
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1

Super Buggy Vulnerable Website

Rubal Gahlawat
 Department of computer science and

engineering

The NorthCap University

Gurugram, Haryana

Mehak Khurana

Department of computer science and

engineering
The NorthCap University

Gurugram, Haryana

Sweety
Department of computer science and

engineering

The NorthCap University

Gurugram, Haryana

Shilpa Mahajan
Department of computer science and

engineering

The NorthCap University

Gurugram, Haryana

Abstract— Nowadays, Cyber security is becoming most

important aspect everywhere like in banking sectors, Power

sectors. Servers are the critical assets in each and every

industry or in MNC’s as their business sensitive data is stored.

So, for reliable operations Server’s security is most important

as hackers are trying every possible way to hack the server can

access business sensitive data. This paper provides you a basic

knowledge of common vulnerabilities found in websites

whenever developer made some changes there exists some

chance of having vulnerabilities. In our project, the analysis is

focused on some known and familiar vulnerabilities like SQLi,

XSS, Weak password and demonstrating these vulnerabilities

exploitation by considering Super Buggy, a vulnerable website

designed intentionally for education purpose. One CTF is also

mentioned there for having basic knowledge about CTF’s what

is it, who to find the flags. However, nowadays CTF’s has been

asked in many competitive exams. We have also mentioned

their analysis and prevention techniques in the paper.

Keywords—Cyber Security, SQL Query, Attacker, Prevention,

Flag, HTML Entities, Vulnerability.

I. INTRODUCTION

Super buggy is a php, JS website that is vulnerable and its

main goal is for better understanding the processes of

security web. As of late hacking assault is a typical and

most important issue everywhere on the world. Many

large organizations like Apple, Microsoft, Amazon,

Google etc. are struggling and investing millions to stop

these types of Hacking and penetration attacks. Attacks

results in an intense security related issues in site which

handle information like account details, personal bank

details, passwords to various accounts, residential

information and other significant information. To hack,

the hackers are trying to come up with various new

approaches. There are some common and known

vulnerabilities that leads to various assaults. We have

utilized a deliberately vulnerable site to exhibit and

comprehend the different kinds of attacks also defined by

OWASP TOP 10. We have also analyzed and presented

the various existing detection and prevention techniques

against the attacks. We have mentioned some CTFs also

for the basic understanding of capturing the flag.

.

II. EASE OF USE

A. Vulnerabilities

Super buggy is vulnerable to the Some most known and

common types of website vulnerabilities. Vulnerabilities

mentioned in web site are:

1. SQL Injection: Enables an attacker so that they can

inject some malicious SQL Query in HTTP form

input box for acquiring site’s database. [5.]

2. Cross site scripting (XSS): Enables an attacker to

inject their various malicious, own script into the

website. [6.]

3. Weak Password: Enables an attacker to execute

brute force attack uses a subset of passwords that

are possible, such as known or common words in

the dictionary, proper names, common variations

on these themes or words based on the username.

4. Capture the flag: Enables an attacker to put their

skills to practice to solve problems or break into an

opponent’s system.

III. PREFFERED WAY OF PERFORMING

After opening the website, you will first enter into login

page. In the login page itself we have mentioned a Weak

password vulnerability for getting logged in into the

website you have to figure out its username & password.

After getting logged in you will go to dashboard in menu

bar there will be 2 more vulnerabilities mentioned (SQL,

XSS) and 1 capture the flag (CTF) there will be 4

challenges for SQL and 3 for XSS and 1 for CTF. You

can select anyone and further your education.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2

A. Challenges

i. Weak Password

 Open any browser on any OS like

Windows, Linux, Ubuntu etc . Type URL

in the address bar

https://superbuggy.000webhostapp.com/

Enter the login credentials (weak password vulnerability).

Go to view page source and now search for any reasonable

files (e.g. submit. Extension)

The login credentials are: Username- ross_vs_rachel

Password- we_were_on_a_break!

Now enter these credentials and press the login button

ii. SQL Injection Attack 1

Go to SQL attack 1 and Try to login by entering

any query

You can try this query 'Or'1'='1. This will give us

login as the query in the backend could be:

Select*from table_name where username=’_’ and

password=’_’

To enter we need to close the quotes first then

query becomes

Username= ‘’Or ‘1’=’1

Password= ‘’Or ‘1’=’1

Now this will only check for the condition 1=1

which is always true and hence we get the login

[7.]

iii. SQL Attack 2

 now go to SQL attack 2. View page

source

 Enter this query: ') or 1=1 -- +

As in above attack first we need to close the

parenthesis to execute our query 1=1 resulting into

true and give us login

iv. SQL Attack 3

 go to SQL attack. View page source

 Enter this query

')) or 1=1 -- +

As in above attack first we need to close the

parenthesis to execute our query 1=1 resulting into

true and give us login

http://www.ijcrt.org/
https://superbuggy.000webhostapp.com/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3

v. SQL Attack 4

 go to SQL attack 4

 enter the query

1’ or ‘1’=’1 DROP TABLE tablename; --

1’ or ‘1’=’1 TRUNCATE TABLE tablename; --

vi. Cross site scripting attack1

 Go to cross site scripting . select XSS Attack 1 and

you can try entering simple html tags like <h1>,

, <script>

vii. Cross site scripting attack 2

 Go to cross site scripting . select XSS Attack 2

 Consists of two pages you can navigate through

next and back buttons below

 Basic filter is used which will replace these

characters

$noChars = array('\'', "\"", "\\"); //The chars we

want to replace

$repChars = array(''', """, "\");

//The chars we are replacing with. (HTML entities)

Where Comment is the vulnerable parameter

Let’s try out bypassing this type of filter with a

little trick to generate a string at runtime. Avoiding

all use of quotes.

[8.]

Then click on comment.

 you can clear entry by clicking on clear table. Now

click on next to go to next page

 advanced filter is used which will replace the

<script>($blacklist),quotes and slashes

$row["comment"] = str_replace($noChars,

$repChars, $row["comment"]);

.str_replace($blacklist, "", $row["comment"]).

Where Name,comment,url are vulnerable

parameters to bypass advanced filter try different

encoding techniques [9.]

///ascii encoded///

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4

///Hex encoded///

/

//URL HEX///

 Now click on comment then click on click

me button

viii. Cross site scripting attack 3

 Go to cross site scripting, Select XSS Attack 3

 Need to enter the existing image URL, if URL

doesnot exist it will lead to error. Try this

hello.jpg”onerror=”alert(XSS)” //this javascript

code will generate alert in Message image as it is

an vulnerable parameter

 click on send message

You can also make use of burp:

 Intercepting request with burp

 Add or load payload list

 See response in browser then copy the url and open

in browser

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 5

ix. Capture The Flag

 go to capture the flag then go to view page source

 Open reginaphalange.txt

In this you will get in hexadecimal values and then

you have to use any hex

converter to convert the text in readable format.

 We got our flag- buggy{som3thing_lik3_this}

B. Analysis

 SQL injection is an attack which uses various

malicious SQL code to get the information

regarding the database that was not intended to be

displayed. It can delete, modify or copy the

contents of the database.

Injected String- 1 Result- It might be your

username or password

Injected String- %' or '1'='1 Result-It shows all

records in Database and help you to login into the

site without knowing username or password.

Injected String- %' or '1'='1 DROP TABLE

tablename; -- Result-It deletes the whole table

from database.

Injected String- %' or '1'='1 TRUNCATE TABLE

tablename; -- Result-It deletes the whole content

inside the table from database. [1.]

 XSS-Basic filters

Fortunately, Not as Easy

• Most of the time it will not be this easy.

(Sometimes you might get lucky with a

rookie programmer)

• We have to try some work arounds for the

kinds of defences that developers may put

in place.

• Usually through encoding, obfuscation or

a different approach.

magic_quotes_gpc

• PHP < 5.3.0 versions use’s configuration

variable known as magic_quotes_gpc

which would change all: ' (single quote), "

(double quote), \ (backslash), \0 (NULL)

Those characters escaped form is used

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 6

• The following alert would look like

alert(\”xss”\) or alert(\xss\)

 People still uses PHP 4!

• Many websites still use’s old PHP!

version This meant that various sites still

use this magic_quotes_gpc as their only

line of defence.

• A few sites may just include a

straightforward channel to change over

the magic_quote values into their html

substance same.

Another Attack Strategy

• Up until now we have used the <script>

tag to run all of our cross-site scripts.

• However, if you know much about

JavaScript, we can also run scripts from

the browser’s address bar. (Address Bar

Scripts)

• Try typing: javascript:alert(“Hello”) while

on a webpage.

 A malicious link

• A developer may have straight up blocked

the <script> all together.

• Let’s inject a JavaScript link into our test

page.

• We still have the constraints of our quotes

being removed or replaced so we will

have to do some manipulation still.

 Advanced filters [10.]

Types of defenses

1. INBOUND sanitizing

• Protecting The server and yourself.

• SQL injection, Remote File Inclusion, etc.

2. OUTBOUND sanitizing

• Cross Site Scripting

ascii decimal encoded

1. javasc

14;ipt:al

ert('X

3;S')

Will turn into: javascript:alert(‘XSS’)

2. These HTML entities will form a JavaScript

address bar script when the html is interpreted

by the browser.

3. This is great for defeating word blacklists &

strong quote filters. [11.]

ascii hex encoded

1. The same can be done with hexadecimal.

2. Using the #x prefix in html entities will

interpret as HEX. e.g.

3. You can find many texts to hex converters

on the web! Just Google search for one!

[12.]

One off trick

• Check out OWASP’s Filter evasion cheat

sheet.

• There are many one-off attack vectors that

may work against IE but not Firefox or

chrome.

• This one is favourite for me.

 <SCRIPT/XSS

SRC="http://asite.com/xss.jpg"></SCRIPT>

• Firefox will ignore the forward slash between

script and XSS as it’s not part of the script tag.

However, blacklist filters will only see a

<SCRIPT/XSS tag.

• Also notice that the script file is actually an

image extension? If you rename a JavaScript

file it’s still read as JavaScript. [4.]

 Capture The Flag

It is a kind of information security competition

that challenges the people to solve various

tasks. In this they usually ask to find anything

like passwords, columns of database

C. Avoidance Method

SQL Injection

1. Sanitization: Data approval and disinfection are the

significant avoidance procedures to be carried out

strictly. Sanitization allude to testing of any

information accept through structure area as a

capacity to ensure any unsafe or insignificant

characters absent in the SQL inquiry.

2. Firewall: It is a product or an equipment which

help numerous enormous organizations are burning

through large number of dollars to prevent or

channel the unsafe information. This prevents the

hacker uses to get entrance over the framework. In

certain normalized firewalls, you can adjust the

guidelines dependent on your own prerequisites.

Firewall is an extremely valuable application in

opposite to the assaults in the Internet.

3. Using proper advantages: Whenever managerial

level letter drop requests to unlock the information

site, then, at that point never attempt to interface

with the data set except if you have any solid

explanation or compulsory. This causes the

attackers to stop their advantages to effectively and

can gain access to the administrator account

without any problem. Accordingly, attempt to

utilize a record which has predetermined number of

advantages that are constantly constrained by the

administrator.

4. Stored Procedures: A put away method can be

called from the application perspective which are

put away in the data set, rather than the client

physically enters the information and order.

5. Prepared Statements: Pre-compiled inquiries

characterize the absolute SQL code which will pass

boundaries to it. In light of this inquiry the worker

is allowed to separate the code and information

without making a fuss over the given information.

[2.]

Cross Site Scripting

1. HTML entities: function that turns all characters

with meaning into a html entity equivalent. (can

still be bypassed using utf7 encoding but not

possible per browser security)

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020001 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 7

2. Make sure Each untrusted variable that repeated

out to the webpage are encoded using html entities.

(In PHP this is with the htmlentities() function)

3. Find a nice code or library snippet that disinfects or

sanitizes javascript: from URI’s. REMEMBER this

address script javascript: is not case sensitive so

capital Javascript: might slip past a filter for just

“javascript:”

4. Remember to sanitize inbound as well as outbound.

SQL injection is still a huge problem. It’s also

possible that your SQL injection protection might

stop a few sneaky cross site scripts from making it

into your database.

5. Content Security Policy

• Finally, for a very strong line of defence

we can use Content Security Policies or

CSP’s.

• Security Policies Content are sent in the

header by your web server in every

response.

• CSP’s allows everyone to specify

EXACTALLY what sources are trusted

and impair any inline assets.

• I highly recommend reading about CSP’s.

HTML5Rocks.com has a great write up

about it. [13.]

Capture The Flag

1. Input validation: In this it will check for any

invalid characters or invalid inputs. Inputs have to

be validated. We can only allow the inputs which

passes validation.

2. Parameterized queries: The queries must be

parameterized. It removes the input that is trying to

change the query. It compares the code and the

input and will distinguish between them

3. Stored procedures: In this you can prepare or code

which can be stored and be used later. So, at

whatever point you want to execute the query you

can simply all the put away procedures. Values can

be passed through stored procedures [15.]

4. Avoiding administrative privileges: We should

avoid connecting the application with the database

having the access of our privileges. Attacker can

gain the access of everything if we connect the

application to the database. The credentials must

have minimum rights

5. Web application firewall: It would be checking

what is going in and out and would let us know if

there is any threat. There are some sets of policies.

It will inform the WAF if there are any threats or

anything suspicious is happening. They stop the

threats before reaching

6. Escaping: We should always use the escaping

characters to avoid an unintended SQL command.

It is also used to distinguish between the SQL

statement provided by the developer. It will protect

us from any unauthorized user [14.]

IV. CONCLUSION

In this project, we have successfully classified the types

of cyber-attacks with 98% accuracy and also visualized

how our accuracy and loss changes with time.

REFERENCES

[1.] R. Johari, P. Sharma, “A survey on web application

vulnerabilities (SQLIA, XSS) exploitation and security

engine for SQL injection”, in Communication Systems and

Network Technologies (CSNT), IEEE ,2012.

[2.] D. A. Kindy, A. S. Pathan,”A survey on SQL injection:

Vulnerabilities, attacks and prevention techniques”,2016.

[3.] Crane, D., Pascarello, E., and James, D. Ajax in

Action. Manning Publications, 2005.

[4.] Hansen, R. Cross Site Scripting Vulnerability in

Google. July 2006. http://hackers.org/blog/20060704/cross-

site-scripting-vulnerability-in-google/

[5.] M. S. Aliero, I. Ghani, S. Zainudden, M. M. Khan, and

M. Bello, “Review on SQL Injection protection methods

and tools”, Jurnal Teknologi, vol. 77, no. 3, 2015.

[6.] Application Vulnerability Trends Report, Cenzic

Report, 2014.

[7.] S.B. Chavan and B.B. Meshram, Classification of Web

Application Vulnerabilities, IJESIT Volume 2, Issue2,

March 2013.

[8.] W. Du, K. Jayaraman, Tan, X. Luo and T. Champin.

Why Are There So Many Vulnerabilities in Web

Applications, The New Security

Paradigm Workshop (NSPW), 12-15 September, 2011.

[9.] A. Garg and S. Singh. A Review on Web Application

Security Vulnerability, IJARCSSE, volume 3, Issue 1,

January, 2013.

[10.] P. Passeri, Cyber Attack Timelines from

www.hackmageddon.com

[11.] D. Kaur, P. Kaur and H. Singh, Secure Spiral: A

Secure Software Development Model, Journal of Software

Engineering,

DOI:10.3923/jse.2012.10.15 pp.10-15

[12.] D. Kaur, P. Kaur, Case Study: Secure Web

Development, Designing Engineering and Analyzing

Reliable and Efficient Software, IGI Global,

2011 pp. 239-250.

[13.] Website Security Statistics Report, White hat Security,

2013.

[14.] Government websites are more vulnerable, article

published in weekly Tech gateway newspaper, Volume 2 ,

Issue 3

[15.] R.Barnet: Web-Hacking-Incident-Databse retrieved

from http://projects.webappsec.org/w/page/13246995/Web-

Hacking-Incident-Database on Nov 20,2015

http://www.ijcrt.org/
http://hackers.org/blog/20060704/cross-site-scripting-vulnerability-in-google/
http://hackers.org/blog/20060704/cross-site-scripting-vulnerability-in-google/
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database

