α - Graceful Labeling for a Binary Tree and Graceful Labeling for a Regular Tree

V J Kaneria
Department of Mathematics, Saurashtra University, RAJKOT-360005.
E-mail: kaneriavinodray@gmail.com
Om Teraiya
Atmiya Institute of Technology \& Science, RAJKOT - 360005.
E-mail: om.teraiya@gmail.com
Parinda Bhatt
Marwadi Engineering College, RAJKOT - 360003.
E-mail: pari.teraiya@gmail.com

Key words : Graceful graph, α-graceful graph, One point union of two graphs, Banana tree, Regular binary tree

AMS subject classification (2010) : 05C78.

Abstract

Labeled graph is the topics of current interest and here we have discussed α-graceful labeling for the regular binary tree. We have also discussed graceful labeling for banana tree, symmetric tree and regular tree.

1 Introduction

In 1996 Rosa defined graceful labeling of a simple graph G and α-labeling (here we call α-graceful labeling) for a graph. Banana tree $B(n, k)$, to be the tree obtained by joining one leaf of each n copies $K_{1, k-1}((k-1)$ - star) i.e. it is one point union of n copies of star graph $K_{1, k-1}$. A symmetric tree $T_{k+1}(d)$, to be a tree with diameter d, in which all vertices other than leaves and root have the same degree $k+1$ and all leaves have same eccentricity, where root is the center for $T_{k+1}(d)$, with degree k and eccentricity $\frac{d}{2}$. Here d is the diameter for $T_{k+1}(d) . d_{G}(v)$ is denoted for the degree of vertex v in G.

In this paper a graph G we mean a simple, finite and undirected graph with $p=|V(G)|$ vertices and $q=|E(G)|$ edges. We follow Harary[1] for basic notation and terminology of graphs.

2 Main Results

Theorem 2.1

Let T be a graceful tree. Let f be a graceful labeling for T and there is $v \in V(T), d_{T}(v)=1$ and $f(v)=0$. Then one point union of two copies of T at v is α-graceful tree.

Proof: Let $p=|V(T)|$ then $q=|E(T)|=p-1$. Let $V\left(T^{(1)}\right)=\left\{v_{0}=\right.$ $\left.v, v_{1}, v_{2}, \ldots, v_{q}\right\}$ be vertices of first copy $T^{(1)}$ of T. Let f be a graceful labeling for $T=T^{(1)}$ such that $f\left(v_{0}\right)=0$. Let $T^{(2)}$ be another copy of T and $V\left(T^{(2)}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{q}\right\}$. Let G be a graph (tree) obtained by merging $\left.u_{0}=v_{0}=v, v_{1}, v_{2}, \ldots, v_{q}, u_{1}, u_{2}, \ldots, u_{q}\right\}$ and $|E(G)|=2 q$. Since $T=T^{(1)}$ is bipartite graph, for each $e=(u, w) \in E(T)$, there is a partition $V_{1} \cup V_{2}$ of $V(T)$ such that $u \in V_{1}$ and $w \in V_{2}$. Take $v \in V_{1}$.

Define $g: V(G) \rightarrow\{0,1,2, \ldots, 2 q\}$ by $g / V_{1}^{(1)}=f / V_{1}^{(1)}, g / V_{2}^{(1)}=f / V_{2}^{(1)}+$ $q, g / V_{1}^{(2)}-\{v\}=f / V_{1}^{(1)}-\{v\}+q$ and $g / V_{2}=f / V_{2}^{(1)}$ where $V_{i}^{(i)} \cup V_{2}^{(i)}$ is the vertex partition of $V\left(T^{(i)}\right), i=1,2$. First we shall prove here g is a bijection.

Let $w_{1}, w_{2} \in V(G)$ be such that $g\left(w_{1}\right)=g\left(w_{2}\right)$ and $w_{1} \neq w_{2}$.
$\Rightarrow f\left(w_{1}\right)=f\left(w_{2}\right)$ and $w_{1} \in V_{1}, w_{2} \in V_{2}$ which is impossible as f is one-one

Since, $|V(G)|=2 q+1, g: V(G) \rightarrow\{0,1, \ldots, 2 q\}$ must be a bijection. The induced edge labeling $g^{*}: E(G) \rightarrow\{1,2, \ldots, 2 q\}$ defined by $g^{*}\left(e=\left(w_{1}, w_{2}\right)\right)=\left|g\left(w_{1}\right)-g\left(w_{2}\right)\right|$. Now we shall prove g^{*} is bijective map.

Let $e_{1}=\left(w_{1}, w_{2}\right), e_{2}=\left(w_{3}, w_{4}\right) \in E(G)$ such that $g^{*}\left(e_{1}\right)=g^{*}\left(e_{2}\right)$ where $w_{1}, w_{3} \in V_{1}$.

$$
\begin{aligned}
& \Rightarrow\left|g\left(w_{1}\right)-g\left(w_{2}\right)\right|=\left|g\left(w_{3}\right)-g\left(w_{4}\right)\right| \\
& \Rightarrow\left| \pm q+\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right)\right|=\left| \pm q+\left(f\left(w_{3}\right)-f\left(w_{4}\right)\right)\right| \\
& \Rightarrow q \pm\left|\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right)\right|=q \pm\left|\left(f\left(w_{3}\right)-f\left(w_{4}\right)\right)\right| \\
& \Rightarrow f\left(w_{1}\right)-f\left(w_{2}\right), f\left(w_{3}\right)-f\left(w_{4}\right) \text { either both are positive or both are }
\end{aligned}
$$ negative.

$$
\begin{aligned}
& \Rightarrow\left|f\left(w_{1}\right)-f\left(w_{2}\right)\right|=\left|f\left(w_{3}\right)-f\left(w_{4}\right)\right| \\
& \Rightarrow f^{*}\left(e_{1}\right)=f^{*}\left(e_{2}\right) \\
& \Rightarrow e_{1}=e_{2}, \text { as } f^{*} \text { is a bijection. }
\end{aligned}
$$

Now for any $e=\left(w_{5}, w_{6}\right) \in E(G)$,

$$
\begin{aligned}
& g^{*}(e)=\left|g\left(w_{5}\right)-g\left(w_{6}\right)\right| \\
& =\text { either } q+\left|f\left(w_{5}\right)-f\left(w_{6}\right)\right| \text { or } q-\left|f\left(w_{5}\right)-f\left(w_{6}\right)\right| \\
& =\text { either } q-f^{*}(e) \text { or } q+f^{*}(e) \\
& \Rightarrow g^{*}(E(G))=\{1,2, \ldots, q, q+1, q+2, \ldots, 2 q\}
\end{aligned}
$$

Thus, above labeling pattern g gives rise to a graceful labeling to the graph (tree) G.

Let $w_{7}, w_{8} \in V(T)$ be such that $f\left(w_{7}\right)=q$ and $f\left(w_{8}\right)=1$. Since $f(v)=0$ and $d_{T}(v)=1, v$ is adjacent only with the vertex w_{7} in T. To produce the edge label $q-1$ in T, w_{8} should be adjacent with w_{7}.

$$
\begin{aligned}
& \text { Now } g^{*}\left(w_{7}, w_{8}\right)=\left|g\left(w_{7}\right)-g\left(w_{8}\right)\right| \\
& =q+\left|f\left(w_{7}\right)-f\left(w_{8}\right)\right| \text { or } q-\left|f\left(w_{7}\right)-f\left(w_{8}\right)\right| \\
& =q-\left(f\left(w_{7}\right)-f\left(w_{8}\right)\right) \text { in second copy } T^{(2)} \\
& =1 \text { in second copy } T^{(2)}
\end{aligned}
$$

Take $k=g\left(w_{7}\right)=q$. It is observed that for any $e=\left(w_{9}, w_{10}\right) \in E(G)$, $\min \left\{g\left(w_{9}\right), g\left(w_{10}\right)\right\} \leq k=q<\max \left\{g\left(w_{9}\right), g\left(w_{10}\right)\right\}$ and so, g is an α-graceful labeling for G.

2.2 Regular binary tree :

Regular binary tree $B T_{n}$, where $n=1+2+\ldots+2^{m}$, for some $m \in N$ i.e. $B T_{1}=K_{1}, B T_{3}=P_{3}$ and $B T_{7}$ is obtained by taking one point union of two copies of $K_{1,3}$ as shown in figure - 1 .

Figure - 1
one point union of two copies of $K_{1,3}$.
Next step, add one pendent vertex at the common vertex of $2 K_{1,3}$ in $B T_{7}$ and to obtain $B T_{15}$, take one point union of two copies of above said tree by murging the added pendent vertex as shown in figure - 2 .

one point union of two copies of graph obtained by adding a pendent vertex at the root of $B T 7$.

Continue this way, add one pendent vertex at the root of $B T_{2^{m}-1}$ and to obtain $B T_{2^{m+1}-1}$ take one point union of two copies of $B T_{2^{m}-1}$ with pendent vertex by murging the added pendent vertex as shown in figure - 3 .

one point union of two copies of $B T_{2^{m+1}-1}$ after adding pendent vertex at the root.

Thus, $B T_{2^{m+1}-1}$ is the symmetric tree $T_{3}(2 m)$.

2.3 Algorithm to obtain α-graceful labeling $B T_{2^{m}-1}$:

Obviously, following graceful labeling (given in figure -4) for $K_{1,3}$ is an α graceful labeling, where $k=2$.

Figure - 4
α-graceful labeling for $K_{1,3}$
Using this according to Theorem. 2.1 obtain α-graceful labeling for $B T_{7}$ as shown in figure -5 .

Figure - 5
α-graceful labeling for $B T_{7}$

Add one pendent vertex with vertex label 7 , which gives an α-graceful labeling and take its complement α-graceful labeling by subtracting each vertex label from 7 and according to Theorem 2.1 obtain α-graceful labeling for $B T_{15}$ as shown in figure -6 .

Figure-6
α-graceful labeling for the graph obtained from $B T_{7}$ by adding one pendent vertex and $B T_{15}$

Theorem 2.4

Let T be graceful tree. Let f be a graceful labeling for T and there is $v \in V(T), d_{T}(v)=1$ and $f(v)=0$. Then one point union of three copies of T at v is graceful.

Proof: Let $p=|V(T)|$ then $q=|E(T)|=p-1$. Let $V\left(T^{(1)}\right)=\left\{v_{0}=\right.$ $\left.v, v_{1}, v_{2}, \ldots, v_{q}\right\}$ be vertices of first copy $T^{(1)}$ of T. Let f be an arbitrary graceful labeling for $T=T^{(1)}$ such that $f\left(v_{0}\right)=0$. Let $T^{(2)}, T^{(3)}$ be another copies of T and $V\left(T^{(2)}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{q}\right\}, V\left(T^{(3)}\right)=\left\{w_{0}, w_{1}, w_{2}, \ldots, w_{q}\right\}$. Let G be a graph (tree) obtained by merging $\left.u_{0}, v_{0}, w_{0}\right\}$ (one point union of $\left.T^{(i)}, i=1,2,3\right)$.

It is obvious that $V(G)=\left\{v, v_{1}, \ldots, v_{q}, u_{1}, \ldots, u_{q}, w_{1}, \ldots, w_{q}\right\}$ and $|E(G)|=$ $3 q$. Since $T=T^{(1)}$ is bipartite graph, for each $e=(u, w) \in E(T)$, there is a partition $V_{1} \cup V_{2}$ of $V(T)$ such that $u \in V_{1}$ and $w \in V_{2}$. Take $v \in V_{1}$.

Define $g: V(G) \rightarrow\{0,1,2, \ldots, 3 q\}$ by $g / V_{1}^{(1)}=f / V_{1}^{(1)}, g / V_{2}^{(1)}=f / V_{2}^{(1)}+$ $2 q, g / V_{1}^{(2)}-\{v\}=2 q+f / V_{1}^{(1)}-\{v\}$ and $g / V_{2}^{(2)}=f / V_{2}^{(1)}$ and $g / V\left(T^{(3)}\right)-$ $\{v\}=q+f / V\left(T^{(3)}\right)-\{v\}$ where $V_{1}^{(i)} \cup V_{2}^{(i)}$ is the vertex partition of $V\left(T^{(i)}\right)$, $i=1,2$. First we shall prove here g is a bijective map.

Let $s_{1}, s_{2} \in V(G)$ be such that $g\left(s_{1}\right)=g\left(s_{2}\right)$ and $s_{1} \neq s_{2}$ if possible.
$\Rightarrow f\left(s_{1}\right)=f\left(s_{2}\right)$ which is not possible as f is one-one.

Thus, $g: V(G) \rightarrow\{0,1, \ldots, 3 q\}$ is a bijection, as g is one-one and $|V(G)|=$ $3 q+1$.

The induced edge labeling $g^{*}: E(G) \rightarrow\{1,2, \ldots, 3 q\}$ defined by $g^{*}(e=$ $\left.\left(s_{3}, s_{4}\right)\right)=\left|g\left(s_{3}\right)-g\left(s_{4}\right)\right|$. We have to prove g^{*} is also a bijective map. It is enough to prove g^{*} is one - one.

Let $e_{1}=\left(s_{5}, s_{6}\right), e_{2}=\left(s_{7}, s_{8}\right) \in E(G)$ and $g^{*}\left(e_{1}\right)=g^{*}\left(e_{2}\right)$.

$$
\begin{aligned}
& \Rightarrow\left|g\left(s_{5}\right)-g\left(s_{6}\right)\right|=\left|g\left(s_{7}\right)-g\left(s_{8}\right)\right| \\
& \Rightarrow\left|f\left(s_{5}\right)-f\left(s_{6}\right)\right|=\left|f\left(s_{7}\right)-f\left(s_{8}\right)\right|, \text { by definition of } g \\
& \Rightarrow f^{*}\left(e_{1}\right)=f^{*}\left(e_{2}\right) \\
& \Rightarrow e_{1}=e_{2}, \text { as } f^{*} \text { is a bijection. }
\end{aligned}
$$

Now for any $e=\left(s_{9}, s_{10}\right) \in E(G)$,

$$
\begin{aligned}
& g^{*}(e)=\left|g\left(s_{9}\right)-g\left(s_{10}\right)\right| \\
& =\text { either } 2 q+\left|f\left(s_{9}\right)-f\left(s_{10}\right)\right| \text { or } 2 q-\left|f\left(s_{9}\right)-f\left(s_{10}\right)\right| \text { or }\left|f\left(s_{9}\right)-f\left(s_{10}\right)\right| \\
& =\text { either } 2 q+f^{*}(e) \text { or } 2 q-f^{*}(e) \text { or } f^{*}(e) \\
& \Rightarrow g^{*}(E(G))=\{1,2, \ldots, 3 q\}
\end{aligned}
$$

Thus, above labeling pattern give rise a graceful labeling g to the given graph (tree) G.

Theorem 2.5

Let T be graceful tree. Let f be a graceful labeling for T and there is $v \in V(T), d_{T}(v)=1$ and $f(v)=0$. Then one point union of l copies of T at v is also a graceful tree.

Proof: Let $V(T)=\left\{v_{0}=v, v_{1}, \ldots, v_{q}\right\}$. Let f be a graceful labeling for $T=T^{(1)}$ with $f\left(v_{0}\right)=0$. Let $T^{(2)}, T^{(3)}, \ldots, T^{(l)}$ be another copies of T and G be a tree obtained by merging vertex v of each copies $T^{(1)}, T^{(2)}, \ldots, T^{(l)}$.

It is obvious that $V(G)=l q+1$ and $|E(G)|=l q$. Since, $T^{(1)}$ is bipartite graph, for each $e=(u, w) \in E(T)$, there is a vertex partition $V_{1} \cup V_{2}$ of $V(T)$ such that $u \in V_{1}$ and $w \in V_{2}$. Take $v \in V_{1}$.

To define $g: V(G) \rightarrow\{0,1,2, \ldots, l q\}$ we consider following two cases.
Case - I $: l$ is even.
$g / V_{1}^{(1)}=f / V_{1}^{(1)}, g / V_{2}^{(1)}=f / V_{2}^{(1)}+(l-1) q, g / V_{1}^{(2)}-\{v\}=(l-1) q+$ $f / V_{1}^{(1)}-\{v\}, g / V_{2}^{(2)}=f / V_{2}^{(1)}, g / V_{1}^{(i)}-\{v\}=\left(\frac{i-1}{2}\right) q+f / V_{1}^{(1)}-\{v\}$, $g / V_{2}^{(i)}=\left(l-\frac{i+1}{2}\right) q+f / V_{2}^{(i)}, g / V_{1}^{(i+1)}-\{v\}=\left(l-\frac{i+1}{2}\right) q+f / V_{1}^{(1)}-\{v\}$, $g / V_{2}^{(i+1)}=\left(\frac{i-1}{2}\right) q+f / V_{2}^{(1)}, \forall i=3,5, \ldots, l-1$

Case - II : l is odd.
$g / V_{1}^{(1)}=f / V_{1}^{(1)}, g / V_{2}^{(1)}=(l-1) q+f / V_{2}^{(1)}, g / V_{1}^{(2)}-\{v\}=(l-1) q+$ $f / V_{1}^{(1)}-\{v\}, g / V_{2}^{(2)}=f / V_{2}^{(1)}, g / V_{1}^{(i)}-\{v\}=\left(\frac{i-1}{2}\right) q+f / V_{1}^{(1)}-\{v\}, g / V_{2}^{(i)}=$ $\left(l-\frac{i+1}{2}\right) q+f / V_{2}^{(i)}, g / V_{1}^{(i+1)}-\{v\}=\left(l-\frac{i+1}{2}\right) q+f / V_{1}^{(1)}-\{v\}, g / V_{2}^{(i+1)}=$ $\left(\frac{i-1}{2}\right) q+f / V_{2}^{(1)}, \forall i=3,5, \ldots, l-2$ and $g / V\left(T^{(l)}\right)=f / V\left(T^{(l)}\right)+\left(\frac{l-1}{2}\right) q$.

Where $V_{1}^{(i)} \cup V_{2}^{(i)}$ is the vertex partition of $V\left(T^{(i)}\right), i=1,2, \ldots, l-1$.
Thus, above labeling pattern give rise a graceful labeling g to the given graph (tree) G and so, G is a graceful graph.

Corollary 2.6

Every banana tree $B(n, k)$ is graceful.
Since $B(n, k)$ is one point union of n copies of the star graph $K_{1, k-1}$ and $K_{1, k-1}$ has required graceful labeling, by Theorem 2.5, we can obtain a graceful labeling for $B(n, k)$

Corollary 2.7

Symmetric tree T_{n+1} is a graceful graph.
$T_{(n+1)}(2)=K_{1, n}, T_{n+1}(4)=B(n, n+1), T_{n+1}(6)$ is one point union of n copies of a graph obtained by adding a pendent vertex to $T_{n+1}(4)$ at the root.

Similarly, $T_{n+1}(d)$ is one point union of n copies of a graph obtained by adding a pendent vertex to $T_{n+1}(d-2)$ at the root.

To get graceful labeling for $T_{n+1}(d)$, use Algorithm 2.3 and Theorem 2.5 recursively, as $T_{n+1}(2)=K_{1, n}, T_{n+1}(4)=B(n, n+1)$ both are graceful trees.

2.8 Graceful Labeling and Regular Tree :

Regular tree is $R\left(t_{1}, t_{2}, \ldots, t_{l}\right)$, where $t_{1}, t_{2}, \ldots, t_{l} \in N$ and we define it as follows.

Take t_{3} copies of a banana tree $B(n, k)$ and add one pendent edge to each copy of $B(n, k)$ at the root. Now take one point union of t_{3} copies of the graph obtain from $B(n, k)$ at the pendent vertex, as shown in figure-7.

Figure-7

Such regular graph we denote by $R\left(k, n, t_{3}\right)$. By taking $n=t_{2}$ and $k=t_{1}$, we rewrite it by $R\left(t_{1}, t_{2}, t_{3}\right)$. Next take t_{4} copies of $R\left(t_{1}, t_{2}, t_{3}\right)$ and add one pendent edge to each copy at root. Then take one point union of t_{4} trees at the added pendent vertex to get the regular tree $R\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$.

Continuing in this way, we get $R\left(t_{1}, t_{2}, t_{3}, \ldots, t_{(l-1)}\right)$ with a pendent edge at the root. It is obvious that $B T_{7}=B(2,3), B T_{15}=R(3,2,2)$ and $B T_{2^{m+1}}-1=R(3,2, \ldots, 2(m$-times $))$

To obtain graceful labeling for $R\left(t_{1}, t_{2}, t_{3}, \ldots, t_{l}\right)$ to get recursively way graceful labeling for $R\left(t_{1}, t_{2}, t_{3}, \ldots, t_{(l-1)}\right), R\left(t_{1}, t_{2}, t_{3}, \ldots, t_{(l-2)}\right), R\left(t_{1}, t_{2}, t_{3}\right)$ and $B\left(t_{2}, t_{1}\right)$ obtain by Corollary 2.6.

Illustration 2.9

$R(4,5,3)$ with its graceful labeling, to obtain this a graph obtain by adding a pendent edge to $B(5,4)$ and $B(5,4), K_{1,3}$ with their graceful labeling are shown in figure - 10, 9,8 .

Figure - 8
$B(5,4), K_{1,3}$ and their graceful labeling

Figure-9

A graph obtained by adding a pendent edge to $B(5,4)$ and its complement graceful labeling

Figure - 10
$R(4,5,3)$ and its graceful labeling otbained by Theorem 2.5

References

[1] F. Harary, Graph Theory, Addition Wesley, Massachusetts, 1972.
[2] J. A. Gallian, A dynamic survey of graph labeling, The Electronics J. Combin., 19, $\sharp \mathrm{DS} 6$ (2016).
[3] A. Rosa, On certain valuations of the vertices of a graph, Thoery of Graphs (Int. Symposium, Rome July 1966), Gordon and Breach, N.Y. and Dunod Paris (1967), pp. 349-355.

