More Path Unions Invariance under Cordial Graphs

Mukund V.Bapat¹

Research Scholar

Abstract: In this paper we show that path unions obtained from bowtie, paw, house, temple and tail(C_3 , P_3) are cordial graphs.

Keywords: cordial graph, house, bowtie, temple, tail graph, path union, labeling

Subject classification: 05C78.

2. Introduction:

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West. [9]. I. Cahit introduced the concept of cordial labeling [5], f: V(G) \rightarrow {0,1} be a function. From this label of any edge (uv) is given by |f(u)-f(v)|. Further number of vertices labeled with 0 i.e $v_f(0)$ and the number of vertices labeled with 1 i.e. $v_f(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. f(0) and number of edges labeled with 1 i.e. f(1) differ by atmost one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; Kn is cordial if and only if $n \leq 3$; $K_{m,n}$ is cordial for all m and n; the friendship graph $C_3^{(t)}$ (i.e., the one-point union of t copies of C_3) is cordial if and only if t is not congruent to 2 (mod 4); all fans are cordial; the wheel W_n is cordial if and only if n is not congruent to 3 (mod 4). A lot of work has been done in this type of labeling. One may refer dynamic survey by J.Gallian[8]. The graph that has cordiallabeling is called as cordial graph.

For the same given graph G there are many path union $P_m(G)$ structures possible. It depends on which point on G is used to fuse with vertex on P_m . If this point is changed and path union is designed then it may be a different (up to isomorphism) structure. We have shown that for G = bull on C₃, bull on C₄, C₃⁺, C₄⁺-e the different path union $P_m(G)$ are cordial[4]. It is called as invariance under cordial labeling. We use the convention that $v_t(0,1) = (a,b)$ to indicate the number of vertices labeled with 0 are a and that number of vertices labeled with 1 are b. Further $e_f(0,1) = (x,y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 are y. In this paper we show that path union of bowtie, paw, house, temple and tail (C_3, P_3) with it's different non-isomorphic structures are cordial.

3. Preliminaries : In tail graph we have a path P_m attached at any vertex of graph G.For a (p,q) graph G wehaveantenna graph denoted by ante(G,P_m) or tail(G,P_m). It has p+m-1 vertices and q+m-1 edges. In this paper we consider G= C₃ and P_m(m=3). We design path-union on ante (C_3, P_3) and discuss for cordiality. The graph that follows cordiallabeling is called as cordial graph.

4. Definitions:

Fusion of vertices. Let $\mathbf{u} \neq \mathbf{v}$ be any two vertices of G. We replace these two vertices by a single vertex say x and all 4.1 edges incident to u and v are now incident to x. If loop is formed then it is deleted.

4.2 Path union : $P_m(G)$ is obtained by taking a path on m points and m copies of G are taken. At each vertex of path a copy each of G is fused. The point of fusion on G is same and fixed for all copies of G.

5. Theorems Proved:

Path union of bow-tie is cordial. 5.1

Proof:There are three structures possible on path union . These depends on which vertex on bow-tie is used to fuse with vertex of $P_m = (v_1, v_2, \dots, v_m)$. From the figure below it follows that path union taken on x,y or z will be structurally different.(non- isomorphic).Thus there are three structures possible on :In structure1 the vertex on bow-tie used is x in structure 2 the vertex used is y and in structure 3 the vertexused is z. The structure 3 is same as double path union on C_4 which we have shown to be cordial in [4]. Below give type A and Type B labeling which are used to built the two structures. In both structures we use type Ato fuse with v_i of P_m if $i \equiv 1,0 \pmod{4}$ and B is used when $i \equiv 2,3 \pmod{4}$. In structure 1 vertex 'r' on type A and vertex's' on type B is fused with v_i . In structure 2 vertex a on type A and vertex b on type B is fused with vi as explained above.

when m is even number given by $2x.x=1,2,...v_f(0,1)=(3+14x,4+14x)$ when m is odd number given by m=1+4x, $(m\equiv1(mod 4))x=0,1,2...$ We have $v_f(0,1)=(11+14x,10+14x)$ for $m\equiv3(mod 4)$ i.e. When m is of the type 4x+3. Thus The graph is cordial. #.

5.2 Theorem. Path union of paw is cordial.(paw is actually flag of C_3) Proof: There are three structures possible on pathunion. It depends on the vertex on paw used to fuse with vertex on $P_m=(v_1,v_2,..v_m)$. We can take pathunion on vertex x, y or zdepending on which structure 1, structure2 or structure3 is formed respectively.

Toobtain structure 1 vertex 'r' on type A and vertex 's' on type B is used to fuse with vertex on P_m . For structure 2 vertex 'a' on type A and vertex 'b' on type B is used to fuse with vertex on P_m . For structure 3 vertex 'c' on type A and vertex'd' on type B is used to fuse with vertex on P_m . All structures are obtained by fusing vertex on type A with v_i when $i \equiv 1,4 \pmod{4}$ and type B is used when $i \equiv 2,3 \pmod{4}$. The observed label numbers are (for all three structures): For edges : $e_f(0,1)=(5x+2,5x+2)$ when m is of type 2x+1, $x=0,1,2,...e_f(0,1)=(5x+4,5x+5)$ when m is of type 2x, x=0,1,2,...

(2m,2m). Thus the graph is cordial. #. Proof: There are three non-isomorphic structures possible. For that

vertex 'a' or 'b' or vertex 'c' on house graph (fig 5.7) is used to fuse with vertex on path P_m respectively to obtain structure 1, structure 2, structure 3.

Define a function f:V(G) \rightarrow {0,1} as follows. Under f we define two types of labels Type A and type B. These are cordial but differ in label number of vertex 'q' on type A and 's' on type B. In structure 1 vertex 'q' on type A and 's' on type B is fused with vertex of path $P_m=(v_1,v_2,..v=)$.In structure 2 vertex 'z' on type A and 't' on type B is fused with vertex of path $P_m=(v_1,v_2,..v=)$.In structure 3 vertex 'x' on type A and 'y' on type B is fused with vertex of path $P_m=(v_1,v_2,..v=)$.In all the three structures type A is used to fuse at vertex v_i if i=1,0(mod 4), Type B if i=2,3 (mod 3).

For all structures label number distribution is : $v_{f}(0,1) = (5x,5x)$ when m is even number given by m=2x, x=1,2,..., $v_f(0,1) = (5x+2,5x+3)$ when m is odd number given by m = 2x+1, x = 0, 1, 2, ..., And $v_{f}(0,1) = (5x+8,5x+7)$ when m is even number given by m = 2x+3. On edges we have $e_f(0,1)=(3+7x,3+7x)$ when m is of type m =2x+1,x=0,1,2,3... When m is of type 2x we have $e_f(0,1)=(6+14(x-1),7+14(x-1))$, x = 1,2,3. Thus the graph is cordial. # Path union on temple graph G 5.3 Theorem: $= P_m(temple)$ is cordial. Proof. Define f: $V(G) \rightarrow \{0,1\}$ to obtain type A and Type B labeling as follows. These are used to obtain labeled copy of path-union.

Path union is defined by taking m copies of temple graph and fusing a copy each at vertex of $Pm = (v_1, v_2, v_3...v_m)$. There are four non-isomorphic structures possible depending on the vertex on temple a,b, c or d used to form path union(refer fig 5.10). To obtain structure 1 vertex 'x' on type A and vertex 'y' on type B is used to fuse with vertex v_i on P_m . To obtain structure 2 vertex 'r' on type A and vertex 's' on type B is used to fuse with vertex v_i on P_m . To obtain structure 3 vertex 'z' on type A and vertex 't' on type B is used to fuse with vertex v_i on P_m . To obtain structure 4 vertex 'q' on type A and vertex 'e' on type B is used to fuse with vertex v_i on P_m . For all structures A is fused at v_1 of Pm and at all other vertices of P_m copies temple used are type B. The label number distribution is as follows:

5.4 Theorem : $G = tail(C_3, p_3)$ Then path union of G is cordial.(all four structures)

To obtain path union on G we start with a path P_m and m copies of G.A particular vertex on G is fused with vertex of path P_m = $(v_1, v_2, ..., v_m)$. Depending on if we use vertex d, a,b,c on G ,see fig 5.12, we get structure 1,structure 2, structure 3 and structure 4 respectively. Define a function f:V(G) \rightarrow {0,1} as follows:

Under f we define three types of labelings type A, type B and Type C, see fig 5.13, 5.14, 5.15 above. All are cordial copies and differ in edge label numbers or certain vertex labels. For structure 1 we fuse Type A at vertex 'x' on it with vertex v_i of P_m when $i\equiv 1,4 \pmod{4}$ and type B at vertex 'y' on it when $i\equiv 2,3 \pmod{4}$. For structure 2 we fuse Type A at vertex '

t' on it with vertex v_i of P_m when $i\equiv 2,3 \pmod{4}$ and type B at vertex 'j' on it when $i\equiv 1,0 \pmod{4}$. For structure 3 we fuse Type A at vertex 'r' on it with vertex v_i of P_m when $i\equiv 2,3 \pmod{4}$ and type B at vertex 's' on it when $i\equiv 1,0 \pmod{4}$.

For structure 4 we fuse Type A at vertex 'p' on it with vertex v_i of P_m when $i\equiv 2,3 \pmod{4}$ and type B at vertex 'q' on it when $i\equiv 1,0 \pmod{4}$. Given the number distribution is as follows: $e_f(0,1) = (12x + 5,12x + 6)$ when $m\equiv 2 \pmod{4}$ given by m = 4x + 2 and when m=4x we have $e_f(0,1) = (12x - 1,12x)$. When $m\equiv 1 \pmod{4}$ write m = 4x + 1, x=0,1,2...we have $v_f(0,1) = (10x + 3,10x + 2)$ and $e_f(0,1) = 10x + 3,10x + 2$ and $e_f(0,1) = 10x + 3,10x + 2,10x + 3,10x + 2,10x + 3,10x + 2,10x + 3,10x +$

(3+12x,2+12x)When m=3(mod 4) write m= 4x+3, x=0,1,2...we have $v_f(0,1)=(10x+7,10x+8)$ and $e_f(0,1)=(8+12x,9+12x)$. It follows that the family of graph is cordial. # Conclusions: We have discussed path-union of certain graphs and have shown that they are cordial. Doing so we have considered all possible structures

discussed path-union of certain graphs and have shown that they are cordial. Doing so we have considered all possible structures on path-union and have shown that all of them are cordial. This is also called as invariance under cordiallabeling.

References .:

- [1] M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
- [2] M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77 (2005) 245-259.
- [3] Bapat Mukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
- [4] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, accepted IJSAM feb. 2018 issue.
- [5] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
- [6] Harary, Graph Theory, Narosapublishing , New Delhi
- [7] Yilmaz,Cahit ,E-cordial graphs,Ars combina,46,251-256.
- [8] J.Gallian,Dynamic survey of graph labeling,E.J.C 2017
- [9] D. WEST, Introduction to Graph Theory, Pearson Education Asia.

