
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320- 2882

IJCRTOXFO005 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 19

Container Based Processing of Large Scale
Geospatial Data

 Tejaswini B N Ambika P R
PG Student, M.Tech (CSE) Assistant Professor, Dept of CSE
City Engineering College, Bangalore, India City Engineering College, Bangalore, India
tejaswini.begur@gmail.com ambikatanaji@gmail.com

Abstract— Processing of geospatial data is compute intensive.
If this processing is done on a large scale which has huge data
sets like OpenStreetMap then the process of running a filter and
the process of aggregation operations on huge records of data can
be benefited by performing parallel processing on massive
parallel processing platforms. The focus of the project is to
describe and build a distributed geospatial processing framework
based on one of the evaluated open source stream and batch
processing engines like Apache Hadoop, Spark and Pachyderm
to perform Spatial ETL functionalities which Extract, Tr ansform
and Load like extraction of data from different data sources,
transformation of data to correct errors, cleanse, fuse, make
them compliant to defined standards and load the transformed
data into target spatial database (postgresql) or GIS file or
Geospatial web services.

Keywords— Geospatial Data, OpenStreetMap, Pachyderm,
Java.

I. INTRODUCTION

It is highly challenging to compute geospatial in large scale
these days as the data is huge. Hence processing has to be
done in parallel to achieve higher computation if done on large
scale records like OpenStreetMaps. Gif file format is a type of
file format that is used to encode geographical information and
data in our computer file system. It can be represented in the
form Rastor data format or Vector data format. Raster data is a
digital image which is usually represented in the form of grids
that can be enlarged as well as reduced. Raster data is stored in
the form of JPEG, BLOB, TIFF images. Vector data is a type
of data which is represented in the form of geometrical shapes
such as points, lines or polylines and polygons. These vector
data can be stored in the form of spatialite, GeoJSON,
shapefile, TIGER etc. The map data which we obtain after
processing large scale geospatial data will then be stored in the
cloud as the benefits are many. Cloud can be defined as a huge
network of multiple networks that provide remote access to
group of decentralized resources. As we know that there are
three types of cloud services namely, IaaS, PaaS and SaaS we
will be using another advanced version of PaaS which is CaaS.
CaaS is Container as a Service provides a very good method to
do orchestration of containers. Docker containers are used in
our system which are built on Pachyderm data processing
systems. Kubernetes is the CaaS paltform which provides

orchestration of containers in processing large scale geospatial
data.
 Earlier there was an option only to demonstrate the
architectural design of container based big data processing
system. The automated provisioning of two popular big data
processing system like Hadoop and Pachyderm was
illustrated. This simulation is based on single machine
consisting of Docker swarm, VirtualBox and MacOS X and
over simplifies the running of containerized systems. At large
scale it cannot be done by just selecting the appropriate driver
names. It requires choosing the right cloud compute node
types like AWS EC2 will optimize to handle CPU, memory
and I/O intensive workloads. It also will need configuration
management to automate the provisioning and upgrading of
the cluster. Tuning the system to domain specific workload is
required. We need to seamlessly scale the system to crunch the
large data workload.

The sizing and capacity management issues like how
many containers to run on a machine and how to allocate
resources to those containers are a primary concern. The role
and responsibility of a map is to describe and represent spatial
relationships of certain features like roadways, water ways etc.
There are many kinds of maps that make an attempt to
represent specific features. Maps could represent and show
political boundaries of different countries, population of each
area or a country, physical features like roads, highways,
waterways, natural resources, climates, elevation, social
relationships, weather etc.
 The manuscript explores about the concept of using
containers for processing geospatial data which is generally
always in a large scale along with discussing about the
limitations present in the previous discussions, problems
during the research, the procedures used in the research paper,
methodologies adopted, etc. The concepts explored in section
2 are related to the approaches associated in the previous
researches which is followed by the current technologies used.
Section 3 explains about the methodologies used in building
the pipeline of containers using Pachyderm processing
framework along with the support of Kubernetes. Finally, the
section 4 confers about the results and the assumptions
associated with it.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320- 2882

IJCRTOXFO005 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 20

II. LITERATURE SURVEY

The design and adoption of multi cloud infrastructure for the
design of complex and distributed software systems are
embraced in the software industry always. This new multi
cloud infrastructure makes it possible to mix and match
platforms for various software development activities and
phases. Docker has introduced container based software
development which overcomes the limitations of multi cloud
infrastructure such as complexity due to different
technologies. Docker has also invented distributed system
development tool called Swarm which extends the Docker
container based software development process [1].

Docker Swarm has even also introduced many of the
dependability attributes to support the development of a multi-
cloud dependable system. But Swarm cluster to be mande
always available needs minimum of three nodes that are active
managers which can protect from failure. This situation for the
dependability is one of the main limitations because if two
manager nodes fail suddenly due to the failure of their hosts,
then Swarm cluster cannot be made available for routine
operations. This paper presents an approach that overcomes
this limitation by detecting and predicting the possible failures
earlier [2].

Pachyderm enables efficient and sustainable data science
workflow. It also maintains the scalability and reproducibility
in parallel. Pachyderm stack uses Docker containers as well as
Core OS and Kubernetes for cluster management. Te replaces
HDFS with its Pachyderm file system and MapReduce with
Pachyderm pipelines. We have an reasonable and graceful
style for making systems of systems (SoS) grounded on
Google cloud organization. This system in-turn can be
secondhanded by any one and anywhere[3]. The key module
of cloud computing is virtualization which can also be labelled
as the core of cloud computing. The imitation is grounded on
Docker Swarm, virtual container and other things [5].

Modern applications usually are accumulated from existing
apparatuses and these mechanisms depend on other services
and applications. For example, your Java application program
might use PostgreSQL as a data stock, Redis for hoarding and
Apache as per a Web server. Each and every component like
this comes with its own set of addictions that may cause a
conflict with other apparatuses. By wrapping each component
and its dependencies, Docker resolves this limitation.

III. METHODOLOGY

The distributed framework which is distributed and highly
scalable has the following components:

3.1. Spatial Data Source: They are the data sources related to
geographical location which is usually stored as coordinates
and topology in RDMS database. There are several

dissimilarities of foundations of geospatial data. Some of them
are normal earth data, exposed topology, NASA earth remarks
etc Google map also offers map information which can be
cast-off but it is proprietary. [6]

3.2. Vector data: Vector data is built using geometrical
shapes such as polygons, lines and points. Discrete data and
other types of data such as categorical data such as forests,
lakes, oceans can be represented in a very good manner by this
vector data. A feature is something that can be seen on the
landscape. GIS environment is one type of environment which
consists of features that are of real world and this environment
can be represented using vector data. All these features can be
depicted in the GIS environment. The features of vector data
have attributes and these attributes contain numerical
information or textual information and these attributes
represent the vector data.

3.3. Graph data: Graph data is in the form of maps which
consists of roads and landmarks. Roads will be depicted as
edges in the graph data and landmarks are depicted in the form
of as nodes. Landmarks can also be known as intersections in
case of graph data representation.

3.4. Ingest: A scheduler service that periodically triggers
task to pull the compressed vector and graph data from external
data source, validate and publish the data to processing
component.

3.5. Process: A core component responsible for
partitioning the incoming workload into smaller chunks,
distribute the work across multiple nodes for parallel
processing and store the transformed data in spatial database.
The process component will be based on one of the open
source big data processing engine - Apache Hadoop, Spark,
Flink or Pachyderm.

3.6. Data Storage: A spatial relational database
management system (SRDMS) that stores the transformed
spatial data in the form of Vector tiles. Object storage like
AWS S3 id used for this purpose.

Fig 1. Distributed framework for Geospatial data processing

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320- 2882

IJCRTOXFO005 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 21

3.7. API Service: The Rest Application Programming
Interface, API that will have to query the spatial data stored in
the SRDMS and make it directly available on the web using
OGC Web Map Service (WMS) Interface Standard.

3.8. Web Visualizer: A web application to browse through
the information in the displayed part of the map aka vector tiles
fetched from the API server. The visualize libraries
understands GeoJSON format and hence we convert he osm
location reference data attributes from JSON file to GeoJSON
file. Now that we get the GeoJSON file it needs to be stored in
a cloud for which we will be using Amazon Web Services EC2
instances. The basic building of this processed geospatial data
in done through containers for which we will be using Docker
container maintained in Kubernetes orchestration of containers.

The Pachyderm is that framework system which is open
source to work on the flow and does data management along
with it. This is accomplished by creating pipelines of data and
acts as a layer of versioning of data ahead of projects from a
big system which consists of containers.

Kubernetes acts as a backbone for all this by providing
orchestration of these containers through the pachyderm
pipelines. The following diagram shows the architecture of
Kubernetes. Kubernetes is a cloud computing service system
which is open source. It is that system which manages
applications that are containerized across multiple numbers of
hosts. It provides necessary mechanisms such that for an
application to deploy manage and scale. The highly
incorporated Kubernetes architecture is built within PaaS cloud
computing service. This is called CaaS cloud computing
service. The users can use the container services even if the
required infrastructure is not present. CaaS encapsulates each
and every application from the underlying infrastructure and
hence enables the operation to perform on any platform which
supports containers and its technologies. A free programming
platform is provided by CaaS and hence software developers
need not depend on the programming languages provided by
the vendors. CaaS is used to build PaaS.

Following is a brief description of the components of CaaS:

• Physical host or VM: It is a PaaS server which in our
case is Amazon Web Service EC2 instances.

• Container networking: It is the networking phase for
the containers to communicate in an asynchronous
manner. Each container has its own IP address and we
can ping them to communicate.

• Container scheduling: It does the scheduling part for
the containers to provide the necessary resources to
the pachyderm. Through the API services, the
scheduler makes container A to communicate to
container B Pachyderm language is converted in
Kubernetes language prior to this.

• Service management, container cluster management
also does the necessary part of the CaaS services.

.

Fig2. Cloud service provider

For an application we need login, application life cycle
management, monitoring, security and other necessary services
for it to work on a whole which are provided by the other
components of PaaS cloud service provider. In our project the
class roles or participants are map data, osm2osmlr converter,
json2geojson converter and geojson required output. The map
data we consider here is the OSM data for Bangalore region.
The protobuf file extracted from the map data of the particular
region is converted into JSON file which has all the attributes
of the road map of that particular region. This is represented in
the form of graphhopper data. It has attributes such as number
of nodes, points and links.

The map data is fed as input which represents the geospatial
representation of a particular area required. We consider only
road map in our project model. Osm2osmlr converter is another
class role which converts the protobuf file of Bangalore region
into our desired JSON file. It consists of all the necessary
attributes of the road of Bangalore region. JSON2GeoJSON is
the next class role which converts our JSON file to GeoJSON
file which is the required format for the vizualizer to access.
GeoJSON required output is the next role through which we
can see the attributes of the location reference of Bangalore
region.

The road map of a particular area is extracted to form a
protobuf file. The proto file is extracted, massaged and
transformed to form a JSON file which consists of the
necessary attributes of the road map data. The JSON file in turn
is fed as input to convert in into GeoJSON file. This can be
viewed in a vizualizer. The vizualizer used here is leaflet or
mapshaper.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320- 2882

IJCRTOXFO005 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 22

The flow chart of the proposed system as shown in fig 3
works as follows:

• Kubernetes is CaaS cloud computing service which is
incorporated in a PaaS service. We start the
kubernetes which prepares the Kubernetes virtual
environment to build up.

• The next step after this is to start pachyderm
environment. The containers are built in CaaS which
is Kubernetes. Each container contains the necessary
application to run. Containers get started.

• While Pachyderm is started it stores the map input
data in the database which is object storage.

• Through the container-A map data is converted into
osm location reference data which contains our
required attributes in JSON format.

• This JSON file is passed on to next container say
container B which in turn converts the location
reference data into GeoJSON format in order for the
visualizer to understand.

• Container exits after its computation.

Fig3. Flow chart of the proposed system

Kubernetes is CaaS cloud computing service which is
incorporated in a PaaS service. We start the kubernetes which
prepares the Kubernetes virtual environment to build up. The
next step after this is to start pachyderm environment. The
containers are built in CaaS which is Kubernetes. Each
container contains the necessary application to run. Containers
get started. While Pachyderm is started it stores the map input
data in the database which is object storage.

Through the container-A map data is converted into osm
location reference data which contains our required attributes
in JSON format. This JSON file is passed on to next container
say container B which in turn converts the location reference
data into GeoJSON format in order for the visualizer to
understand. Container exits after its computation.

IV. RESULTS AND DISCUSSION

The map data is extracted and represented in the protobuf file
format. This data is processed and transformed. Only the road
attributes through which the vehicles can navigate from place
to another location is extracted and stored. The final
representation of this data will be stored in the JSON file
Since JSON file format is not understandable by visualizer to
represent the map data this JSON file has to be converted into
GeoJSON file fomat. Hence the JSON file is converted into
GeoJSON file. This finally is represented in this visualizer.
The final road map data seen when we extract Bangalore
region is as shown in the fig 4.

Fig4. The final road map data seen when we extract
Bangalore region

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320- 2882

IJCRTOXFO005 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 23

V. CONCLUSION

The manuscript explores about the concept of using containers
for processing geospatial data which is generally always in a
large scale. The project describes and builds a distributed
geospatial processing framework based on one of the
evaluated open source stream and batch processing engines
like Apache Hadoop, Spark and Pachyderm. These tools are
used to perform Spatial ETL functionalities like extraction of
data from different data sources, transformation of data to
correct errors, cleanse, fuse, make them compliant to defined
standards and load the transformed data into target spatial
database (postgresql) or GIS file or Geospatial web services. It
uses container based processing for doing so for large scale
geospatial data. The cloud based processing engine used is
CaaS. Kubernetes is used which processes the data. Container
service is used even if the given infrastructure is not present.
Use of pachyderm helps us in computing of large scale real
time map data. Use of Kubernetes helps us in orchestration of
containers. The protobuf format gives us the most efficient
serialization of data because of which the total size of the data
file gets reduced. The GeoJSON format is required for
visualizer. This experimentation shows the proof of concept
using distribute computation for processing large scale real
time data.

REFERENCES

[1]. N. Naik, P. Jenkins, N. Savage, and V. Katos, “Big data
security analysis approach using computational
intelligence techniques in R for desktop users,” in IEEE
Symposium Series on Computational Intelligence
(SSCI). IEEE, 2016

[2]. N. Naik, “Building a virtual system of systems using
Docker Swarm in multiple clouds,” in IEEE International
Symposium on Systems Engineering (ISSE). IEEE,
2016.

[3]. “Connecting Google cloud system with organizational
systems for effortless data analysis by anyone, anytime,
anywhere,” in IEEE International Symposium on
Systems Engineering (ISSE). IEEE, 2016..

[4]. N. Naik, “Applying computational intelligence for
enhancing the dependability of multi-cloud systems
using Docker Swarm,” in IEEE Symposium Series on
Computational Intelligence (SSCI), 2016.

[5]. “Migrating from Virtualization to Dockerization in the
cloud: Simulation and evaluation of distributed systems,”
in IEEE 10th International Symposium on the
Maintenance and Evolution of Service-Oriented and
Cloud-Based Environments, MESOCA 2016. IEEE,
2016.

[6]. M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N.
Seliya, R. Wald, and E. Muharemagic, “Deep learning
applications and challenges in big data analytics,”
Journal of Big Data, vol. 2, no. 1, pp. 1–21, 2015.

