On Almost Complex Manifold in Complex Structure $\{\mathrm{F}\}$

${ }^{1}$ Dr. Navneet Kumar Verma, ${ }^{2}$ Dr. Shavej Ali Siddiqui
Sagar Institute of Technology \& Management
Barabanki, Pin-225001, Uttar Pradesh, India

Abstract

Complex structure $\{\mathbf{F}\}$ is almost complex manifolds is shown. It has been defined and studied by Schouten and Dontzing (1930) introduced the concept of complex structure and a Hermitian metric in a differentiable manifold and called it a complex manifold In this article we discuss the, Almost complex structure $\{F\}$ is not unique and also discuss that the complex structure $\{F\}$ has $\mathbf{2 m}$ Eigen values. An almost complex manifold is that it contain a tangent bundle π_{m} of $\operatorname{dim} m$ and a tangent bundle $\tilde{\pi}_{m}$ conjugate to π_{m} such that $\pi_{m} \cap \tilde{\pi}_{m}=\phi$ and they span together a tangent bundle of $\operatorname{dim} 2 m$.

Keywords:- Differentiable manifolds, Complex Manifold, Complex Structure, Nijenhuis Tensor, Contravariant vector, covariant vector, symmetric connection, linear manifold of $\operatorname{dim} \mathbf{2 m}$, tangent bundle, linearly independent.

Introduction: - Let $V_{n}, n=2 m$ be an even dimensional differentiable manifold of differentiability class C^{r+1} and let there exists a vector valued real linear function F of differentiability class C^{r+1} on V_{n}, satisfying

$$
F^{2}+I_{n}=0 \Leftrightarrow \overline{\bar{X}}+X=0 . \quad X \in T_{p}
$$

For arbitrary vector field X, where $\bar{X}=F X$.
Then V_{n} is said to be an almost complex manifold and $\{F\}$ is said to give an almost complex structure on V_{n}.
Example.1: Let us consider V_{4}, on which F given by,

$$
F=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)_{4 \times 4}
$$

Therefore,

$$
F^{2}=\left(\begin{array}{cc|cc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)_{4 \times 4}
$$

i.e.

$$
F^{2}+I_{4}=0 .
$$

Example.2: Let $m=R^{2}$, considered as a manifold with local coordinate the ordinary Cartesian coordinates (x, y). For each $p \in M$ the endomorphism of M_{p} given by,

$$
J_{p}: a\left(\frac{\partial}{\partial x}\right)_{p}+b\left(\frac{\partial}{\partial y}\right)_{p} \longrightarrow-b\left(\frac{\partial}{\partial x}\right)_{p}+a\left(\frac{\partial}{\partial y}\right)_{p}
$$

Let

$$
X=a\left(\frac{\partial}{\partial x}\right)_{p}+b\left(\frac{\partial}{\partial y}\right)_{p}
$$

Then $\quad J_{p} X=-b\left(\frac{\partial}{\partial x}\right)_{p}+a\left(\frac{\partial}{\partial y}\right)_{p}$

$$
\begin{aligned}
& J_{p}^{2} X=-a\left(\frac{\partial}{\partial x}\right)_{p}-b\left(\frac{\partial}{\partial y}\right)_{p}=-X \\
& \left(J_{p}^{2}+I\right) X=0
\end{aligned}
$$

Since X is arbitrary vector field, therefore we have

$$
\left(J_{p}^{2}+I\right)=0 .
$$

Theorem: The $\operatorname{rank}(F)=n$.
Proof: Let $\bar{X}=0 \Rightarrow \overline{\bar{X}}=0 \Rightarrow X=0$
Hence $\bar{X}=0$ has only trivial solution $X=0$, consequently $\operatorname{rank}(F)=n$.
Theorem:- Almost complex structure $\{F\}$ is not unique.
Proof:- Let us define

$$
\begin{equation*}
\mu F^{\prime}=F \mu \tag{1}
\end{equation*}
$$

Where μ is a non-singular tensor of type $(1,1)$ and $\{F\}$ is an almost complex structure,
Post multiplying (1) by F, we get

$$
\begin{aligned}
& \left(\mu F^{\prime}\right) F^{\prime}=(F \mu) F^{\prime} \\
& \mu F^{2}=F\left(\mu F^{\prime}\right)=F(F \mu)=F^{2} \mu=-\mu
\end{aligned}
$$

Therefore

$$
F^{\prime 2}+I_{n}=0
$$

$$
\text { since } \mu \neq 0
$$

i.e. $\left\{F F^{\prime}\right\}$ is an almost complex structure.

Nijenhuis Tensor: Nijenhuis with respect to F is a vector valued bilinear function N , given by

$$
N(X, Y)=[F, F](X, Y) \stackrel{\text { def }}{\text { de }} \bar{X}, \bar{Y}]+\overline{[X, Y]}-[\bar{X}, Y]-[X, \bar{Y}] .
$$

In an almost complex manifold,

$$
N(X, Y)=[F, F](X, Y) \stackrel{\text { def }}{=}[\bar{X}, \bar{Y}]-[X, Y]-[\overline{\bar{X}, Y}]-[X, \bar{Y}]
$$

Theorem: On an almost complex manifold, we have
(i) $N(\bar{X}, \bar{Y})=-N(X, Y)=-N(\bar{X}, Y)=-\overline{N(X, \bar{Y})}$
(ii) $\overline{N(\bar{X}, \bar{Y})}=-\overline{N(X, Y)}=N(\bar{X}, Y)=N(X, \bar{Y})$

Proof: Proof is obvious.
Definition: An almost complex manifold with vanishing Nijenhuis tensor is a complex manifold.
Definition: On an almost complex manifold V_{n}, a bilinear function A is said to be

$$
\text { Pure if } A(X, Y)+A(\bar{X}, \bar{Y})=0
$$

Hybrid if $A(X, Y)=A(\bar{X}, \bar{Y})$.
Theorem: F has m Eigen values $+i$ and m Eigen values $-i$.
Proof: Let λ be an Eigen values of F and let P be the corresponding eigen vector. Then

$$
F P=\lambda P
$$

i.e. $\quad \bar{P}=\lambda P$.

Barring P we get,

$$
\overline{\bar{P}}=\lambda^{2} P
$$

i.e.

$$
\begin{array}{ll}
\lambda^{2}=-1 & (\text { Since } P \neq 0) \\
\lambda= \pm i &
\end{array}
$$

Therefore

Thus $+i$ and $-i$ are the Eigen values of F. Since $n=2 m$, show $+i$ repeated m times, $-i$ repeated m times.
Theorem: Let $\{F\}$ and $\left\{F^{\prime}\right\}$ be two almost complex structures of the almost complex manifold V_{n} connected by $\mu F^{\prime}=F \mu$ then, if P is an Eigen vector of $F^{\prime}, \mu P$ is an Eigen vector of F corresponding to some Eigen value.

Proof: Let P be an Eigen vector of F^{\prime} corresponding to the Eigen values λ,
Then

$$
F^{\prime} P=\lambda P \Rightarrow \mu F^{\prime} P=\lambda \mu P
$$

Since

$$
\mu F^{\prime}=F \mu, \text { we get } F \mu P=\lambda \mu P
$$

Hence μP is Eigen vector of F corresponding to Eigen values λ.

Theorem: The necessary and sufficient condition that V_{n} be an almost complex manifold is that it contain a tangent bundle π_{m} of $\operatorname{dim} m$ and a tangent bundle $\tilde{\pi}_{m}$ conjugate to π_{m} such that $\pi_{m} \cap \tilde{\pi}_{m}=\phi$ and they span together a tangent bundle of $\operatorname{dim} 2 m$. Projections on π_{m} and $\tilde{\pi}_{m}$ being L and M given by

$$
2 L \stackrel{\operatorname{def}}{=} I_{n}-i F, \quad 2 M \stackrel{\operatorname{def}}{=} I_{n}+i F
$$

Proof: (Necessary) Let V_{n} be an almost complex manifold with almost complex structure $\{F\}$ whose Eigen values are $+i$ and $-i$. Let $P, x=1,2, \ldots, m$ are Eigen vectors corresponding to Eigen value $+i$ and $Q, x=1,2, \ldots, m$ are m linearly independent Eigen vectors conjugate to P_{x} corresponding to the Eigen values $-i$. Then,

$$
\forall x
$$

and

$$
\stackrel{x}{a} \underset{x}{P}=0 \Rightarrow \stackrel{x}{a}=0
$$

$$
\stackrel{x}{b} Q=0 \Rightarrow \stackrel{x}{b}=0
$$

Now let $\stackrel{x}{c} P+\stackrel{x}{d} Q=0$

$$
3
$$

Then

$$
\begin{equation*}
{ }^{x}{\underset{x}{P}}^{P}+{ }_{x}^{x}{\underset{Q}{Q}}^{x}=0 \tag{1}
\end{equation*}
$$

Since

$$
F P_{x}=i{\underset{x}{x}}_{P_{x}}, \quad F \underset{x}{Q}=-i Q_{x}^{Q}
$$

Then

$$
i\left\{\begin{array}{c}
x \\
c \\
P
\end{array}-\frac{x}{d} Q\right\}=0
$$

$$
\left\{\begin{array}{l}
x \\
c \\
x
\end{array}-\stackrel{x}{d} \underset{x}{Q}\right\}=0
$$

$i \neq 0$
, we get

$$
\stackrel{x}{c}_{x}^{P}=0 \text { and } \stackrel{x}{d} \underset{x}{Q}=0
$$

i.e. $\quad \stackrel{x}{c}=0$ and $\stackrel{x}{d}=0$
since $P=0$ and $Q=0$ are linearly independent.
Thus $\quad{ }_{c}^{x}{\underset{x}{x}}^{P}+\stackrel{x}{d} \underset{x}{Q}=0 \Rightarrow \stackrel{x}{c}=0, \stackrel{x}{d}=0$ \forall

Therefore $\left\{\underset{x}{P},{\underset{x}{x}}^{Q}\right\}$ is a linearly independent set.
Further, we have

$$
L \underset{x}{P}=P_{x}^{P} \quad L \underset{x}{Q}=0
$$

$$
M \underset{x}{P}=0 \quad M Q=Q
$$

Because $2 L \underset{x}{P}=\left(I_{n}-i F\right) \underset{x}{P}=\underset{x}{P}-i F \underset{x}{P}=\underset{x}{P}+\underset{x}{P}=2 \underset{x}{P}$, and similarly.

Thus we have proved that there is a tangent bundle π_{m} of $\operatorname{dim} m$ and there is a complex conjugate tangent bundle $\tilde{\pi}_{m}$ of $\operatorname{dim} m$ such that $\pi_{m} \cap \tilde{\pi}_{m}=\phi$ and they span to gather a tangent bundle of $\operatorname{dim} 2 m$. Projection on π_{m} and $\tilde{\pi}_{m}$ being L and M.
Conversely: Suppose that there is a tangent bundle π_{m} of $\operatorname{dim} m$ and a tangent bundle $\tilde{\pi}_{m}$ complex conjugate to π_{m} such that $\pi_{m} \cap \tilde{\pi}_{m}=\phi$ and the span together linear manifold of $\operatorname{dim} 2 m$, Let ${\underset{x}{x}}$ and ${\underset{x}{ }}^{(c o m p l e x}$ conjugate to P_{x}) be m linearly independent vector in π_{m} and $\tilde{\pi}_{m}$ respectively. Let $\left\{\underset{x}{P}, Q_{x}\right\}$ span a linear manifold of $\operatorname{dim} 2 m$, therefore $\left\{\underset{x}{P}, Q_{x}\right\}$ is a linearly independent set. Let $\left\{\begin{array}{ll}x & x \\ p, q\end{array}\right\}$ be the inverse set of $\left\{\underset{x}{P}, Q_{x}\right\}$. Then

$$
I_{n}=\stackrel{x}{p \otimes \underset{x}{P}+\stackrel{x}{q} \otimes Q}
$$

This equation yields,

$$
\begin{aligned}
& p^{x}\binom{P}{y}=\delta_{y}^{x}=q\binom{Q}{y} \\
& p\binom{Q}{y}=q^{x}\binom{P}{y}=0
\end{aligned}
$$

Let us define,

$$
\begin{aligned}
& F \stackrel{\text { def }}{=} i\left\{\begin{array}{l}
x \\
p \otimes \underset{x}{P}-\underset{x}{q} \otimes \underset{x}{Q}
\end{array}\right\}
\end{aligned}
$$

After solving, we get

$$
F^{2}+I_{n}=0
$$

Thus the manifold admits an almost complex structure.

Corollary: Prove that

(i) $L^{2}=L, \quad M^{2}=M, \quad L M=M L=0$
(ii) $F L=L F=i L, \quad F M=M F=-i M$

Corollary: Prove that, $L=\stackrel{x}{p} \otimes \underset{x}{P_{x}}$ and $M=\stackrel{x}{q} \otimes \underset{x}{Q}$.
Proof: Since $\left\{\begin{array}{ll}x & x \\ p, q\end{array}\right\}$ is inverse set of $\left\{\underset{x}{P}, Q_{x}\right\}$, we have

$$
\begin{equation*}
I_{n}=\stackrel{x}{p} \otimes \underset{x}{P}+\stackrel{x}{q} \otimes \underset{x}{Q} \tag{1}
\end{equation*}
$$

and we also know,

$$
2 L=I_{n}-i F, \quad 2 M=I_{n}+i F
$$

Therefore

$$
\begin{equation*}
L+M=I_{n} \tag{2}
\end{equation*}
$$

Operating (2) by F and using (1), we get

$$
F L+F M=\stackrel{x}{p} \otimes \underset{x}{F} \underset{x}{P}+\underset{q}{x} \otimes \underset{x}{Q}
$$

$$
i(L-M)=\stackrel{x}{p} \otimes\left(i{\underset{x}{x}}^{P}\right)+\stackrel{x}{q} \otimes(-i \underset{x}{Q})
$$

$$
\begin{equation*}
i \neq 0, \quad L-M=\stackrel{x}{p} \otimes \underset{x}{P}+\stackrel{x}{q} \otimes \underset{x}{Q} \tag{3}
\end{equation*}
$$

From (2) and (3), we get the result.

Contravariant and covariant almost analytic vectors

Definition: A vector field V is said to e contravariant almost analytic if it satisfies

$$
L_{V} F=0
$$

i.e. Lie derivatives of F with respect to V vanishes. A vector field V is said to be strictly contravariant almost analytic, if both V and \bar{V} are contravariant almost analytic i.e.

$$
L_{V} F=0 \text { And } L_{\bar{V}} F=0 .
$$

Lemma: We have on an almost complex manifold,
(i) $L_{\bar{V}} F=L_{V} F+N(V, X)$

Equivalent to,
(ii) $L_{\bar{V}} F+L_{V} F=\overline{N(V, X)}$
(iii) $\left(L_{\bar{V}} F\right)(X)=\overline{\left(L_{V} F\right)(\bar{X})}+N(V, \bar{X})$
(iv) $\overline{\left(L_{\vec{V}} F\right)(\bar{X})}+\left(L_{V} F\right)(\bar{X})=\overline{N(V, \bar{X})}$

Proof: Consider,
or

$$
\begin{align*}
& L_{\bar{V}} \bar{X}=\left(L_{\bar{V}} F\right)(X)+F\left(L_{\bar{V}} X\right) \\
& {[\bar{V}, \bar{X}]=\left(L_{\bar{V}} F\right)(X)+[\bar{V}, X]} \tag{1}
\end{align*}
$$

Further taking Lie derivative of \bar{X} with respect to V, we get

$$
\begin{align*}
& L_{V} \bar{X}=\left(L_{V} F\right)(X)+F\left(L_{V} X\right) \\
& {[V, \bar{X}]=\overline{\left(L_{V} F\right)(X)}-[V, X]} \tag{2}
\end{align*}
$$

or
we have

$$
\begin{equation*}
\left(L_{\bar{V}} F\right)(X)-\overline{\left(L_{V} F\right)(X)}=N(V, X) \tag{3}
\end{equation*}
$$

Where

$$
N(V, X) \stackrel{d e f}{=}[\bar{V}, \bar{X}]-[V, X]-[\overline{\bar{V}}, X]-[V, \bar{X}]
$$

Barring equation (3), we get

$$
\begin{equation*}
\left(L_{\bar{V}} F\right)(X)+\left(L_{V} F\right)(X)=\overline{N(V, X)} \tag{4}
\end{equation*}
$$

From (3) and (4) we get results.
Theorem: A necessary and sufficient condition that vector field V on and almost complex manifold be contravariant almost analytic is

$$
\left.L_{V} \bar{X}=\overline{L_{V} X} \Rightarrow[V, \bar{X}]=\boxed{V, X}\right]
$$

Proof: A vector field V is contravariant almost analytic if

$$
\begin{align*}
& L_{V} F=0 \tag{1}\\
& L_{V} \bar{X}=\left(L_{V} F\right)(X)+\overline{L_{V} X}
\end{align*}
$$

Using (1) in above equation, we get

$$
L_{V} \bar{X}=\overline{L_{V} X}
$$

Theorem: Lie derivative of Nijenhuis tensor with respect to a contravariant almost analytic vector V, on an almost complex manifold vanishes, i.e.

$$
L_{V} N=0
$$

Definition: A 1-from ω is said to be covariant almost analytic if it satisfies,

$$
\omega\left(\left(\left(D_{X} F\right) Y\right)-\left(D_{Y} F\right) X\right)=\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{X} \omega\right)(\bar{Y})
$$

Where D is a symmetric connection in V_{n}.

Theorem: If a l-from ω is covariant almost analytic then $d \omega$ is pure in both the slots, i.e.

$$
(d \omega)(\bar{X}, \bar{Y})+(d \omega)(X, Y)=0
$$

Proof: Since,

$$
\begin{equation*}
(d \omega)(X, Y)=\left(D_{X} \omega\right)(Y)-\left(D_{Y} \omega\right)(X) \tag{1}
\end{equation*}
$$

Using definition,

$$
\begin{equation*}
\omega\left(\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right)=\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{X} \omega\right)(\bar{Y}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(\left(D_{Y} F\right)(X)-\left(D_{X} F\right)(Y)\right)=\left(D_{\bar{Y}} \omega\right)(X)-\left(D_{Y} \omega\right)(\bar{X}) \tag{3}
\end{equation*}
$$

Adding (2) and (3) then barring Y, we get the result.
Cor.: If $\widetilde{\omega}(X) \stackrel{\text { def }}{=} \omega(\bar{X}) \Leftrightarrow \tilde{\omega}(\bar{X})=-\omega(X)$
Then

$$
d \tilde{\omega}(X, Y)=d \omega(\bar{X}, Y)
$$

Equivalent to $d \widetilde{\omega}(\bar{X}, Y)+d \omega(X, Y)=0$.
Proof: We have from definition,

$$
\widetilde{\omega}(Y)=\omega(\bar{Y})
$$

Taking covariant derivative with respect to X, we get

$$
\begin{equation*}
\left(D_{X} \tilde{\omega}\right)(Y)=\left(D_{X} \omega\right)(\bar{Y})+\omega\left(\left(D_{X} F\right)(Y)\right) \tag{1}
\end{equation*}
$$

since ω is covariant almost analytic, we have

$$
\begin{equation*}
\omega\left(\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right)=\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{X} \omega\right)(\bar{Y}) \tag{2}
\end{equation*}
$$

From (1), we have

$$
\begin{equation*}
\left(D_{Y} \tilde{\omega}\right)(X)=\left(D_{Y} \omega\right)(\bar{X})+\omega\left(\left(D_{Y} F\right)(X)\right) \tag{3}
\end{equation*}
$$

From (1) and (3), we have

$$
\begin{equation*}
\left(D_{X} \tilde{\omega}\right)(Y)-\left(D_{Y} \tilde{\omega}\right)(X)=\left(D_{X} \omega\right)(\bar{Y})-\left(D_{Y} \omega\right)(\bar{X})+\omega\left(\left(D_{X} F\right)(Y)\right)-\omega\left(\left(D_{Y} F\right)(X)\right) \tag{4}
\end{equation*}
$$

Using (2) in (4), we get

$$
\begin{equation*}
\left(D_{X} \tilde{\omega}\right)(Y)-\left(D_{Y} \tilde{\omega}\right)(X)=\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{Y} \omega\right)(\bar{X}) \tag{5}
\end{equation*}
$$

Since,

$$
\begin{equation*}
(d \omega)(X, Y)=\left(D_{X} \omega\right)(Y)-\left(D_{Y} \omega\right)(X) \tag{6}
\end{equation*}
$$

From (5) and (6) we get the result.
Theroem: If 1-from ω is covariant almost analytic on an almost complex manifold then $\widetilde{\omega}$ is also covariant analytic.

$$
\text { Where } \tilde{\omega}(X) \stackrel{\text { def }}{=} \omega(\bar{X}) \Leftrightarrow \tilde{\omega}(\bar{X})=-\omega(X)
$$

Proof: Since 1-from ω is covariant almost analytic, then we have

$$
\begin{equation*}
\omega\left(\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right) \stackrel{d e f}{=}\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{X} \omega\right)(\bar{Y}) \tag{1}
\end{equation*}
$$

Taking covariant derivative of $\tilde{\omega}(Y)=\omega(\bar{Y})$ with respect to X and \bar{X}, we get

$$
\begin{array}{ll}
& \left(D_{X} \tilde{\omega}\right)(Y)=\left(D_{X} \omega\right)(\bar{Y})+\omega\left(\left(D_{X} F\right)(Y)\right) \\
\text { and } & \left(D_{\bar{X}} \tilde{\omega}\right)(Y)=\left(D_{\bar{X}} \omega\right)(\bar{Y})+\omega\left(\left(D_{\bar{X}} F\right)(Y)\right) \tag{3}
\end{array}
$$

Barring Y in (2)

$$
\begin{equation*}
\left(D_{X} \tilde{\omega}\right)(\bar{Y})=-\left(D_{X} \omega\right)(Y)+\omega\left(\left(D_{X} F\right)(\bar{Y})\right) \tag{4}
\end{equation*}
$$

Now consider

$$
F(\bar{Y})=-Y
$$

Taking its covariant derivative with respect to X, we get

$$
\begin{equation*}
\left(D_{X} F\right)(\bar{Y})=-F\left(\left(D_{X} F\right)(Y)\right) \tag{5}
\end{equation*}
$$

Operating by ω, we get

$$
\begin{equation*}
\omega\left(\left(D_{X} F\right)(\bar{Y})\right)=-\tilde{\omega}\left(\left(D_{X} F\right)(X)\right) \tag{6}
\end{equation*}
$$

Putting (6) in (4), we get

$$
\begin{equation*}
\left(D_{X} \tilde{\omega}\right)(\bar{Y})=-\left(D_{X} \omega\right)(Y)-\widetilde{\omega}\left(\left(D_{X} F\right)(Y)\right) \tag{7}
\end{equation*}
$$

Now using (3) and (7), we get

$$
\begin{align*}
\left(D_{X} \tilde{\omega}\right)(Y)-\left(D_{X} \tilde{\omega}\right)(\bar{Y})= & \left(D_{\bar{X}} \omega\right)(\bar{Y})+\left(D_{X} \omega\right)(Y)+\omega\left(\left(D_{\bar{X}} F\right)(Y)\right) \\
& +\omega\left(\left(D_{\bar{X}} F\right)(Y)\right)+\tilde{\omega}\left(\left(D_{X} F\right)(Y)\right) \tag{8}
\end{align*}
$$

Interchanging X and Y in (1), then barring X, we get

$$
\begin{equation*}
-\tilde{\omega}\left(\left(D_{Y} F\right)(X)=\left(D_{\bar{X}} \omega\right)(\bar{Y})\right)+\left(D_{X} \omega\right)(Y)+\omega\left(\left(D_{\bar{X}} F\right)(Y)\right) \tag{9}
\end{equation*}
$$

Using (9) in (8), we get the result.
Theorem: If on an almost complex manifold, the covariant almost analytic vector field ω is closed then $\tilde{\omega}$ is also closed.

$$
\text { Where } \quad \tilde{\omega}(X)=\omega(\bar{X}) \Leftrightarrow \tilde{\omega}(\bar{X})=-\omega(X)
$$

Proof: We have

$$
\begin{aligned}
& d \tilde{\omega}(X, Y)=d \omega(\bar{X}, Y) \\
& \text { or } \\
& d \tilde{\omega}(\bar{X}, Y)=-d \omega(X, Y)
\end{aligned}
$$

If ω is closed, then $d \omega=0 \Rightarrow(d \tilde{\omega})(\bar{X}, Y)=0 \Rightarrow d \tilde{\omega}=0$.
Theorem: If ω and $\tilde{\omega}$ are both closed on an almost complex manifold then they are both covariant almost analytic, where $\widetilde{\omega}(X) \stackrel{\text { def }}{=} \omega(\bar{X}) \Leftrightarrow \tilde{\omega}(\bar{X})=-\omega(X)$.

Proof: If ω and $\widetilde{\omega}$ are both closed then

$$
\begin{align*}
& d \omega(X, Y)=\left(D_{X} \omega\right)(Y)-\left(D_{Y} \omega\right)(X)=0 \tag{1}\\
& d \tilde{\omega}(X, Y)=\left(D_{X} \tilde{\omega}\right)(Y)-\left(D_{Y} \tilde{\omega}\right)(X)=0 \tag{2}\\
& \widetilde{\omega}(Y)=\omega(\bar{Y})
\end{align*}
$$

and

Taking its covariant derivative with respect to X, we get

$$
\left(D_{X} \tilde{\omega}\right)(Y)=\left(D_{X} \omega\right)(Y)+\omega\left(\left(D_{X} F\right)(Y)\right)
$$

Interchanging X and Y, we get

$$
\begin{equation*}
\left(D_{Y} \tilde{\omega}\right)(X)=\left(D_{Y} \omega\right)(\bar{X})+\omega\left(\left(D_{Y} F\right)(X)\right) \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
\begin{aligned}
& \left(D_{X} \tilde{\omega}\right)(Y)-\left(D_{Y} \tilde{\omega}\right)(X)=\left(D_{X} \omega\right)(\bar{Y})-\left(D_{Y} \omega\right)(\bar{X})+\omega\left(\left(D_{X} F\right)(Y)\right)-\omega\left(\left(D_{Y} F\right)(X)\right) \\
& \left(D_{Y} \omega\right)(\bar{X})-\left(D_{X} \omega\right)(\bar{Y})=\omega\left(\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right)
\end{aligned}
$$

or
Now

$$
\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{X} \omega\right)(Y)-\left(D_{\bar{X}} \omega\right)(Y)+\left(D_{Y} \omega\right)(\bar{X})=\omega\left(\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right)
$$

Using (1), we get

$$
\left(D_{\bar{X}} \omega\right)(Y)-\left(D_{X} \omega\right)(\bar{Y})=\omega\left(\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right)
$$

Hence 1 -from ω is covariant almost analytic.
We know that if 1 -from ω is covariant almost analytic then $\tilde{\omega}$ is also covariant almost analytic.

F-Connection

Def.: An affine connection D on an almost complex manifold is called an F-connection if,

$$
\left(D_{X} F\right)(Y)=0 \Leftrightarrow D_{X} \bar{Y}=\overline{D_{X} Y}
$$

In an almost complex manifold, we have

$$
\overline{D_{X} \bar{Y}}+D_{X} Y=0 .
$$

Theorem: Given an arbitrary connection B, connection D is defined by,

$$
2 D_{X} Y \stackrel{\operatorname{def}}{=} B_{X} Y-\overline{B_{X} \bar{Y}}
$$

Then show that D is an F-connection.
Proof: We have,

$$
\begin{equation*}
2 D_{X} Y=B_{X} Y-\overline{B_{X} \bar{Y}} \tag{1}
\end{equation*}
$$

Barring Y in (1), we get

$$
\begin{equation*}
2 D_{X} \bar{Y}=B_{X} \bar{Y}+\overline{B_{X} Y} \tag{2}
\end{equation*}
$$

Barring whole equation (1), we get

$$
\begin{equation*}
2 \overline{D_{X} Y}=\overline{B_{X} Y}+B_{X} \bar{Y} \tag{3}
\end{equation*}
$$

From (2) and (3), we get the result.
Theorem: On an almost complex manifold if the F-connection D is symmetric then Nijenhuis tensor vanishes.
Proof: Nijenhuis tensor on an almost complex manifold is defined as

$$
N(X, Y)=[F, F](X, Y)^{\operatorname{def}}=[\bar{X}, \bar{Y}]-[X, Y]-[\bar{X}, Y]-[X, \bar{Y}]
$$

When connection D is symmetric F -connection,
(i) Torson tensor $s=0$,
(ii) $\quad D_{X} F=0$

Where

$$
s(X, Y) \stackrel{d e f}{=} D_{X} Y-D_{Y} X-[X, Y]
$$

Since $s=0$
Therefore $\quad D_{X} Y-D_{Y} X=[X, Y]$

$$
\begin{equation*}
N(X, Y)=D_{\bar{X}} \bar{Y}-D_{\bar{Y}} \bar{X}-D_{X} Y+D_{Y} X-\overline{D_{\bar{X}} Y}+\overline{D_{Y} \bar{X}}-\overline{D_{X} \bar{Y}}+\overline{D_{\bar{Y}} X} \tag{1}
\end{equation*}
$$

Since D is an F-connection,

$$
\begin{equation*}
D_{X} F=0 \Rightarrow D_{X} \bar{Y}=\overline{D_{X} Y} \tag{2}
\end{equation*}
$$

Using (2) in (1), we get the result.

References

[1] A.Z. Petrov (1969): Einstein Spaces Pergamon Press, Oxford.
[2] Hicks, N.J. (1965): Notes on Differential Geometry D. Van Nostrand Company Inc., New York.
[3] K. Yano (1965): Differential geometry on Complex and Almost Complex Spaces Pergmon Press.
[4] K. Yano and M. Kon (1984): Structures on Manifolds World Scientific Publishing Company Pvt. Ltd., P.O. Box 128, Farrer Road, Singapore, 9128.
[5] R.S. Mishra (1984): Structures on a differentiable manifold and their applications Chandrama Prakashan, 50A Balrampur House, Allahabad, India.
[6] Lovejoy S. Das and Ram Nivas: Harmonic morphism an almost r-contact metric manifolds Algebras Groups and Geometries, 22 (2005), 61-68.
[7] Lovejoy S. Das and Ram Nivas: On certain structures defined on the tangent bundle Rocky Mountain J. of Mathematics, U.S.A., vol. 36, no. 6 (2006), pp. 1857-1866.

