmaz, Cahit ,E-cordial graphs,Ars combina,46,251-256.
[8] J.Gallian, Dynamic survey of graph labeling, E.J.C 2017

