More Path Unions Invariance under Cordial Graphs

Mukund V.Bapat ${ }^{1}$
Research Scholar

Abstract

In this paper we show that path unions obtained from bowtie, paw, house, temple and tail $\left(\mathrm{C}_{3}, \mathrm{P}_{3}\right)$ are cordial graphs.

Keywords: cordial graph, house, bowtie, temple,tail graph, path union, labeling
Subject classification: 05C78.

2. Introduction:

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6],A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5].f: $\mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$.Further number of vertices labeled with 0 i.e $v_{\mathrm{f}}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one. Similarly number of edges labeled with 0 i.e. $e_{f}(0)$ and number of edges labeled with 1 i.e. $\mathrm{e}_{\mathrm{f}}(1)$ differ by atmost one. Then the function f is called as cordial labeling.Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3$; $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J.Gallian[8].The graph that has cordiallabeling is called as cordial graph.

For the same given graph G there are many path union $P_{m}(G)$ structures possible. It depends on which point on G is used to fuse with vertex on P_{m}. If this point is changed and path union is designed then it may be a different (up to isomorphism) structure. We have shown that for $G=$ bull on C_{3}, bull on $\mathrm{C}_{4}, \mathrm{C}_{3}{ }^{+}, \mathrm{C}_{4}{ }^{+}$-e the different path union $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial[4]. It is called as invariance under cordial labeling. We use the convention that $v_{f}(0,1)=(a, b)$ to indicate the number of vertices labeled with 0 are a and that number of vertices labeled with 1 are b. Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 are y. In this paper we show that path union of bowtie,paw,house,temple and tail $\left(\mathrm{C}_{3}, \mathrm{P}_{3}\right)$ with it's different non-isomorphic structures are cordial.
3. Preliminaries :In tail graph we have a path P_{m} attached at any vertex of graph G.For a (p, q) graph G wehaveantenna graph denoted by ante $\left(G, P_{m}\right)$ or tail $\left(G, P_{m}\right)$.It has $p+m-1$ vertices and $q+m-1$ edges. In this paper we consider $G=C_{3}$ and $P_{m}(m=3)$.We design path-union on ante $\left(\mathrm{C}_{3}, \mathrm{P}_{3}\right)$ and discuss for cordiality. The graph that follows cordiallabeling is called as cordial graph.

4.Definitions:

4.1 Fusion of vertices. Let $u \neq v$ be any two vertices of G. We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x. If loop is formed then it is deleted.
4.2 Path union: $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ is obtained by taking a path on m points and m copies of G are taken. At each vertex of path a copy each of G is fused. The point of fusion on G is same and fixed for all copies of G .

5. Theorems Proved:

5.1 Path union of bow-tie is cordial. Proof:There are three structures possible on path union. These depends on which vertex on bow-tie is used to fuse with vertex of $P_{m}=\left(v_{1}, v_{2}, \ldots v_{m}\right)$.From the figure below it follows that path union taken on x, y or z will be structurally different.(non- isomorphic). Thus there are three structures possible on :In structurel the vertex on bow-tie used is x in structure 2 the vertex used is y and in structure 3 the vertexused is z.The structure 3 is same as double path union on C_{4} which we have shown to be cordial in [4]. Below we give type A and Type B labeling which are used to built the two structures. In both structures we use type Ato fuse with v_{i} of P_{m} if $i \equiv 1,0(\bmod 4)$ and B is used when $i \equiv 2,3(\bmod 4)$. In structure 1 vertex ' r ' on type A and vertex's' on type B is fused with v_{i}. In structure 2 vertex a on type A and vertex b on type B is fused with vi as explained above.

Fig 5.1 copy of bowtie

Fig 5.2: $v_{f}(0,1)=(3,4), e_{f}(0,1)=(4,4)$

For both structures the label numbers observed are :
when m is even number given by $2 x . x=1,2, \ldots v_{f}(0,1)=(3+14 x, 4+14 x)$, $(m \equiv 1(\bmod 4)) x=0,1,2 \ldots$
When m is of the type $4 x+3$.
Thus The graph is cordial.
Path union of paw is cordial. (paw is actually flag of C_{3})
Proof:There are three structures possible on pathunion. It depends on the vertex on paw used to fuse with vertex on $P_{m}=\left(v_{1}, v_{2}, . . v_{m}\right)$. We can take pathunion on vertex x, y or zdepending on which structure 1 ,structure 2 or structure 3 is formed respectively.

Toobtain structure 1 vertex ' r ' on type A and vertex ' s ' on type B is used to fuse with vertex on P_{m}. For structure 2 vertex ' a ' on type A and vertex ' b ' on type B is used to fuse with vertex on P_{m}. For structure 3 vertex ' c ' on type A and vertex' d ' on type B is used to fuse with vertex on P_{m}. All structures are obtained by fusing vertex on type A with v_{i} when $i \equiv 1,4(\bmod 4)$ and type B is used when $i \equiv 2,3(\bmod 4)$. The observed label numbers are (for all three structures):
edges : $e_{f}(0,1)=(5 x+2,5 x+2)$ when m is of type $2 x+1, x=0,1,2, . . e_{f}(0,1)=(5 x+4,5 x+5)$ when m is of type $2 x, x=0,1,2, \ldots$
$(2 \mathrm{~m}, 2 \mathrm{~m})$.Thus the graph is cordial. cordial.
\#.
5.3Theorem

On vertices we have $\mathrm{v}_{\mathrm{f}}(0,1)=$
Pathunion on house graph is Proof:There are three non-isomorphic structures possible. For that vertex ' a ' or ' b ' or vertex ' c ' on house graph (fig 5.7) is used to fuse with vertex on path P_{m} respectively to obtain structure 1 ,structure 2 , structure 3 .

Fig 5.7 house

Fig5. $8 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig5.9 $v_{f}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. Under f we define two types of labels Type A and type B . These are cordial but differ in label number of vertex ' q ' on type A and ' s ' on type B. In structure 1 vertex ' q ' on type A and ' s ' on type B is fused with vertex of path $P_{m}=\left(v_{1}, v_{2}, . . v=\right)$.In structure 2 vertex ' z ' on type A and ' t ' on type B is fused with vertex of path $P_{m}=\left(v_{1}, v_{2}, . . v=\right)$.In structure 3 vertex ' x ' on type A and ' y ' on type B is fused with vertex of path $P_{m}=\left(v_{1}, v_{2}, . . v=\right)$.In all the three structures type A is used to fuse at vertex v_{i} if $i \equiv 1,0(\bmod 4)$, Type B if $i \equiv 2,3(\bmod 3)$.

Fig5.10 : labeled copy of P_{5} (house), structure $3: v_{f}(0,1)=(12,13), e_{f}(0,1)=(17,17)$

For all structures label number distribution is : when m is even number given by $\mathrm{m}=2 \mathrm{x}, \mathrm{x}=1,2, .$. , given by $m=2 x+1, x=0,1,2, .$. ,And
$\begin{aligned} & v_{f}(0,1)=(5 x+8,5 x+7) \text { when } m \text { is even number given by } m \\ & \text { On edges we have } e_{f}(0,1)=(3+7 x, 3+7 x) \text { when } m \text { is of type } m=2 x+1, x=0,1,2,3 . .\end{aligned}$
When m is of type $2 x$ we have $e_{f}(0,1)=(6+14(x-1), 7+14(x-1)), x=1,2,3$.
cordial. \#
$=\mathrm{P}_{\mathrm{m}}($ temple $)$ is cordial. follows. These are used to obtain labeled copy of path-union.

Fig 5.10 flag house or Temple graph

Fig $5.11 v_{f}(0,1)=(3,3), e_{f}(0,1)=(4,3)$

Path union is defined by taking m copies of temple graph and fusing a copy each at vertex of $\operatorname{Pm}=\left(v_{1}, v_{2}, v_{3} . . v_{m}\right)$. There are four non-isomorphic structures possible depending on the vertex on temple $\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d used to form path union(refer fig 5.10).To obtain structure 1 vertex ' x ' on type A and vertex ' y ' on type B is used to fuse with vertex v_{i} on P_{m}. To obtain structure 2 vertex ' r ' on type A and vertex ' s ' on type B is used to fuse with vertex v_{i} on P_{m}. To obtain structure 3 vertex ' z ' on type A and vertex ' t ' on type B is used to fuse with vertex v_{i} on P_{m}. To obtain structure 4 vertex ' q ' on type A and vertex ' e ' on type B is used to fuse with vertex v_{i} on P_{m}. For all structures A is fused at v_{1} of $P m$ and at all other vertices of P_{m} copies temple used are type B.

The label number distribution is as follows:
For structure 1 ,structure 3 and structure 4 we have $e_{f}(0,1)=(4+4(m-1), 3+4(m-1))$.
For structure 2 we have $e_{f}(0,1)=(7+4(m-2), 8+4(m-2))$ form >2 and if $m=1$ we have $e_{f}(0,1)=(4,3)$ and if $m=2$ then $\mathrm{e}_{\mathrm{f}}(0,1)=(7,8)$.All structures have same vertexlabels given by $\mathrm{v}_{\mathrm{f}}(0,1)=(3 \mathrm{~m}, 3 \mathrm{~m})$.
5.4 Theorem: $\quad \mathrm{G}=\operatorname{tail}\left(\mathrm{C}_{3}, \mathrm{p}_{3}\right)$ Then path union of G is cordial.(all four structures)

Fig $5.14 \mathrm{v}_{\mathrm{f}}(0,1)=(2,3)$, $e_{f}(0,1)=(2,3)$

Thus the graph is
$\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x})$
$\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}+2,5 \mathrm{x}+3)$ when m is odd number
5.3 Theorem:

Path union on temple graph G
Path union on temple graph
Type B labeling as
Proof. Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ to obtain type A and Type B labeling as

Fig $5.12 \mathrm{v}_{\mathrm{f}}(0,1)=(3,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3,4)$ Thus the graphis cordial.
Thus the graphis cordial.

References.:
[1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
[2] [135]
[3]
M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77 (2005) 245-259.

Bapat Mukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling,accepted IJSAM feb. 2018 issue.
I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.

Harary,Graph Theory,Narosapublishing ,New Delhi
Yilmaz,Cahit ,E-cordial graphs,Ars combina,46,251-256.
J.Gallian,Dynamic survey of graph labeling,E.J.C 2017
D. WEST,Introduction to Graph Theory ,Pearson Education Asia.

