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_________________________________________________________________________________________________________________ 

Abstract: The major aim of Location Based Services (LSB) is based on the location, it is used to provide services like food ordering system, 

Google map and some kind of e-shopping websites are completely based on locations. Based on the user location LSB provide continuous 

report to the un trusted server to obtain the services which can avoid privacy risks.LBS have existing privacy-preserving techniques as requiring 

a fully-trusted third party, it offers limited privacy guarantees and incurring high communication overhead. In this paper, we propose a user-

defined privacy grid system which is called as dynamic grid system (DGS). Privacy-preserving snapshot and continuous LBS have four 

effective requirements. . (1) A semi-trusted third party is responsible for matching operations correctly and it does not have any information 

about a user's location. (2) Secure snapshot and continuous location privacy is guaranteed to defined adversary models. (3) The communication 

cost for the user does not depend on the user's desired privacy level; it depends on the number of relevant points of interest in the domain of 

the user. (4) The system can be easily enlarged to support other spatial queries without changing the algorithms run by the semi-trusted third 

party and the database server. Experimental results show that the DGS is more efficient than the state-of-the-art privacy-preserving technique 

for continuous LBS. 
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_________________________________________________________________________________________________________________ 

I. INTRODUCTION 
 

In today’s world of mobility and ever-present Internet connectivity, an increasing number of people use location based services (LBS) to 

request information relevant to their current locations from a variety of service providers. This can be the search for nearby points of interest 

(POIs). The use of LBS, however, can reveal much more about a person to potentially untrustworthy service providers than many people would 

be willing to disclose. LBS can be very valuable. The consumer market for location-based services (LBS) is estimated to grow from 2.9 billion 

dollars in 2010 to 10.4 billion dollars in 2015. While navigation applications are currently generating the most significant revenues, location 

based advertising and local search will be driving the revenues going forward. The legal landscape, unfortunately, is unclear about what 

happens to a subscriber's location data[1]. The nonexistence of regulatory controls has led to a growing concern about potential privacy 

violations arising out of the usage of a location-based application. While new regulations to plug the loopholes are being sought, the privacy 

conscious user currently feels reluctant to adopt one of the most functional business models of the decade. Privacy and usability are two equally 

important requirements for successful. 

A user-defined privacy grid system is called dynamic grid system (DGS) to provide privacy-preserving snapshot and continuous LBS. The 

main idea is to place a semi trusted third party, termed query server (QS), between the user and the service provider (SP). QS only needs to be 

semi-trusted because it will not collect/store or even have access to any user location information. The idea of DGS is first querying the user 

determines a query area, where as the user is comfortable to reveal the fact that they are in somewhere within this query area. The query area 

is divided into fixed-sized grid cells based on the dynamic grid structure specified by the user. Then, the user encrypts a query that includes 

the data of the query area and the dynamic grid structure, and encrypts the identity of each grid cell intersecting the required search area of the 

spatial query to produce a set of encrypted identifiers. Next, the user sends a request including (1) the encrypted query and (2) the encrypted 

identifiers to QS, which is a semi-trusted party located between the user and SP. QS stores the encrypted identifiers and forwards the encrypted 

query to SP specified by the user. SP decrypts the query and selects the POIs within the query area from its database. For each selected POI, 

SP encrypts its information, using the dynamic grid structure specified by the user to find a grid cell covering the POI, and encrypts the cell 

identity to produce the encrypted identifier for that POI. The encrypted POIs with their corresponding encrypted identifiers are returned to QS. 

QS Stores the set of encrypted POIs and only returns to the user a subset of encrypted POIs whose corresponding identifiers match any one of 

the encrypted identifiers initially sent by the user[2]. After the user receives the encrypted POIs, she decrypts them to get their exact locations 

and computes a query answer. Because the user is continuously roaming she might need information about POIs located in other grid cells 

(within the query area) that have not been requested from QS before. The user therefore simply sends the encrypted identifiers of the required 

grid cells to QS. Since QS previously stored the POIs within the query area together with their encrypted identifiers, it does not need to enlist 

SP for help. Simply QS returns the required POIs whose encrypted identifiers match any one of the newly required encrypted identifiers to the 

user. After the user received the encrypted POIs from QS, she can evaluate the query locally. When the user unregisters a query with QS, QS 

removes the stored encrypted POIs and their encrypted identifiers.  

In addition, when the required search area of a query intersects the space outside the current query area, the user unregisters the query with 

QS and re-issues a new query with a new query area. Contributions. Our DGS has the following key features: (1) No TTP. Our DGS only 

requires a semi-trusted query server (QS) (i.e., trusted to correctly run the protocol) located between users and service providers. (2) Secure 

location privacy. DGS ensures that QS and other users are unable to infer any information about a querying user’s location, and the service 

provider SP can only deduce that the user is somewhere within the user specified query area[3], as long as QS and SP do not collude. (3) Low 
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communication overhead. The communication cost of DGS for the user does not depend on the user-specified query area size. It only depends 

on the number of POIs in the grid cells overlapping with a query’s required search area. (4) Extensibility to various spatial queries. DGS is 

applicable to various types of spatial queries without changing the algorithms carried out by QS or SP if their answers can be abstracted into 

spatial regions, e.g., reverse-NN queries and density queries  

II.  SYSTEM ARCHITECTURE 

Dynamic grid system (DGS) designed to provide privacy-preserving continuous LBS for mobile users. Our system consists of three main 

entities, service providers, query servers and mobile users. We will describe the main entities and their interactions, and then present the two 

spatial queries, i.e., range and k-nearest-neighbor (NN) queries, supported by our system. Service providers (SP). Our system supports any 

number of independent service providers. 

 

Fig. 1: System Architecture of DGS 
 

Each SP is a spatial database management system that stores the location information of a particular type of static POIs, e.g., restaurants or 

hotels, or the store location information of a particular company, e.g., Starbucks or McDonald’s. The spatial database uses an existing spatial 

index (e.g., R-tree or grid structure) to index POIs and answer range queries (i.e., retrieve the POIs located in a certain area). As depicted in 

Fig. 1, SP does not communicate with mobile users directly, but it provides services for them indirectly through the query server (QS). Mobile 

users. Each mobile user is equipped with a GPS-enabled device that determines the user’s location in the form (xu, yu). The user can obtain 

snapshot or continuous LBS from our system by issuing a spatial query to a particular SP through QS. Our system helps the user select a query 

area for the spatial query, such that the user is willing to reveal to SP the fact that the user is located in the given area. Then, a grid structure is 

created and is embedded inside an encrypted query that is forwarded to SP, it will not reveal any information about the query area to QS itself. 

In addition, the communication cost for the user in DGS does not depend on the query area size. This is one of the key features that distinguish 

DGS from the existing techniques based on the fully-trusted third party model. When specifying the query area for a query, the user will 

typically consider several factors[4]. (1) The user specifies a minimum privacy level, e.g., city level. For a snapshot spatial query, the query 

area would be the minimum bounding rectangle of the city in which the user is located. If better privacy is required, the user can choose the 

state level as the minimum privacy level (or even larger, if desired). The size of the query area has no performance implications whatsoever 

on the user, and a user can freely choose the query area to suit her own privacy requirements. For continuous spatial queries, the user again 

first chooses a query area representing the minimum privacy level required, but also takes into account possible movement within the time 

period t for 3 the query (e.g., 30 minutes). If movement at the maximum legal speed could lead the user outside of the minimum privacy level 

query area within the query time t, the user enlarges the query area correspondingly. This enlargement can be made generously, as a larger 

query area does not make the query more expensive for the user, neither in terms of communication nor computational cost. (2) The user can 

also generate a query area using a desired k-anonymity level as a guideline. Using a table with population densities for different areas, a user 

can look-up the population density of the current area, and use this to calculate the query area size such that the expected number of users 

within the query area correlates with the desired k-anonymity level. Considering that this is an approximation for the[5] corresponding k-

anonymity, the resulting query area can be taken as a lower-bound and the final query area size calculated as the lower-bound times a safety 

margin factor. The idea of using such density maps has been used for LBS and health data. (3) Alternatively, the user can specify a query area 

based on how far she wants to travel, e.g., if the user wants to find restaurants within the downtown area, she sets the downtown area as the 

query area 

 

Fig. 2: Example of range query Processing in DGS 
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III.DYNAMIC GRID SYSTEM 

DGS for processing continuous range queries and incrementally maintaining their answers, DGS to support k-NN queries.  

In general, the privacy-preserving range query processing protocol has main steps.  
 

Step 1. Dynamic grid structure (by the user). The idea of this step is to construct a dynamic grid structure specified by the user. A querying 

user first specifies a query area, where the user is comfortable to reveal the fact that she is located somewhere within that query area. The query 

area is assumed to be a rectangular area, represented by the coordinates of its bottom-left vertex (xb, yb) and top-right vertex (xt, yt). Notice 

that the user is not necessarily 5 required to be at the center of the query area. Instead, its location can be anywhere in the area. However, our 

system can also support irregular spatial regions, e.g., the boundary of a city or a county, by using a minimum bounding rectangle to model 

the irregular spatial region as a rectangular area. The query area is divided into m × m equal-sized grid cells to construct a dynamic grid 

structure, where m is a user-specified parameter[6]. 
 

Step 2. Request generation (by the user). In this step, the querying user generates a request that includes (1) a query for a SP specified by the 

querying user and (2) a set of encrypted identifiers, Se, for a QS. The user first selects a random key K and derives three distinct keys: 

(HK,EK, MK) ← KDF(K)                                                                        (1) 
 

where KDF(·) is a key derivation function ( [24]). Then, the user sets query and Se as follows: (1) Query generation. An encrypted query for 

a specific SP is prepared as:  
 

query ← IBE.EncSP (POI-type, K, m,(xb, yb),(xt, yt))                       (2) 
 

where IBE.EncSP (·) is Identity-Based Encryption (IBE) under the identity of SP. In the encrypted query, POI-type specifies the type of POIs, 

K is the random key selected by the user, and the personalized dynamic grid structure is specified by m, (xb, yb), and (xt, yt). (2) Encrypted 

identifier generation[12]. Given the query region of the range query, the user selects a set of grid cells Sc in the dynamic grid structure that 

intersect the query region, i.e., a circle centered at the user’s current location (xu, yu) with a radius of Range. For each selected grid cell i in 

Sc, its identity (ci , ri) is encrypted to generate an encrypted identifier:  
 

hi ← H(ci , ri)                                                                      (3) 

Ci ← SE.EncHK(hi)                                                    (4) 

where H(·) is a collision-resistant hash function and SE.Enckey(·) a symmetric encryption algorithm (for example AES-based) under key. 

After encrypting all the grid cells in Sc, the user generates a set of encrypted identifiers Se. It is important to note that the user will make sure 

that the identifiers in Se are ordered randomly. Finally, the user produces a request as below and sends it to QS: 

      request ← hSP, query, Sei                                     (5) 

In the running example (Fig. 2a), the range query region, which is represented by a circle, intersects six grid cells, i.e., (1, 0), (2, 0), (1, 1), (2, 

1), (1, 2), and (2, 2) (represented by shaded cells), which make up the set of grid cells Sc, and thus, the user has to encrypt each identity of 

these grid cells[7].  

IV. SECURITY ANALYSIS 
 

Several security models which formalize the location privacy of our DGS, and show that the proposed schemes in Section 3 are secure. In 

our schemes, the query server (QS) sees a user’s encrypted queries and POIs from a service provider (SP ). Since the user query and returned 

POI locations are encrypted, QS could only learn the user’s location from the number of returned POIs rather than the encrypted values. 

However, this is not the case in our scheme. The number of POIs returned by SP depends on the query area size, which is encrypted and 

unknown, and therefore, QS is not able to derive any useful information from the number of POIs, e.g., whether the user is in a dense or sparse 

region. See Lemma 2 for the detailed analysis. 

After decrypting the query forwarded by QS, a SP obtains the query area which contains the user. Other than this, it learns nothing, since 

the user could be anywhere in the area. See Lemma 1 for the proof. Regarding the integrity, every encrypted POI is authenticated by SP using 

a MAC and the authentication key is only shared between the user and SP . Guaranteed by the security of the MAC, QS is unable to modify 

the information of any POI returned to the user, nor to add a “fake” POI.  

Integrity 

This is to ensure that QS cannot modify any messages returned by SP or add any messages without being detected. Formally, we consider 

the following game, where the adversary is a QS, and the challenger C plays the roles of the client and all the service providers. 

 

V. EXPERIMENTAL RESULTS 
 

Evaluate the performance of our DGS for both continuous range and k-NN queries through simulations. 

Baseline algorithm. We implemented a continuous spatial cloak- ing scheme using the fully-trusted third party model (TTP). TTP relies on a 

fully-trusted location anonymizer, which is placed[8],[9] between the user and the service provider (SP ), to blur a querying user’s location into 

a cloaked area that contains the querying user and  a set of 1 other users to satisfy the user specified - anonymity privacy requirement. To 

preserve the user’s continuous location privacy, the location anonymizer keeps adjusting the cloaked  area  to contain  the querying  user and  

the       1 users. A privacy-aware query processor at SP returns a set of candidate POIs to the querying user through the location anonymizer . 

 

 

Simulated experiment. 
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Fig. 3: Number of POIS in Queries 

 

Fig. 4: Number of Mobile users 

Comparison of DGS with TTP 

Although DGS and TTP have architectural similarities, DGS provides better location privacy and privacy guarantees than TTP for the two 

reasons: (1) In a TTP system, the user is only - anonymous, i.e., the user can be identified to be one of users, but without being able to 

determine the exact user. In DGS, however, QS has no information at all to narrow down the anonymity set, while SP can only narrow the 

anonymity set down to the query area, but the query area can be chosen arbitrarily large by the user without negative performance impacts. 

Furthermore,[10] TTP requires the cloaking area to expand as the user moves around, while in DGS the query area can stay fixed without an 

impact on the anonymity of the user. (2) The trusted third party in TTP needs to be fully trusted because it has access to all locations of all 

users in the system. In DGS, however, neither SP nor QS need to be fully trusted, as neither of them ever has access to the exact location of a 

user. 

 

Number of POIs 

The performance of our DGS and TTP for NN queries when varying the number of POIs several orders of magnitude from 5 to 50,000. The 

results show that DGS outperforms TTP (for a system with 50 or more POIs in total), as shown in Fig. 5a and 5b.  The computation time for 

DGS is well  below 1 ms for  all cases, compared to TTP which is significantly more expensive (4 to 24 ms). The computation time of TTP 

also increases more quickly than DGS as the number of POIs increases above 500. This is mainly because TTP has to keep expanding cloaked 

areas to preserve the user’s continuous location privacy. A larger cloaked area generally leads to a larger search area for a NN query which 

increases computation cost. For the communication cost, in DGS, most of the data is transferred between SP and QS, while the data transferred 

from QS to the user is small (one POI). However, in a system with more than 50 POIs, TTP requires a much larger amount of data to be 

transferred to the user, as the size of the user’s cloaked area increases. 

Number of Mobile Users 

The results show that DGS is independent of the number of users, while TTP depends heavily on the user density and/or the user distribution. 

Thus, DGS has the desirable privacy feature for privacy-preserving location-based services that it is free from privacy attacks based on the 

user distribution or density. Figure shows the performance of our DGS and  TTP  for  continuous  NN queries. The computation time of DGS 

remains constant, well below 1 ms. For TTP, the computation time is between 10 to 20 times higher than that of DGS, decreasing as  the 

number of user’s increases. This is because[11] the cloaked area computed by TTP becomes smaller with more users. Fig. 7b shows similar 

results for communication cost, which is constant for DGS, while significantly higher for TTP. Fig. 8 shows the results for continuous range 

queries. For 10, 000 users, TTP are slightly more expensive than DGS, in terms of computation cost (Fig.  8a), while DGS is two to three 

times  more expensive than TTP  for the number of users from 20, 000 to 50, 000. This can again be explained by the use of cryptographic 

functions that provide a much more secure scheme than TTP. However, the computation cost of DGS  is  constant, showing that  it  does not 

depend on  the number of users. The following figure shows that the communication cost of DGS is lower than TTP and fairly constant in 

terms of bandwidth consumption. 
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Fig. 5: Communication cost of DGS and TTP 

  

Mobile Device Performance 

In a real-world scenario, however, some of the operations will be performed on a mobile device. While mobile devices have become quite 

powerful, we decided to run additional benchmarks of our scheme on actual mobile devices to verify that the cryptographic operations 

necessary in our protocol can be run efficiently on mobile devices[13],[14]. In our protocol, the mobile device has to per- form three operations 

that necessitate cryptographic calculations 
 

(1) Request Generation. The initial request generation by the user requires encrypting the request using IBE over elliptic curves, which is 

expensive in terms of computational power required. 

(2) Hashing / Encryption. To retrieve the matching POIs from QS, the client needs to hash and then encrypt the grid indices for each grid 

cell that it is interested in. This involves one hashing (SHA256) and one symmetric encryption operation (AES). 

(3) POI Decryption. Once the client receives the response from QS, it needs to decrypt the POIs to display them locally. This requires the 

client to perform one decryption operation per POI using a symmetric cipher (AES). 

 

VI. CONCLUSION 

In this paper a dynamic grid system (DGS) for providing privacy-preserving continuous LBS. Our DGS includes the query server (QS) and 

the service provider (SP), and crypto- graphic functions to divide the whole query processing task into two parts that are performed separately 

by QS and SP. DGS does not require any fully-trusted third party (TTP); instead, we require only the much weaker assumption of no collusion 

between QS and SP. This separation also moves the data transfer load away from the user to the inexpensive and high-bandwidth link between 

QS and SP. We also designed efficient protocols for our DGS to support both continuous k-nearest-neighbor (NN) and range queries. To 

evaluate the performance of DGS[15], we compare it to the state-of-the-art technique requiring a TTP. DGS provides better privacy guarantees 

than the TTP scheme, and the experimental results show that DGS is an order of magnitude more efficient than the TTP scheme, in terms of 

communication cost. In terms of computation cost, DGS also always outperforms the TTP scheme for NN queries; it is comparable or slightly 

more expensive than the TTP scheme for range queries. 
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