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ABSTRACT  

A sequence of independent lifetimes X1, X2,…, Xm, Xm+1,…, Xn where observed from the weighted Weibull 

length biased distribution but later it was found that there was a change in the system at some point of time m and it is 

reflected in the sequence Xm. Bayes estimators of change point m, 1 and 2 are derived under Linex and general 

entropy loss functions.  
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Introduction 

The concept of length-biased distribution find various applications in biomedical area such as family history 

and disease, survival and intermediate events and latency period of AIDS due to blood transfusion (Gupta and Akman 

1995). The study of human families and wildlife populations was the subject of an article developed by Patill and Rao 

(1978). Patill, et al. (1986) presented a list of the most common forms of the weight function useful in scientific and 

statistical literature as well as some basic theorems for weighted distributions and size-biased as special case they 

arrived at the conclusion that the length-biased version of some mixture of discrete distributions arises as a mixture of 

the length-biased version of these distributions. Gupta and Tripathi (1996) studied the weighted version of the bi-

variate three-parameter logarithmic series distribution, which has applications in many fields such as: ecology, social 

and behavioral sciences and species abundance studies. The effects of correct and wrong prior information on the 

Bayes estimates was studied by Mayuri Pandya, Smita Pandya and and Paresh Andharia (2013). Mayuri Pandya and 

Ami Mehta (2017) studied Weighted length biased Weibull distribution  with change point and derived the Bayes 

estimators of change point. Bayes estimation of change point m in two phase linear regression model was described 

by Mayuri Pandya and Paras Sheth (2016).  Mayuri Pandya and Paras Sheth (2017) derived Bayes estimation of 

change point m and autoregressive coefficient using MHRW (Metropolis Hasting Random Walk) algorithm and 

Gibbs sampling.  

Proposed Change Point Model 

Let  (n ≥ 3) be a sequence of observed life time data. Let first m observations  have 

come from the Weighted Length Biased Weibull, WLBW  θ1 ), 

     … (1) 

and later (n-m) observations  coming from the Weighted Length Biased Weibull, WLBW (  ,θ2),  
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    … (2) 

Where ,  

The likelihood function, given the sample information  

    is,  

L        … (3)                      

Where  

=  

           =           … (4) 

POSTERIOR DENSITIES USING INFORMATIVE PRIOR 

As in Broemeling et al.(1987), we suppose the marginal prior distribution of m to be discrete uniform over the set { 1, 

2, …..n – 1}. 

                        (m)=                                                                         … (5) 

As in Calabria and Pulcini (1992), we suppose the marginal prior distribution on  to be uniform over the 

interval , ; 

                                                             … (6) 

As in N. Sanjari Farsipour and H. Zakerzadeh (2005), under the assumption that the scale parameters  and  are 

unknown, we can use the Inverted Gamma prior with probability density functions with respective means values , 

 and common standard deviation . 

                   … (7) 

Where,  

We assume that  are priori independent. The joint prior density is say,  

           … (8) 

Where,                                                                            … (9) 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRTDRBC092 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 621 
 

 

The Joint posterior density of parameters is obtained using the likelihood function and the joint prior 

density of the parameters, 

 

   … (10) 

where,  is the marginal posterior density of . 

The marginal density of  say   and the marginal density of  say   as, 

  … (11) 

    … (12) 

where,  

, 

     … (13) 

and 

   … (14) 

Where,  and  are defied as, 

 

Marginal posterior density of m say,  as, 

              … (15) 

Where,        … (16) 

Where, ,  same as in (13) and (14). 
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In this section, we derive Bayes estimator of change point m under asymmetric loss function prior considerations 

explained above. A useful asymmetric loss, known as the Linex loss function was introduced by Varian (1975). Under 

the assumption that the minimal loss at d, the Linex loss function can be expressed as, 

L4 (α, d) = exp. [𝑞1 (d- α)] – 𝑞1 (d – α) – I, 𝑞1≠ 0. … 

Minimizing expected loss function Em [L4 (m, d)] and using posterior density (15), we get the Bayes estimates of m , 

using Linex loss function as, 

       … (18) 

Where,  is same as in (17). 

Minimizing expected loss function Em [L4 (m, d)] and using posterior density (11), we get the Bayes estimates of θ1, 

using Linex loss function as, 

  

   

    … (19) 

Minimizing expected loss function Em [L4 (m, d)] and using posterior density (12), we get the Bayes estimates of θ2, 

using Linex loss function as, 

 

 

  … (20) 

Numerical Study: 

We have generated 20 random observations from proposed Weighted Length Biased Weibull change point model 

given in Proposed Change Point Model. The first eight observations are from WLBW with 1.5 and  

and next twelve are from WLBW with  and . 1 and 2   they were random observations from 

inverted gamma distributions with prior means 1 = 0.005, 2 = 0.002 and variance  

resulting in and these observations are given in table-1. 
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Table – 1: Generated observations from proposed model 

 1 2 3 4 5 6 7 8 9 10 

 
0.022 0.971 0.116 0.550 0.848 0.667 0.200 0.306 0.052 0.158 

 11 12 13 14 15 16 17 18 19 20 

 
0.291 0.227 0.466 0.398 0.709 0.992 0.002 0.105 0.879 0.963 

We have calculated posterior mean of m, 1, 2,  and the posterior median and posterior mode of m. The results 

are shown in table-2. 

Table – 2: The values of Bayes estimates of change point m and  

 

 

 

 

We also compute the Bayes estimates  ,  of m,  ,  of ,  ,  of , ,  of , Using the data given 

in table 1 and for different values of shape parameter  and  ,the results are shown in Tables 3 and 4. 

TABLE 3: The Bayes Estimates Under Linex Loss Function 

Prior Density    
 

Inverted Gamma 

prior 

0.09 8 0.005 0.0023 

0.10 8 0.005 0.0022 

0.20 8 0.005 0.0021 

1.2 7 0.003 0.0018 

1.5 6 0.002 0.0014 

-1.0 9 0.009 0.0027 

-2.0 10 0.010 0.0029 

TABLE 4: The Bayes Estimates under General Entropy Loss Function 

Prior Density 
   

 

Inverted Gamma 

prior 

0.09 8 0.005 0.0023 

0.10 8 0.005 0.0021 

0.20 8 0.005 0.0020 

1.2 6 0.003 0.0017 

1.5 5 0.002 0.0015 

-1.0 9 0.009 0.0025 

-2.0 10 0.010 0.0028 

Conclusion: 

It can be seen from the above Table-3 and Table-4 if we select negative value of shape parameter of Linex loss 

function and General entropy loss function we found over estimation, i.e. we can stop under estimation. And if we 

select positive more than 1 value of shape parameter of Linex loss function and General entropy loss function we 

found under estimation, i.e. we can stop over estimation by selecting more than 1 value of shape parameter of 

asymmetric loss function.  

Prior 

Density 

Bayes estimates of change point m 

Bayes estimates of 

Posterior means of 

parameters1 and 2 

Posterior 

Median 
Posterior Mean 

Posterior 

mode   

Inverted 

Gamma prior 
8 8.23 8 0.005 0.002 
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