DERIVATION OF CONTINUOUS MODEL OF RISK OF VICTIMIZATION

MD NAJMUL HODA

Research Scholar

Department of Mathematics T.M. Bhagalpur University, Bhagalpur, Bihar (INDIA)

From the discrete equation we can derive the continuous equations for the **Risk of victimization** R(x,t), dynamic of **Risk** of victimization of burglary Q(x,t) and the density of burglars $\rho(x,t)$.

We start the derivation of continuous equation of the dynamics of **Risk of victimization** Q(x,t) by the notion of continuous limit.

We assume l is the grid spacing of square grid and time step is h. If we assume l is very small, then for $l \rightarrow 0$ as $h \rightarrow 0$

such that $\frac{l^2}{l_1} \rightarrow D$, where D is the coefficient of diffusion. For the sake of simplicity, we rename

 $\rho(x,t) \approx \rho(X,t)$ where $X = lx \therefore x = \frac{X}{l}$

$$R(x,t) \approx R(\frac{X}{l},t) = \frac{1}{l} R(X,t) \approx R(X,t)$$

and

 $Q(x,t) \approx Q(\frac{X}{l},t) = \frac{1}{l}Q(X,t) \approx Q(X,t)$

as l is very small.

Similarly, we can write $Q(x,t+h) \approx Q(X,t+h)$, these can be written with following notion

Since, aP(x,t) = P(ax,t), bP(x,t) = P(x,bt) as the probability is independent of length or time for any constant a, b.

The second term of the equation is estimated as follows :

$$\frac{\eta}{2} \{ Q(x-1,t) + Q(x+1,t) \} = \frac{\eta}{2} \{ Q\left(\frac{X}{l} - 1, t\right) + Q\left(\frac{X}{l} + 1, t\right) \}$$
$$= \frac{\eta}{2} \{ Q\left(\frac{X-l}{l}, t\right) + Q\left(\frac{X+l}{l}, t\right) \}$$

With the help of the above notion that the **Risk of victimization** is independent of length and time, further, as l is small,

$$Q(x-1,t) = \frac{1}{l}Q(X-l,t) \approx Q(X-l,t)$$
$$Q(x+1,t) = \frac{1}{l}Q(X+l,t) \approx Q(X+l,t)$$

and

Thus the second term of equation can be written as :

$$\frac{\eta}{2} \{ Q(x-1,t) + Q(x+1,t) \}$$

= $\frac{\eta}{2} \{ \frac{1}{l} Q(X-l,t) + \frac{1}{l} Q(X+l,t) \}$
= $\frac{\eta}{2} \{ Q(X-l,t) + Q(X+l,t) \}$

Allowing Q(x,t) diffussion to the spatial location, we can re-write the right hand side of the above as

$$\frac{\eta}{2} \{ Q(x-1,t) + Q(x+1,t) \} = \frac{\eta}{2} \{ Q(X-l) + Q(X+l) \}$$
(1)

Now expanding the right hand side of the above term by Taylor's series We have,

$$Q(X-l) = Q(X) - lQ_X(X) + \frac{l^2}{2}Q_{XX}(X) - O(l^3)$$

where $O(l^3)$ denotes the higher order terms consisting, l.

$$Q(X+l) = Q(X) + lQ_X(X) + \frac{l^2}{2}Q_{XX}(X) + O(l^3)$$

Now neglecting terms consisting higher power of l (as l is very small) and adding, we have,

$$Q(X-l) + Q(X+l) = 2Q(X) + 2\frac{l^2}{2}Q_{XX}(X)$$

Thus the relation (1) reduces to

$$\frac{\eta}{2} \{Q(x-1,t) + Q(x+1,t)\} = \eta \{Q(X) + \frac{l^2}{2}Q_{XX}(X)\}$$

Also the first term in right side of equation can be re-written as

$$(1-\eta)Q(x,t) = (1-\eta)Q(\frac{X}{l},t) \approx (1-\eta)Q(X,t)$$

as

$$Q(x,t) \approx Q(\frac{X}{l},t) = \frac{1}{l}Q(X,t) \approx Q(X,t)$$

Again left hand side of equation can be re-written as :

$$Q(x,t+h) = Q(\frac{X}{l},t+h) = \frac{1}{l}Q(X,t+h) \approx Q(X,t+h)$$
(4)

Using relation (2), (3) and (4), the equation can be re-written as

$$Q(X,t+h) = \left[(1-\eta)Q(X,t) + \eta \left\{ Q(X) + \frac{l^2}{2}Q_{XX}(X) \right\} \right] (1-\beta_1 h)$$
$$+\alpha \rho(X,t)R(X,t)h$$
$$\Rightarrow \quad Q(X,t+h) - Q(X,t) = -\beta_1 h Q(X,t) + \frac{l^2}{2}Q_{XX}(X)$$

$$-\frac{\eta l^2}{2}Q_{XX}(X)\beta_1h+\alpha\rho(X,t)R(X,t)h$$

In spatial diffusion, $Q(X,t) \approx Q(X)$, $\rho(X,t) \approx \rho(X)$, $R(X,t) \approx R(X)$ and dividing both sides by h and taking limit as $h \rightarrow 0$, we have

(2)

$$\lim_{h \to 0} \frac{Q(X, t+h) - Q(X, t)}{h}$$

$$= \lim_{h \to 0} \left\{ -\beta_1 Q(X) + \frac{\eta l^2}{2h} Q_{XX}(X) + \frac{\eta l^2}{2} Q_{XX}(X) \beta_1 + \alpha \rho(X) R(X) \right\}$$

$$Q_t(X) = \lim_{h \to 0} \left\{ -\beta_1 Q(X) + \frac{\eta l^2}{2h} Q_{XX}(X) + \frac{\eta l^2}{2} Q_{XX}(X) \beta_1 + \alpha \rho(X) R(X) \right\}$$

or

as $h \to 0$, when $l \to 0$ and then assuming $\frac{l^2}{h} \to D$ (constant, say), $l^2 \to 0$, then we have the resulting equation as

$$Q_t(X) = -Q(X)\beta_1 + \frac{\eta}{2}DQ_{XX}(X) + \alpha\rho(X)R(X)$$

For convenience this equation can be written as

$$\frac{\partial Q}{\partial t} = \frac{\eta D}{2} Q_{XX} - \beta_1 Q + \alpha \rho R$$

$$\Rightarrow \quad \frac{\partial Q}{\partial t} = \frac{\eta D}{2} \nabla^2 Q - \beta_1 Q + \alpha \rho R \tag{5}$$

where $\Delta Q = div(\nabla Q) = \nabla^2 Q = \sum_{i=1}^n \frac{\partial^2 Q}{\partial X_i^2} = Q_{XX}$ and Δ is a spatial laplacian and D is the diffusive coefficient.

The equation (5) is the continuous equation for the dynamic of **Risk of victimization** of burglary events, called the reaction – diffusion equation.

Since
$$R(x,t) = R_0 + Q(x,t)$$

Renaming, $R(x,t) \approx R(X,t)$, $Q(x,t) \approx Q(X,t)$ and considering spatial diffusion of **Risk of victimization**,
 $R = R_0 + Q \Longrightarrow Q = R - R_0$

$$\therefore \qquad \frac{\partial Q}{\partial t} = \frac{\partial R}{\partial t},$$

So the continuous equation, in terms of R is obtained by putting $Q = R - R_0$ in equation (5) as

$$\frac{\partial R}{\partial t} = \frac{\eta D}{2} \nabla^2 (R - R_0) - \beta_1 (R - R_0) + \alpha \rho R \tag{6}$$

Conclusion

This continuous equation represents a nonlinear partial differential equation of **Risk of victimization** of burglary, also called a reaction- diffusion equation.

REFERENCES

- [1] South, S. J. and K.D. Crowder (1997), "*Residential Mobility between Cities and Suburbs: 25. Race, Suburbanization, and Back- to- the- City Moves.*" Demography, 34, pp. 525-538.
- [2] Tappan, P.W. (1960) "Crime, justice and correction". McGraw-Hill Company, Inc., New York, Toronto, Londan.
- [3] Willis, M. and J. Grogger (2000), The Emergence of Crack Cocaine and the Rise in Urban Crime Rates," Review of Economics and Statistics, 82, pp. 519-529.
- [4] Leah, E. (2005) Mathematics model in Biology, ISBN-10: 0898715547, SIAM
- [5] Nuno, J. C., Herrero, M. A. & Primcerrio, M. (2008) A triangle model of criminality. PACS: 387, 2926-2936.