
www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1312

Improving Load balancing by Flexible Assignment of

Jobs in the Grid

1
P.Neelakantan

1VNR VJIET,

Hyderabad -500090, India

Abstract: Grid computing has emerged as an attractive computing paradigm due to the availability of high speed wide

area networks and low cost computational resources. This paper presents a novel load balancing algorithm for grid

systems by considering node desirability. The set of partners and neighbours are formed for each node using the

desirability of the job. For each job, in the gird, the proposed algorithm uses the desirability of other nodes in the grid to

form k number of partners and p number of neighbours. The methods for building neighbours and partners are

presented. A new job arriving to a node is immediately distributed to the originating node it or to its partner nodes. The

load adjustment is carried continuously and reciprocal information management is used to minimize the communication

overhead in the proposed load balancing algorithm. The proposed algorithm is dynamic, sender-initiated and

decentralized.

Keywords: Grid computing, load balancing, heterogeneous, job, wide area network, nearest neighbour.

INTRODUCTION

The advances in computers and communications have changed

society dramatically. At the same time, the computers can

collaborate with the emerging high-speed networks by

creating enormous computing power which helps in running

advanced computational intensive jobs, in a minimal time.

There are different ways for setting up a distributed systems;
cluster systems [5] and grid systems. Several personal

computers or workstations are combined to form cluster

systems which shall be used to run distributed applications

through a high speed network. The disadvantage of using the

cluster systems is, they are confined to a fixed area (e.g., [1,

2, 10]), making the job static in terms of its performance.

The geographically dispersed cluster systems connected by a

network form computational grid for executing distributed

jobs .As compared with the conventional clustered systems,

grid computing uses internet connections to provide large

scale resource sharing and improved resource utilisation. A

Grid computing offers more processing power and quality of
service in executing scientific jobs rather than the cluster

systems. It also reduces the response time of the jobs.

Computational grids will emerge as next generation

computing and it will an important alternative for the

computation problems in industry, academic and government

organisations.

Resource management models: There are two kinds of

resource management models and corresponding metrics.

System Centric: The grid consists of independent jobs which

are submitted at different times and require different durations

and resources for their execution. When a job arrives at a grid,
the scheduler will analyse the load situation of every node and

selects one node to run the job. The scheduling policy at this

stage must optimise the total performance of the whole

system. The scheduling system must realise the load balancing

and increase the system throughput and resource utilization, if

the grid system is heavily loaded. In this paper, this type of

scheduling is classified as “system-centric scheduling”, for

which the objective is to optimise system performance, such

as [6], [7], [8], and [9]. The main focus here is the system –

level resource.

Application Centric: The number of tasks of a parallel

application arrives within a unit scheduling time –slot, the

scheduling system will allocate a node and finish it in terms of

a defined objective. Usually, the objective is the minimal

completion time for the entire application. Here the

scheduling policy is application oriented and hence it is

referred an application centric scheduling. [2, 4, 9-11].
Application- centric models deal with three kinds of

applications. . First is task producing, in which numerous

independent jobs arrive simultaneously. The second is a co-

allocation application, where each task is modelled as

performing all-to-all communication patterns throughout its

execution. The last kind of application can be represented as

direct acyclic graph (DAG) indicating data-dependency

between the tasks.

Considerable transfer cost.

The transfer cost of remote job execution at the local area

network can be ignored because the computers in the LAN are

connected through a high speed network. However, the
transfer cost is a concern for the scheduling algorithm to

execute the job in the remote system in the grid, due to the low

speed Internet links.

Uneven job arrival pattern: The utilization of computers

exceeds the maximum capacity at peak intervals and drops to

a minimum in the night hours. A bursty traffic generated by

the nodes in the grid environment will be balanced by

distributing the workloads to different clusters. Hence, load

balancing optimises the resource usage and designing a load

balancing algorithm in a grid environment is more complex.

The main motivation of this study is to propose, decentralized
dynamic load balancing solutions that can cater to these

unique characteristic of Grid computing environment

Literature Review

There exists many load balancing algorithms in the literature.

Classification of the load balancing algorithms is useful for the

design and analysis of new load balancing algorithms.

Static versus dynamic

Load balancing operations shall be carried out at compile time

or during run time. Load balancing algorithms may require

priori information about all the characteristics of the jobs,

http://www.ijpub.org/

www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1313

nodes processing capacity and the communication speed

between the nodes. Deterministic or probabilistic load

balancing decisions are made during compile time and those

decisions remain constant during run time.

The static load balancing algorithms offer less run time

overhead and it is are simple. However they do not consider

dynamic run time environment and may lead to load

imbalance on some nodes which significantly increases the job
response time. The nodes in the cluster environment exhibit

dynamic load behaviour varied with time and require dynamic

scheduling decisions based on the load value of the nodes. The

dynamic load balancing algorithms uses run time state

information to share load among the nodes in the system. The

system performance is increased by distributing the load

among the by better responding to the current system state.

The information collection during run time poses

communication overhead and is a disadvantage of the dynamic

load balancing algorithm. Though the time complexity of the

dynamic load balancing is higher than the static load balancing
algorithm, they provide better system utilization. However

hybrid algorithms use the advantages of both static and

dynamic strategies. The hybrid algorithm first uses the static

algorithm for a “coarse “ adjustment and then the dynamic

load balancing algorithm is applied for “fine” adjustment by

moving the jobs in the queues to the other lightly loaded nodes

in the system. The algorithm proposed in this paper belongs to

hybrid class.

Non-pre-emptive versus pre-emptive

Dynamic load balancing policies may be pre-emptive or non-

pre-emptive. A non-pre-emptive load balancing policy [8, 9,
3,4,5] assigns a new job to a best node in the system. Once the

job execution begins at that node, it is not moved even if the

node run time characteristics change. However it is desirable

that the load at each node need not be fully equalized. This

property allows to devise load balancing schemes that deal

with large grain division of the workload such as tasks and it

does not require high speed communication between nodes.

Non pre-emptive load balancing policies can be suited for

loosely coupled systems and it can be applied to any type of

distributed system with homogenous or heterogeneous

computing nodes such as a grid system.
In contrast, a pre-emptive load balancing will perform load

balancing among the nodes whenever an imbalance exists

among the nodes. A job can be transferred to another node

even if the job is in its course of execution. Initially, though

load distributions across nodes appear to be balanced, they

will become unbalanced as shorter jobs complete and leave

behind an uneven distribution of longer jobs. Job migration

allows these imbalances to be corrected among the nodes.

However, job migration in course of execution incurs more

overhead which results in performance degradation. If the pre-

emptive policies are attempted in loosely coupled systems,

more messages are to be generated among the nodes and it
will cause congestion in the communication system which will

result in the system performance degradation

Many studies have shown that job migration is difficult in

practice [11, 9, 10]) and the operation is more expensive and

no significant benefits over non migration. Hence, this paper

considers only non-preemptive load balancing strategies.

2.1.3 Node-level versus grid-level

When a job arrives at a node, the load –balancing algorithm of

the cluster will analyse the load situation of every node in the

cluster and will select an appropriate node to run the job. Even

if the cluster is heavily loaded, each job in the cluster must

queue and wait for its turn. This kind of load-balancing is

classified as cluster-level load balancing which optimizes the

system performance in a single cluster. Many traditional load

balancing algorithms fall in the category of cluster-level [8, 9,

11].

On the contrary, if a cluster lacks sufficient resources to
complete the newly arriving jobs or the cluster is heavily

loaded, the load balancing system of the cluster will transfer

some jobs to other clusters and will increase the system

throughput and resource utilization in multiple clusters. This

load balancing is referred as grid-level load balancing. The

focus of this paper is on grid level load balancing [8, 11, 10,

6]

2.1.4 Centralised versus distributed

Load balancing policies can be classified as centralized or

distributed. In centralized policies, there will be one master

node which will take decisions about scheduling. The master
node assigns newly arriving jobs to different processing nodes.

The information collection about job arrivals and departures

will be easy in the centralized policies. The major

disadvantage of centralized policies is the possible

performance and reliability bottleneck due to the possible

heavy load on the master node. For this reason, centralized

policies are inappropriate for large scale systems.

However, on other hand, the distributed policies involve all

the individual nodes as decision makers. Jobs arrive at each

node in the cluster and decisions will be made based on the

partial or global information available at the node. The

distribution policy is referred as individual optimal policy, in
that each job optimizes its own response time independently of

others. [10, 3].

System Model

The system model for the load balancing algorithms is

composed of a (i) Cluster model (ii)Job queue model (iii)

communication model (iv)Job model (v) Job migration model

and (vi)Performance objective. The Grid architecture consists

of a collection of clustered systems and job queue model

provided as a two level architecture for the job waiting queue

at each cluster. The communication model provides an

estimate of expected communication costs for information
exchange between nodes and job transfer among cluster nodes.

The job model defines the information about the job required

by the load balancing algorithms. The load balancing

algorithm is designed in such a way that it has to reduce the

chances of job thrashing and starvation at any node. The

performance objective of the load balancing algorithm will be

system utilization and average response time of the jobs.

Architecture model

The clusters consist of N number of processors and the

communication bandwidth is shared by all the processors.
The previous research such as condor[3][5] and Load sharing

facility has addressed the management of the jobs at cluster

level.

The heterogeneity in system can be expressed in terms of

processors speed, memory and disk I/O. A practical solution is

to consider CPU speed. It is also assumed that a machine with

powerful CPU will have matching memory and I/O resources.

The nodes in the grid system may have different processing

power. Processing power of a node ni is denoted as Pi. For

http://www.ijpub.org/

www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1314

i≠j, Pi may be different from Pj. Pi means the ratio of the

processing power of a node ni to the processing power of the

slowest side sj in the system.

Communication model

The nodes N are fully interconnected and there exists at least

one communication path between every two nodes in N. The
message passing mechanism is used as a communication

between the nodes and there exists a transfer delay on the

communication network between the nodes. The transfer delay

is different between different pairs of nodes. The underlying

network protocol guarantees that messages sent across the

network are received in the order sent.

Two parameters such as a transfer delay and data transmission

rate are used to represent the network performance between

any two nodes (ni,nj). Transfer time required for sending a

message of Q bytes between two nodes is given by

TDij +
Q

BWij

The above equation represents the total time required to

traverse all of the links on the path between ni andnj . BWij is

represented as effective data transferring rate in bytes per unit

time or is characterized in terms of kb/s. TDij includes a start-

up cost and delays incurred by congestion at intermediate links

on the path between 𝑛𝑖 and 𝑛𝑗 .

For a given node 𝑛𝑖 ∈N, jobs will arrive to the nodes belong to

𝐶𝑖 , where Ci denotes the cluster consisting of N nodes. The

arrival of jobs are random with an average delay,𝜆, between

two successive arrivals and follow poisson rate and the delay

between the arrivals will be Exponential distribution. The

jobs can be executed at any node and are computationally

intensive. The execution of the jobs are not time shared and

can be executed at any single node. The job is assigned to

exactly one node for execution and on completion of job, the

results will be transferred to the originating node of the job.

The set of all jobs generated at node S will be denoted as J=

{ 𝑗1 , 𝑗2 …𝑗𝑟 }. The system automatically creates the following

parameters related to the job.

 orgNode(ji) : the originating node of job ji

 exeNode (ji) : the executing node of the jobji

 startTime (ji) : the time of the job generated at

orgNode (ji) which is the arrival time of the job.

 endTime(ji) : the completion time of ji which

includes the job transfer time from orgNode to

exeNode(ji) ,waiting time queued at the exeNode(ji),

execution times at the exeNode(ji) and the transfer

time it takes to return the execution results from

exeNode(ji) to bornNode(ji)

 respTime (ji):the time the job ji taken for execution.

respTime (ji) =endTime (ji) −startTime (ji).

Each job jx is represented by two parameters, the amount of

computation and the amount of transfer time. The unknown

values of these two parameters may be estimated by

probabilistic techniques. The amount of computation has one
of the following formats.

An Expected execution time ETC(jx , Nstd) for processing the

job, is the time that would be taken at a standard platform

with processor speed equal to 1 . Hence the expected

execution time of a job ETC (jx , ni) will be
ETC jx ,Nstd

APW i

Performance objective

The major critical performance object in the grid computing is

to minimize the response time of all jobs submitted in the

system denoted by ART.

ART=
 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒 (𝑗 𝑖)𝑛

𝑖=1

𝑛

The performance of the proposed algorithm is evaluated by its
improvement factor over the another algorithm X as follows in

terms of average response time of jobs

ART (X)−ART (A)

ART (X)
, Where ART (A) denotes the average response

time of jobs using algorithm A and ART(X) denotes the

average response time of jobs using algorithm X. A positive
value indicates an improvement over the existing algorithm

and negative value implies the degradation over the existing

algorithm.

PROPOSED METHOD

A novel load balancing algorithm for heterogeneous systems

has been presented in this paper with consideration of job

migration to the remote nodes. Job migration from a local

node to remote node considers processing power of a remote

node and the communication delay to the remote node. The

load balancing algorithm for each node ni forms a set of K

partners and C neighbours and the information collection
overhead from the neighbour and partner nodes are reduced by

using reciprocal information management (RIM). The

algorithm presented in this paper is dynamic, sender-initiated

and decentralized. Job that arrives at each node ni is assigned

either to ni or to its neighbouring nodes. The adjustment of

loads has been made continuously among neighbours of

node ni .

Resource -aware load-balancing algorithm(RWLB)

Many existing algorithms in the literature have used an

instantaneous run queue length (the number of jobs being

served or waiting for service at a given instant) as the load

index [11, 10]. The time required for calculating the load

index is based on the queue length of the node. The load index

of a node consisting of more than one CPU is calculated based

on the total queue length of that node divided by the number

of CPUs at that node. The parameters such as average

processing power and the transfer delay are used to assign a
job to a node in the node.

The node- clustering algorithm considers N number of nodes

for the processing power of each node ni . The nodes are

chosen randomly in such a way that the processing power of

each node varies large enough with other node. The nodes are

sorted by processing power in descending order before

applying node-clustering method. A reference vector

< d1 , d2 , d3 . . dn > is calculated based on the difference in

processing power Pi of node ni to the other nodes in the
system and nodes with similar reference vector close to each

other in terms of processing power are clustered into

c1 , c2 , c3 . . cm clusters. Finally empty clusters in

c1 , c2 , c3 . . cn are removed so that only c1 , c2 , c3 . . cq (q ≤ m)

will remain in the order of decreasing average processing

power.

The probability of false clustering will be reduced by selecting

sufficient reference nodes that have very different processing

power. This approach belongs to coarse grained

approximation the proposed load balancing algorithm does not

http://www.ijpub.org/

www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1315

require precise measurements. The clusters generated are then

used to generate partner nodes.

Partners

Each node ni has K number of partner nodes 𝑃𝑠𝑒𝑡 used by the

scheduler to select partner nodes for assigning newly arrived

jobs. When a node joins the grid system, it will determine its

partners. A simple heuristic is employed to find partner nodes
including heterogeneous nodes in terms of their computing

power. An algorithm to select partners for the nodes is

presented in the below algorithm.

A preferable collection of nodes of Nof forms a set Qiused in

proposed Partners Adjustment Policy have greater or

comparable processing power to node ni .The set of favoured

nodes Qi will be updated by the algorithm as necessary. The

above approach may not guarantee in finding the optimal

partners, however it may provide a scalable and efficient
approach in the initial formation of partner nodes.

A. 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1: 𝐹𝑖𝑛𝑑𝑃𝑎𝑟𝑡𝑛𝑒𝑟𝑠 (𝑛𝑖 , 𝐾)

Find all nodes nj ∈ N i ≠ j with p(nj) ≤ P(ni) . The set of

nodes are denoted as Qi .

ifβ>=K (β is the size of Qi)
select K nodes from Qi randomly and add them to Pseti

else
{

M= K- β;
Add Qi to Pseti

𝑣 ← P ni
do

{

 Qi ← Qi⋃ Cv
 if β >=M(β is the size of Cv)

{

Select M nodes from Cv randomly and add

them to Pseti ;

break;

}

else

{

Add Cv to Pseti

M=M-𝛽
v = v + 1;
}

} While M>0

}

Neighbours

The set 𝑁𝑠𝑒𝑡𝑖 maintains C number of neighbouring nodes by

each node ni . The scheduler will reduce the communication

cost by selecting the neighbouring nodes for migrating the

jobs and hence reduces the transfer delay for the load

movement and enable quick response to load imbalances. The

neighbours have been selected in such a way that nodes are
lightly loaded and minimum transfer delay between the sender

node and the receiver node. nj is considered as neighbouring

node to ni if the communication delay between the nodes ni

and nj is minimum. The neighbouring nodes are sorted in the

ascending order based on the transfer delay and the least

ranked node is chosen as the nearest node. The transfer delay

is described as follows:

𝜀 =
TDji

TDnear

The transfer delay from node nj to node ni is denoted by 𝑇𝐷𝑗𝑖 .

The transfer delay from the nearest node of ni is denoted

by 𝑇𝐷𝑛𝑒𝑎𝑟 .

Partners Adjustment Policy

When a node receives a load information message from

neighbour nodes or partner nodes, it triggers dynamic partner

adjustment policy. The dynamic Partners Adjustment Policy is

triggered whenever a node ni receives load information

message from a neighbour or partner. If a node nj in the

preferred nodes Qi of ni is found in the message, it will be

involved in the partner adjustment of ni . when nodenj load is

lower than highest load in the partner nodes of ni , then it is

possible that nj becomes a partner node of node ni.Algorithm

2 describes the procedure of Partners. Adjustment Policy when

ni receives an information message from its neighbour or

partner node ni

B. Algorithm 2 Partners Adjustment (𝒏𝒋, 𝑲)

{

NI ← ∅;

∀ ny ∈ N: if(ny ∉ Nsetj⋃ Psetj) and (ny ∈ Qj) N1 ⟵ N1⋃ ny

if N1 ≠ ∅

{

N1 ← N1⋃ Psetj

Sort NI by load difference in ascending order

Remove all nodes from Psetj

Select the first k nodes from N1 and add them to Psetj

}

Information policy

The reciprocal information management system restricts the

load information exchange to partner and neighbouring nodes

toni . When a node ni transfer a job jx to its neighbour or

partner node nj for processing ,. Node ni appends load

information to itself ,𝑟𝑝 , random neighbours or partners who

have sent the job transfer request TR to nj . The load

information is updated by nj by comparing the timestamp, by

inspecting whether a request is from it is neighbours or

partners. Similarly njinserts its current load information and 𝑟𝑝

radon nodes from its 𝑁𝑠𝑒𝑡𝑖 and 𝑃𝑠𝑒𝑡𝑖 in the job acknowledge

AR or completions reply CR to ni, So ni can update its state

objects.

For any node ni ∈ N if the state object elementOi j ∀nj ∈

Nseti⋃ pseti,i≠j has not been updated for a predefined

period Tp , then the load-balancing scheduler will send

information exchange message tonj . The procedure is the

same as the algorithm 4.3.

The message overhead in the periodic information exchange is

reduced by using RIF method. In this method, the node under

processing will return its current load and the load of rp

random nodes along with ACK message or completion reply

CR back to the forwarding node. Hence the overhead is

minimal. Another advantage of the RIM method is the rate of

load dissemination is directly related to the job arrival rate.

The load information is exchanged often where there is more
number of job requests. The load information exchange rate is

automatically adjusted to the request rate.

http://www.ijpub.org/

www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1316

C. Algorithm 3:Instantaneous Distribution Policy

∀jx ∈ J with bornnode jx = ni ∈ N

Let LDMin ← Min Oi [K]. LD| nk ∈ ni + Pseti

/∗ the minimal load among node ni and its Pseti ∗/

If Oi i . LD − LDMin < 𝜃)

/∗ θ is a positive real constant close to 0 ∗/

GJQ ni) ← enqueue(jx /* put the job jx in the global job

queue GJQ (ni) */
else

{

Transfer the jobjx to the partner node nj having LDMin

Update Oi j . LD

}

Transfer policy and location policy

The transfer and location policies used in the proposed

algorithm are combination of instantaneous and load

adjustment policy.

Instantaneous Distribution Policy

The instantaneous distribution policy is used to decide

whether a new job is assigned to the originating node or one of

its neighbour nodes. If the existing neighbour nodes of ni are

overloaded then the job is put in the global queue of ni which

is later scheduled to run on the partner nodes. This policy will

try to control the job processing rate at each node and highly

computational jobs are run on the high end nodes or very less

overloaded nodes. If there are two partner nodes with the same

minimum load, the nearest partner node is chosen for

executing the job and this can reduce the communication

delay. Algorithm 4.4 describes the IDP for ni

D. Algorithm 4: Load adjustment Policy

if Oi[i].LD> 𝐿𝐷𝑎𝑣𝑔

{

jx ← dequeue GJQ ni

Transfer the job jx to a neighbour node nj where Oi [i].LD=

Min Oi k . LD|nk ∈ Nseti
}

Load Adjustment Policy

The Load adjustment policy reduces the load difference

between node i and its neighbour nodes by transferring jobs

from heavily loaded nodes to the lightly loaded neighbouring

nodes. This policy is triggered when the load information is

received by node I from its neighbouring nodes. This policy

uses the most recent load information to decide to initiate the

transfer of jobs. The threshold policy used in this method is

dynamically adjusted based on the system load and the nodes

with loads higher than the average load of the system are
considered as senders and the last job waiting in the node I is

considered as the candidate for transfer to the remote node. If

the neighbouring nodes have the same minimum load, then the

candidate node for transferring the job is chosen based on the

network delay. The node with less transfer delay as considered

for transferring the job.

The Load Adjustment Policy for a node nitries to continuously

reduce load difference among ni and its neighbours nseti by

transferring jobs from heavily loaded nodes to lightly loaded

neighbouring nodes. The policy is triggered whenever

nireceives load information from a neighbour. The policy will

use the most recent load status

RESULTS AND DISCUSSION

In this paper, Sender-Initiated algorithms are used for

performance evaluation. The proposed algorithm (RWLA) is
compared with two of the existing algorithms in the literature.

For the NB, each node is limited to collect load information

from within its own domain, which consists of itself and its

neighbours. The load balancing action is initiated if a load of

node exceeds the average load of its domain.

Simulation model

Simulations are preformed to study the performance of the

proposed algorithm by comparing with the existing algorithm

diffusion Algorithm existing in the literature Robert

Elsässer(2000). The simulation model consists of N nodes

with processing power of nodes is assigned in a range [0.0 to

1.0].It is possible to produce different heterogeneous systems
by varying the processing power of the nodes, it is possible to

produce different heterogeneous systems. Jobs arrive at each

node ni,i=1, 2..., N according to a Poisson process with rate

λi = λX Pi where pi=
1

N
. The actual inter arrival time of jobs is

adjusted to average system loading. The execution times of

jobs are assumed to be an exponential distribution with a mean

of T time units. The transfer delay between any two nodes

assumed to be lognormal distribution with a mean of τ time

unit and a standard deviationσc . The partner set of each node
is provided in prior to the stating of the algorithm. The

neighbours are chosen based on the transfer delay generated

from the distribution of mean transfer delay and it has been

provided as input to the algorithm before it starts to run. The

average load of the system is denoted by ρ and defined as the

ratio of average job arrive rate divided by the average job

processing rate. The mean inter-arrival time
1

λ
 to get the

desired value of ρ . Table 1 shows the simulation parameters

used in the experiment and table 2 shows the heterogeneous

system configurations used in simulation.

Simulation parameter Value

Size of system, n 16

The number of reference
nodes, m

6

Mean processing time of

jobs

0.5 Time units

Computation to

communication ratio

{0.05,0.1,0.25,0.5,1,

2.5,5}

Mean transfer delay 0.0025 Time units

Standard deviation of

transfer delay

25

Period for periodic

information exchange

20

Number of random

partners/neighbours for

information update,𝑟𝑝

4

Table 1: Simulation parameters

The below table shows heterogeneous system configurations,
and the value is chosen randomly from [0.0 to 1.0]. The first

2000 jobs are used to make the system into a steady state. The

arrival processing time and finish time has been traced from

J1000 To J4999 . Here 𝜇 equals to 4000 (for evaluation purpose).

http://www.ijpub.org/

www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1317

For each node, the numbers of completed jobs are recorded.

The computed average response time of jobs (ART) has been

measured after each simulation run. The measurement has

been carried out five times with different random seeds.

Heterogeneous systems Average processing

power

1 To 8 nodes 0.1

9 to 16 nodes 0.2

17 to 24 nodes 0.5

25 to 32 nodes 1.0

Table 2: Heterogeneous system configurations

Effect of system heterogeneity

The simulations have been carried out for four different
heterogeneous systems under different system utilization

parameterρ . In the beginning of the simulation, the fastest

nodes that have 10 times higher relative processing power than

the slowest node have been considered. The system load is

varied by varying the mean inter arrival time of the jobs,
1

𝜆
 and

results are shown in Figure 4.1.

Effect of system size

The simulations have been carried out for varying system sizes

to check for the stability of the proposed and existing

algorithms. Both algorithms are scalable and stable. However

the average response time offered by the proposed algorithm is
better than the diffusive load balancing algorithm. The results

are shown in the figure 4.2

CONCLUSION

The resource aware dynamic load balancing algorithm

(RWLB) proposed in this paper by considering the scalability

of the grid system which consists of heterogeneous processing

nodes and addressed considerable communication overhead

involved in collecting the information from the various nodes

in the grid. The simulation revealed the performance of the

proposed load balancing algorithm compared with the existing

diffusion load balancing algorithm and the experimental
results show that the proposed algorithm has done better than

the diffusion load balancing algorithm and reduces the average

response time of the jobs.

Figure 4.1: Effect of System heterogeneity

Figure 4.2: Effect of System Size

REFERENCES

[1] S. F. El-Zogdhy, H. Kameda, and J. Li, Numerical studies

on a paradox for noncooperative static load balancing in

distributed computer systems, Computers andOperations

Research, 33(2) (2006) 345-355.

[2] S. Penmatsa, A.T. Chronopoulos, Cooperative load

balancing for a network of heterogeneous computers, in:

Proceedings of the 20th IEEE International Parallel and

Distributed processing Symposium, 25-29 April 2006

Page(s):8.

[3] Z. Zeng and B. Veeravalli, Design and analysis of a non-
preemptive decentralized load balancing algorithm for multi-

class jobs in distributed networks, Computer Communications,

27(7) (2004) 679-694.

[4] K. Lu, R. Subrata, and A. Y. Zomaya, An efficient load

balancing algorithm for heterogeneous grid systems

considering desirability of grid sites, in: Proceedings of the

25th IEEE International Conference on Performance,

Computing, and Communications, 10–12 April 2006, Phoenix,

Arizona, USA.

[5] K. Lu, R. Subrata, and A. Y. Zomaya, Towards

decentralized load balancing in a computational grid

environment, in: Proceedings of the first International

Conference on Grid and Pervasive Computing, May 3-5, 2006,

Taichung, Taiwan, Lecture Notes in Computer Science

(LNCS), Vol. 3947, pp. 466- 477, Springer-Verlag Press.

[6] K. Lu and A. Y. Zomaya, A hybrid policy for job

scheduling and load balancing in heterogeneous computational

grids, in: Proceedings of the 6th IEEE International

Symposium on Parallel and Distributed Computing, 5-8 July
2007, Hagenberg, Austria.

[7] Jia Z. A Heuristic clustering-based task deployment

approach for load balancing using Bayes Theorem in

cloud environment. IEEE Transactions on Parallel and

Distributed Systems. 2016; 27(2):305–316.

[8] Kunjal G, Goswami N, Maheta ND. A performance

analysis of load Balancing algorithms in Cloud

environment. 2015 International Conference on Computer

Communication and Informatics (ICCCI), IEEE; 2015. p.

4–9.

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e

Average System Load

DLB

RWLB

0

10

20

30

40

50

60

70

4 8 16 32 64 128 256 512

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e

System Size

DLB

http://www.ijpub.org/

www.ijpub.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJPUB1801211 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 1318

[9] Ashok, A.S., Hari, D.P., 2012. Grid Computing: various

job scheduling strategies, emerging trends in computer

science and information technology. In: Proceedings of

the International Conference on Emerging Trends in

Computer Science and Information Technology-2012

(ETCSIT-2012), Mar.

[10] Ruay-Shiung Chang , Chih-Yuan Lin , Chun-Fu Lin, An

Adaptive Scoring Job Scheduling algorithm for grid

computing, Information Sciences: an International

Journal, 207, p.79-89, November, 2012.

[11]Robert Elsässer, Burkhard Monien, and Robert Preis.

2000. Diffusive load balancing schemes on heterogeneous

networks. In Proceedings of the twelfth annual ACM

symposium on Parallel algorithms and architectures

(SPAA '00). ACM, New York, NY, USA, 30-38. DOI:

https://doi.org/10.1145/341800.341805

http://www.ijpub.org/

