
www.ijpub.org                                   © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882 

 

IJPUB1801004 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 22 

 

An Effective Finite State Simulator for Pattern 

Matching Using Moore’s Law 
 

1
Mr.Shreenath Waramballi, 

2
Dr.Guruprakash C.D, 

3
Mr.Sunil B N 

 

1Assistant Professor, 2Professor, 3Assistant Professor 
1Computer Science and Engineering,  

1Sahyadri College of Engineering and Management, Mangalore, India 

 

Abstract: Pattern matching is an important phenomenon which is has most significant impact in text mining process. It is 

important to study the behavior of system before implementing any algorithm. A study has to be carried out carefully by 

imitating the behavior of the present system with respect to different inputs of different length. In this paper we are going 

to propose an algorithm to retrieve the given data and to store the important information using the moore’s law. As the 

given data is to be processed character by character we prefer finite state simulator to process the data sequentially. The 

proposed algorithm helps to retrieve various types of information like textual sequences, biological data etc. 

 

IndexTerms –Automata, Behaviour of system, moore’s law, finite state simulator 

________________________________________________________________________________________________________ 

I. INTRODUCTION 

Pattern matching is the process of checking a given sequence of symbols for the presence of the constituents of some pattern. In 

contrast to pattern recognition, the match usually has to be exact. The patterns generally have the form of either sequences or tree 

structures. Uses of pattern matching include outputting the locations  of a pattern within a token sequence, to output some 

component of the matched pattern, and to substitute the matching pattern with some other token sequence (Sequence patterns 
(e.g., a text string) are often described using regular expressions and matched using techniques such as backtracking. Tree 

patterns are used in some programming languages as a general tool to process data based on its structure, 

e.g., Haskell, ML, Scala and the symbolic mathematics language Mathematics have special syntax for expressing tree patterns and 

a language construct for conditional execution and value retrieval based on it. For simplicity and efficiency reasons, these tree 

patterns lack some features that are available in regular expressions. Often it is possible to give alternative patterns that are tried 

one by one, which yields a powerful conditional programming construct. Pattern matching sometimes includes support for guards. 

The intuitive notions of computation and algorithm are central to mathematics. Roughly speaking, an algorithm is an explicit, 

step-by-step procedure for answering some question or solving some problem. An algorithm provides routine mechanical 

instructions dictating how to proceed at each step. Computational complexity  is a branch of the theory of computation that 

focuses on classifying computational problems according to the inherent difficulty, and relating those classes to each other. A 

computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent 

to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm. A problem is 
regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes 

this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of 

resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of 

communication  the number of gates in a circuit and the number of processors.  

Simulation is the imitation of the operation of a real-world process or system over time. The act of simulating something first 

requires that a model be developed; this model represents the key characteristics, behaviours and functions of the selected 

physical or abstract system or process. The model represents the system itself, whereas the simulation represents the operation of 

the system over time. Simulation is used in many contexts, such as simulation of technology for performance optimization, safety 

engineering, testing, training, education, and video games. Often, computer experiments are used to study simulation models. 

Simulation is also used with scientific modelling of natural systems or human systems to gain insight into their functioning, as 

in economics. Simulation can be used to show the eventual real effects of alternative conditions and courses of action. Simulation 
is also used when the real system cannot be engaged, because it may not be accessible, or it may be dangerous or unacceptable to 

engage, or it is being designed but not yet built, or it may simply not exist.  

Key issues in simulation include acquisition of valid source information about the relevant selection of key characteristics and 

behaviours, the use of simplifying approximations and assumptions within the simulation, and fidelity and validity of the 

simulation outcomes. Procedures and protocols for model verification and validation are an ongoing field of academic study, 

refinement, research and development in simulations technology or practice, particularly in the field of computer simulation. 

A finite state automaton  is an abstract machine that successively reads each symbols of the input string, and changes its state 

according to a particular control mechanism. If the machine, after reading the last symbol of the input string, is in one of a set of 

particular states, then the machine is said to accept the input string. It can be illustrated as follows: 

http://www.ijpub.org/
https://en.wikipedia.org/wiki/Pattern
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/ML_programming_language
https://en.wikipedia.org/wiki/Scala_programming_language
https://en.wikipedia.org/wiki/Language_construct
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Guard_(computing)
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Computational_problems
https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Models_of_computation
https://en.wikipedia.org/wiki/Complexity
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Imitation
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Function_(engineering)
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Safety_engineering
https://en.wikipedia.org/wiki/Safety_engineering
https://en.wikipedia.org/wiki/Safety_engineering
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Training
https://en.wikipedia.org/wiki/Education
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Computer_experiment
https://en.wikipedia.org/wiki/Scientific_modelling
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Verification_and_validation_of_computer_simulation_models
https://en.wikipedia.org/wiki/Computer_simulation


www.ijpub.org                                   © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882 

 

IJPUB1801004 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 23 

 

 

                                                                   Fig:Illustration of finite state automaton 

Once we created a finite state machine to solve a problem,we may wanto simulate its execution.This can be achieved using 

finite state simulators. A finite state transducer consists of a number of states which are linked by transitions labeled with an 

input/output pair. The FST starts out in a designated start state and jumps to different states depending on input while producing 

output according its transition table.One simple kind of state transducer associates an output with each state of a machine M. The 

output  is generated whenever the M enters the associated state. 

 

Moore’s Machine-a Moore machine is a finite-state machine whose output values are determined only by its current state. This is 

in contrast to a Mealy machine, whose output values are determined both by its current state and by the values of its inputs. 

A moore machine M can be defined as a 6 tuple consisting of the following   M ={ S, S0, ∑,  ᴧ, T, G} 

1.A finite set of states S 

2. a start state  S0 

3. a finite set called the input alphabet ∑ 

4. a finite set called the output alphabet ᴧ 

5. A transition  function T:S*∑S 

6. an output function G:S ᴧ 

 

                       
A deterministic finite automaton (DFA) is a 5-tuple (Q, Σ, δ, q0, F) 

where Q is a finite set called the states,  

 Σ is a finite set called the alphabet,  

 δ : Q × Σ → Q is the transition function,  

 q0 ∈ Q is the start state, and F ⊆ Q is the set of accept states. 

A DFA can be seen as a special case of a Moore machine, where the set of input symbols I is Σ, and the set of output symbols is 

binary, say O = {0, 1}, with 1 and 0 corresponding to accepting and non-accepting states, respectively. The concepts of complete 

and incomplete DFAs, as well as the definition of δ ∗ , are similar to the corresponding ones for FSMs. Elements of Σ∗ are usually 

called words. A DFA A = (Σ, Q, q0, δ, F) is said to accept a word w if  δ ∗ (q0, w) ∈ F. 

 

Input-output traces and examples Given sets of input and output symbols I and O, respectively, a Moore (I, O)-trace is a pair of  

Syntactic Pattern Recognition (SPR) is currently seen as a very appealing approach to many Pattern Recognition (PR) problems for 

which the most traditional Decision-Theoretic or Statistical approaches fail to be effective . One of the most interesting features of 

SPR consists of the ability to deal with highly structured (representations of) objects and to uncover the underlying structure by 

means of parsing. In fact, it is often claimed that such a distinctive feature is indeed what would enable SPR to go beyond the 

capabilities of other traditional approaches to PR. However, though parsing is perhaps the most fundamental and widely used tool 

http://www.ijpub.org/
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)
https://en.wikipedia.org/wiki/Alphabet_(computer_science)


www.ijpub.org                                   © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882 

 

IJPUB1801004 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 24 

 

of SPR, it is often used just to determine the (likelihood of) membership of the test objects to a set of classes, each of which being 

modeled by a different syntactic model. Any possible structural byproduct of the parsing process is therefore discarded, thus 

considerably wasting the high potential of SPR. 

 

Simulator to identify the pattern  The outline of our approach is the following: 1. The system to be inferred is tested and samples 

of its functioning are generated. Some of the samples are chosen as training data and some as testing data. 2. The number of states 

in the FSM is received as an input. 3. The search algorithm is applied and a FSM M is outputted. 4. M is evaluated using the given 

training data and/or testing data. If M describes the given input–output data sufficiently well, it is considered as result. Otherwise 

the search process with other parameters or training data will be repeated. 5. If required, post-processing (e.g., minimization, 

reduction of unreachable states) is applied. 

 

 
Consider the following DFA that accepts the language L={w €(a,b)*} where w contains no more than one b. 

We could view M as a specification for the following program :Until accept or reject do: 

S: s=get-next-symbol. 

    If s=end of file then accept 

    Else if s=a then goto S 

    Else if s=b then goto T 

T: s=get-next-symbol. 

    If s=end of file then accept 

    Else if s=a then goto T 

    Else if s=b then reject 

The various information is stored in the database can be retrieved and matched with the given sequence effectively. Most common 

form of pattern matching involves strings of characters. In many programming languages, a particular syntax of strings is used to 

represent regular expressions, which are patterns describing string characters. 

                                               

 

 

http://www.ijpub.org/


www.ijpub.org                                   © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882 

 

IJPUB1801004 International Journal of Creative Research Thoughts (IJCRT) www.ijpub.org 25 

 

References 

1. F. Aarts, P. Fiterau-Brostean, H. Kuppens, and F. W. Vaandrager. Learning Register Automata with Fresh Value Generation. In 

Theoretical Aspects of Computing - ICTAC, volume 9399 of LNCS, pages 165–183, 2015.  

2. F. Aarts and F. Vaandrager. Learning I/O Automata. In CONCUR, pages 71–85. Springer, 2010.  

3. H. I. Akram, C. de la Higuera, H. Xiao, and C. Eckert. Grammatical inference algorithms in matlab. In ICGI’10, Proceedings, 

pages 262–266. Springer, 2010. 17  

4. A. V. Aleksandrov, S. V. Kazakov, A. A. Sergushichev, F. N. Tsarev, and A. A. Shalyto. The use of evolutionary programming 

based on training examples for the generation of finite state machines for controlling objects with complex behavior. J. Comput. 

Sys. Sc. Int., 52(3):410–425, 2013.  

5. R. Alur, M. Martin, M. Raghothaman, C. Stergiou, S. Tripakis, and A. Udupa. Synthesizing Finite-state Protocols from 

Scenarios and Requirements. In HVC, volume 8855 of LNCS. Springer, 2014. 

 6. G. Ammons, R. Bod´ık, and J. R. Larus. Mining specifications. In Proceedings of the 29th ACM SIGPLAN-SIGACT 

Symposium on Principles of Programming Languages, POPL ’02, pages 4–16, New York, NY, USA, 2002. ACM.  

7. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87–106, 1987. 

 8. T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On the correspondence between conformance testing 

and regular inference. In M. Cerioli, editor, Fundamental Approaches to Software Engineering, 8th International Conference, FASE 

2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-

8, 2005, Proceedings, volume 3442 of Lecture Notes in Computer Science, pages 175–189. Springer, 2005.  

9. A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. 

Comput., 21(6):592–597, June 1972.  

10. I. P. Buzhinsky, V. I. Ulyantsev, D. S. Chivilikhin, and A. A. Shalyto. Inducing finite state machines from training samples 

using ant colony optimization. J. Comput. Sys. Sc. Int., 53(2):256–266, 2014.  

11. S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Learning Extended Finite State Machines. In SEFM 2014, Proceedings, pages 

250–264, 2014.  

12. T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng., 4(3):178–187, May 1978.  

13. M. A. Colon, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation using non-linear constraint solving. In ´ 

Computer Aided Verification, CAV, pages 420–432. Springer, 2003.  

14. F. Coste and J. Nicolas. ICGI-98, Proceedings, chapter How considering incompatible state mergings may reduce the DFA 

induction search tree, pages 199–210. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.  

15. C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. CUP, 2010. 

16. R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko. Fsm-based conformance testing methods: A survey 

annotated with experimental evaluation. Inf. Softw. Technol., 52(12):1286–1297, Dec. 2010.  

17. P. Dupont. Incremental regular inference. In ICGI-96, Proceedings, pages 222–237, 1996.  

18. E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–474, 1967.  

19. E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37(3):302–320, 1978. 

 20. O. Grinchtein and M. Leucker. Learning Finite-State Machines from Inexperienced Teachers. In Y. Sakakibara, S. Kobayashi, 

K. Sato, T. Nishino, and E. Tomita, editors, Grammatical Inference: Algorithms and Applications, 8th International Colloquium, 

ICGI 2006, Tokyo, Japan, September 20-22, 2006, Proceedings, volume 4201 of Lecture Notes in Computer Science, pages 344–

345. Springer, 2006.  

21. S. Gulwani. Automating string processing in spreadsheets using input-output examples. In 38th POPL, pages 317–330, 2011. 

22. S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint solving. In Proceedings of the 29th ACM 

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08, pages 281–292, New York, NY, USA, 

2008. ACM.  

23. A. Gupta and A. Rybalchenko. Invgen: An efficient invariant generator. In Computer Aided Verification, CAV, pages 634–640. 

Springer, 2009.  

 

http://www.ijpub.org/

