Reliability Optimization analysis and improvement

¹Mr A. Suresh, ²Dr. G. Diwakar

¹Ph.D.Research Scholar, ²Professor of Mechanical engineering, Department of Mechanical Engineering, K L E F (Deemed to be University), Vaddeshwaram, India

Abstract: Understanding and analyzing the system is a prime concern for its performance improvement and development. If the system is a power plant the emphasis has to be made on the various components of plant and their effects on one another. From the bath tub curve it is a clear indication for the status and settlement of component. As of now so much of work has been done from the various facets of the world. It is also an equal important task to get a complete gist of major functional issues under one roof. This paper is an illustrated and investigated outcome of power plant from the perspective of Reliability optimization.

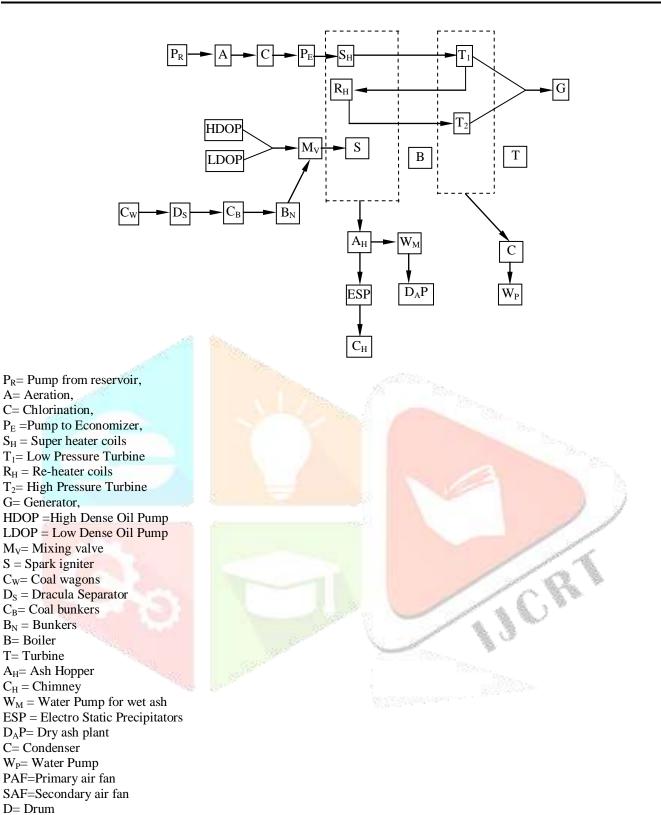
IndexTerms - Reliability, Optimization, Bath tub curve.

I. INTRODUCTION

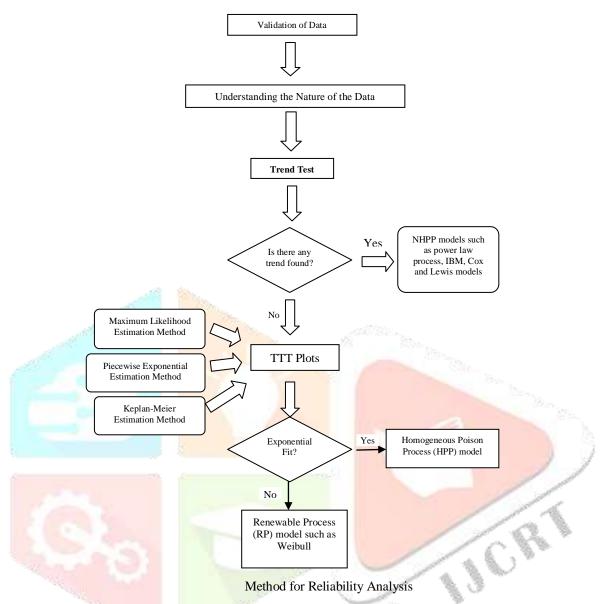
Emphasis is made on the overall components of the power plants. All the components were taken in to consideration and the work breakdown structure has been done. This is a logical diagram and shows the sequential interrelationship between the various components of the plant. The machines were taken as nodes and then the relationship between the machines that is nodes is taken as the activities and that was shown with the arrows. The diagram is a schematic representation of the all machines that were employed in the power plant. Hence the performance that was computed must be accurate and precise. This is however a cumbersome task to consider all the machines in to consideration ^[1, 2]. The reliability of the each component and overall plant is computed using the methodology developed below. The calculation of reliability in the series system and parallel system associated with the star network were experienced. A problem well put is half solved that's the reason all the required data and parameters were considered meticulously.

II. METHODOLOGY

The plant is divided in to five major components they were Coal handling plant, Water handling plant, Air handling plant, Steam and Ash handling plant. Under each head there are again so many number of sub components present in the plant. They were illustrated below.


- Pump₁ \rightarrow water filter by aeration \rightarrow water filter by chlorination \rightarrow Water softening machine \rightarrow Pump to economizer \rightarrow Super heater coils \rightarrow Turbine \rightarrow Condenser \rightarrow
- Coal wagons → Dracula Crain → Dumpers and Dozers → Sedimentation Crain → Shipping to Conveyor Crain → Conveyors → Coal Bunkers → Firing machine.
- Oil tank High dense and Low dense \rightarrow HDO Pump and LDO pump \rightarrow Coal and Oil Mixing value \rightarrow Spray gun.
- Boiler \rightarrow Drum \rightarrow Turbine
- Boiler \rightarrow Dry ash unit \rightarrow Wet ash unit

The above chaaains are the processing lines of the plant. Hence for each component of the plant the availability and reliability have to be calculated and hence the interdependencies of one on another will be found. This does have the parallel and series position in working and based on that the reliability calculations will be done. each machine have to come across the following flow chart and all the data has been processed for the calculation of availability and reliability.


III. ANALYSIS

The data has been processed and their failure times have been recorded. That data is refined and further the trend of the machine failures was calculated. The trend of the failures is calculated by using the following methods Eye ball test, Cumulative plot test, Serial correlation test and Karl Pearson's coefficient of correlation test. These tests have yielded the arena for the calculation of Reliability and Availability. The reliability is thus found by taking the data of Time between Failures and the availability is calculated by the Time to repair data. Both Reliability and Availability were calculated using the Power law process and the results were tabulated. The methodology used for the analysis is shown using the following flow diagram.

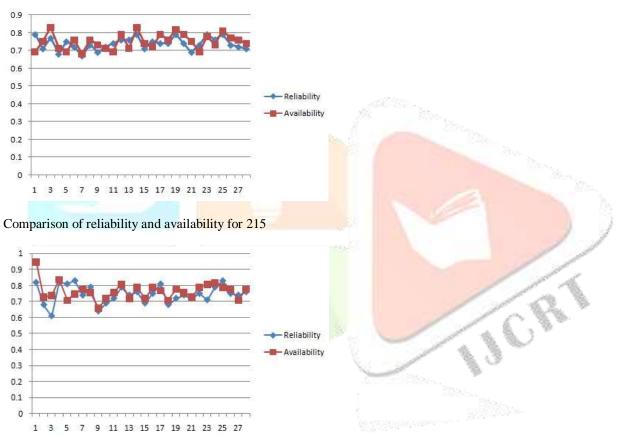
The above diagram is a sequential network of operations that were present in the power plant. Here the noteworthy thing is that the components were studied and analysed as parallel or series or star kind of network. This will facilitate the calculations accurate. And the availability and reliability were calculated by the above said network calculations. For each of the individual component the availability and reliability calculations were done as below defined methodology. For the calculation of trend the following tests were used they are Eye ball test, Cumulative plot test, Serial correlation test and Karl Pearson coefficient of correlation tests were used. Among all the majority of the trend is taken as a standard and based on that the reliability and availability were calculated.

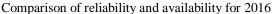
ANALYSIS OF FAILURE DATA FOR A REPAIRABLE SYSTEM

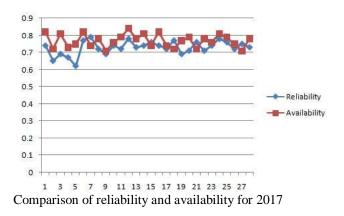
IV. ANALYSIS


Each component reliability and availability was found as follows.

		y was found as follows:							
S	Component	20)14	201	5	20	16	20	17
n									
0									
		Rel	Avai	Relia	Av	Relia	Avail	Relia	Avail
		iabi	labil	bility	aila	bility	abilit	bility	abilit
		lity	ity		bilit		у		у
					у				
1	Pump from	0.7	0.64	0.79	0.6	0.82	0.95	0.74	0.82
	reservoir	6			9				
2	Water filter	0.6	0.77	0.71	0.7	0.68	0.73	0.65	0.72
	by aeration	8			5				
3	water filter	0.7	0.68	0.77	0.8	0.61	0.74	0.69	0.81
	by	1			3				
	chlorination								
4	Water	0.7	0.72	0.68	0.7	0.82	0.84	0.67	0.73
	softening	4			1				
	machine								
5	Pump to	0.6	0.74	0.75	0.6	0.81	0.71	0.62	0.75
	economizer	8			9				
6	Super heater	0.7	0.69	0.72	0.7	0.83	0.75	0.77	0.82
	n o 1 2 3 4 5	no1Pump from reservoir2Water filter by aeration3water filter by chlorination4Water softening machine5Pump to economizer	n oNormen oRel iabi lity1Pump from reservoir0.7 62Water filter by aeration0.6 by aeration3water filter by chlorination0.7 1 chlorination4Water softening machine0.7 4 softening machine5Pump to economizer0.6 8	n oRel iabi iabi labil lityAvai labil lity1Pump from reservoir0.7 60.64 0.772Water filter by aeration0.6 80.77 0.68 1 chlorination3water filter by chlorination0.7 40.68 0.72 0.72 softening machine4Water softening machine0.7 4 80.72 0.72	n oRel iabi labil lityAvai labil bilityRelia bility1Pump from reservoir0.7 60.64 0.790.792Water filter by aeration0.6 80.77 0.710.71 0.713water filter by chlorination0.7 1 0.70.68 0.770.77 0.714Water softening machine0.7 40.7 0.740.72 0.755Pump to economizer0.6 80.74 0.740.75	n oRel iabi libilityAvai labil labil libilityRelia bility aila bilityAv aila bility1Pump from reservoir0.7 60.64 0.790.6 92Water filter by aeration0.6 60.77 0.710.71 0.7 53water filter by chlorination0.7 10.68 1 0.720.68 0.724Water softening machine0.7 40.72 90.68 0.715Pump to economizer0.6 80.74 90.75 9	n oRel iabi labil lityAvai labil bilityRelia aila bilityAv aila bilityRelia bility1Pump from reservoir0.7 60.64 0.790.6 0.60.82 92Water filter by aeration0.6 80.77 0.710.7 0.710.68 53water filter by chlorination0.7 10.68 1 0.720.68 0.720.71 0.82 0.684Water softening machine0.7 40.76 90.68 0.740.75 90.68 0.81 9	n oRel iabi libilityAvai Relia bilityRelia aila bilityAvail abilit y1Pump from reservoir0.7 60.64 0.790.6 90.82 90.952Water filter by aeration0.6 80.77 0.710.71 0.7 0.710.7 0.68 50.61 0.743water filter by chlorination0.7 40.70 40.66 10.77 0.720.68 0.680.77 0.710.82 0.824Water softening machine0.7 40.66 80.74 90.75 90.66 0.81 0.710.71 0.71	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


	coils	3			6				
7	Turbine	0.6	0.71	0.67	0.6	0.74	0.78	0.79	0.74
		9		0.07	8		0.70	0.17	
8	Condenser	0.7	0.68	0.73	0.7	0.79	0.76	0.72	0.78
-		5			6				
9	Coal wagons	0.7	0.74	0.69	0.7	0.64	0.66	0.69	0.71
-	e our wugons	2	0.7.1	0.02	3	0.0.	0.00	0.02	0.77
1	Dracula	0.7	0.76	0.72	0.7	0.69	0.72	0.74	0.76
0	Crain	1			1				
1	Dumpers	0.6	0.73	0.74	0.6	0.72	0.76	0.72	0.79
1	and Dozers	8	0.75	0.71	9	0.72	0.70	0.72	0.75
1	Sedimentati	0.8	0.84	0.76	0.7	0.79	0.81	0.78	0.84
2	on Crain	1	0.04	0.70	9	0.77	0.01	0.70	0.04
1	Shipping to	0.7	0.83	0.76	0.7	0.74	0.72	0.73	0.78
3	Conveyer	0.7 9	0.85	0.70	1	0.74	0.72	0.75	0.78
5	Crain	2			1				
1		0.7	0.77	0.79	0.8	0.76	0.79	0.74	0.81
1	Conveyors		0.77	0.79		0.70	0.79	0.74	0.81
4	Coal	2	0.70	0.71	3	0.60	0.72	0.76	0.74
1	Coal	0.7	0.79	0.71	0.7	0.69	0.72	0.76	0.74
5	Bunkers	6	0.01	0.75	4	0.75	0.70	0.71	
1	Firing	0.8	0.81	0.75	0.7	0.75	0.79	0.74	0.82
6	machine	2	14		2				
1	Oil tank	0.7	0.79	0.74	0.7	0.81	0.77	0.72	0.74
7	High dense	7		Star.	9		Mary.		
	and low			10	-8. A	1		Second	
	dense	20		1	2	9	1.500		
1	HDO Pum <mark>p</mark>	0.6	0.72	0.74	0.7	0.68	0.71	0.77	0.72
8		9			6				100 M
1	LDO Pump	0.7	0.76	0.79	0.8	0.72	0.78	0.69	0.77
9		3			2		1000		
2	Coal and Oil	0.7	0.78	0.74	0.7	0.74	0.76	0.71	0.79
0	Mixing	5			9				
	valve							_	
2	Spray gun	0.7	0.71	0.69	0.7	0.72	0.73	0.76	0.72
1	1.00	8			5			/	and the second
2	Boiler	0.7	0.69	0.73	0.6	0.75	0.79	0.71	0.78
2	100	2			9		1	6	1 18 19
2	Drum	0.8	0.76	0.79	0.7	0.71	0.81	0.74	0.76
3		1		275	8		1		
2	Dry ash unit	0.7	0.78	0.76	0.7	0.79	0.82	0.78	0.81
4	Dry ush unit	3	0.70	0.70	3	0.17	0.02	0.70	
2	Wet ash unit	0.7	0.72	0.79	0.8	0.83	0.79	0.76	0.79
5	to ct usit unit	5	0.72	0.75	1	0.05	0.17	0.70	0.77
2	Electro	0.7	0.81	0.73	0.7	0.75	0.78	0.72	0.75
2 6	static	8	0.01	0.75	0.7	0.75	0.70	0.72	0.75
U		0			/				
2	precipitator	0.0	0.70	0.72	07	0.74	0.71	0.75	0.71
2	Primary air	0.8	0.79	0.72	0.7	0.74	0.71	0.75	0.71
7	fan	2	0.05	0.51	6	0.5.5	0.50	0.53	
2 8	Secondary	0.8	0.82	0.71	0.7	0.76	0.78	0.73	0.78
	air fan	1	1	1	4	1	1		




RESULTS AND CONCLUSION

Comparison of reliability and availability for 2014

Out of the 28 machines considered the maximum availability is 0.95 and all the other machines have less availability and the least is 0.61. This has to be improved further more by adopting maintenance policies towards the optimization of the plant

performance. It has the further scope to optimize the availability and reliability by developing the optimization function with the constraints.

References

[1] Ran Tao *, Chi-Ming Tam 2011. System reliability optimization model for construction projects via system reliability theory. doi: 10.1016/j.autcon.2011.09.012

[2] Anuj kumar, Sangeet pant and Mangey ram 2016. Journal of Quality and Reliability Engineering, doi: 10.1002/qre.210.

[3] L. Zemite, J. Gerhards, M. Gorobetz, A. Levchenkov, 2016, IEEE 16th International conference on environment and electrical engineering.

[4] Nader M. Okasha, 2016, System Reliability Based Multi-Objective Design Optimization of Bridges, doi: 10.2749/101686616X14555429843726, International Association for Bridge and Structural Engineering pp. 324-332(9)

[5] Xiaojian YI, B.S. Dhillon, Jian SHI, ASME 2016 International Mechanical Engineering Congress and Exposition, doi:

10.1115/IMECE2016-65383

[6] S. Panda1 Dr. N.K. Barpanda2 S. Pradhan, 2014, International Conference on Innovations in Engineering and Technology, ISSN (Online): 2319 – 8753

[7] Nilesh Pancholi1, Dr. M.G.Bhatt, 2016, Performance Reliability Improvement by Optimizing Maintenance Practices through Failure Analysis in Process Industry – A Comprehensive Literature Review, IOSR Journal of Mechanical and Civil Engineering, e-ISSN: 2278-1684

[8] Pradeep kumar, Rahul Kumar, Parth Dahnami, Deepak Narula, 2014, RAM analysis of some process industries: a critical literature review, International Journal of Mechanical Engineering and Robotic Research, ISSN: 2278-0149

850