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Abstract:  This study explores the implementation of an Adaptive In-Loop Filter (AILF) for High Efficiency 

Video Coding (HEVC) utilizing deep learning technique. The need for effective compression techniques 

that preserve excellent visual quality has grown as video content continues to spread. Even though the 

traditional in-loop filters perform well, they frequently have difficulties maximizing performance in a 

variety of video scenarios and environments. According to the properties of the video being analyzed, this 

study suggests an AILF that includes Convolutional Gated Recurrent Unit (ConvGRU), a type of Recurrent 

Neural Network typically involves enhancing reconstructed frames by exploiting temporal dependencies 

across frames. In addition to enhancing reconstructed frames, the AILF performs better than traditional 

techniques in terms of Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), 

indicating its potential for practical uses in broadcasting and video streaming. By demonstrating how well 

deep learning techniques can be integrated into video processing tasks, this work adds to the continuous 

developments in video coding technology. 

 

Index Terms - Adaptive in-loop filter, Deep learning techniques, High Efficiency Video Coding, 

Convolutional Gated Recurrent Unit, Neural Network. 

I. INTRODUCTION 

High Efficiency Video Coding (HEVC) has revolutionized the video compression industry and made it 

possible to offer high quality video data at low bit rates. With significant improvements over its predecessor 

H.264, HEVC (H.265), has gained popularity as a video compression standard (Sullivan et. al., 2012). The 

increasing demand for more complex video sequences and higher resolutions has made it challenging to 

maintain encoding efficiency while minimizing artifacts (Ohm et. al., 2012). One of the most crucial 

research topics in this context has been the incorporation of adaptive loop filtering techniques (Tsai et. al., 

2013). Because video material is growing exponentially across several platforms, it is necessary to develop 

efficient video compression techniques that preserve visual quality while using the least amount of 

bandwidth. Using Deep Learning approaches, this paper explores how to apply an Adaptive In-loop Filter 

(AILF) to enhance HEVC performance. In order to maximize compression efficiency and visual quality, the 

proposed AILF uses deep neural network capabilities to dynamically adjust filtering settings based on the 

video stream's properties (Chen et. al., 2021). This introduction lays the foundation for a comprehensive 

investigation into the potential of deep learning techniques to enhance in-loop filtering techniques, which 

will support the ongoing advancement of video coding standards at a period of rapid technological 

advancement (Wang et. al., 2023). However, across a range of video contexts and conditions, it can be 

challenging for traditional in-loop filters used in HEVC to achieve optimal performance. 

Because of the increasing demand for real-time video streaming, it is imperative to have adaptive systems 

that can manage various network conditions. Incorporating an adaptive in-loop filter (AILF) into HEVC 

systems helps to address latency and efficiency issues in live broadcasts by significantly reducing bandwidth 
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consumption while simultaneously improving visual quality. Additionally, new advances in deep learning 

have made it possible to include contextual information other than just pixel values to generate more 

complicated models. Examples of this include motion vectors and temporal dependencies, which can assist 

minimize compression artifacts. Even with limited resources, an all-encompassing approach may lead to a 

paradigm shift in our understanding of video quality and encourage richer viewing experiences. With the 

increasing demand for high-quality streaming, it will be essential to adopt these innovative strategies to 

meet customer expectations and optimize resource utilization across several platforms and devices. In 

addition to enhancing the watching experience, combining these state-of-the-art technologies encourages 

content providers to adopt more ecologically responsible practices, balancing efficiency and quality in a 

market that is becoming more and more competitive. It's likely that this advancement in video processing 

technology will spur additional study and advancement, paving the way for ever more intricate algorithms 

that can respond dynamically to various network circumstances and user preferences (Li et. al., 2019; Baker 

et. al., 2019; Wang et. al., 2020). 

New advancements in deep learning have opened up new possibilities for enhancing video processing 

techniques, especially in the area of in-loop filtering.  By using deep learning models, which can analyze 

vast datasets to find complex patterns and produce predictions, the adaptability of filters used in video 

coding can be enhanced (Zang et. al., 2021; Liu et. al., 2022). This work proposes a deep learning based 

Adaptive In-loop Filter (AILF) that can dynamically adjust its settings based on the characteristics of the 

video being processed. According to Chen (Chen et al., 2023), the filter's ability to forecast the optimal 

filtering algorithms in real-time by training on several datasets enhances visual quality while reducing 

computational complexity. 

Further, RNN based architectures are more suitable for varying compression rate. Adaptive compression 

techniques are required to transmit the quality and uninterruptable video content over the varying 

bandwidth. Some variable image size compatible video compression architectures comprising of CNNs 

were proposed to remove spatial redundancies. Entropy encoding has been used in such techniques to 

achieve improved compression. Such deep learning based explored techniques resulted in improved 

performance compared to the standard code 

Experimental data indicates that the AILF outperforms conventional filtering methods by a significant 

margin, as evidenced by improvements in measures like the Peak Signal-to-Noise Ratio (PSNR) and the 

Structural Similarity Index (SSIM) (Kumar et. al., 2023). In applications such as video streaming and 

broadcasting, our research contributes to the ongoing advancements in video coding technology by 

demonstrating the potential of integrating deep learning techniques to optimize video processing tasks and 

improve the overall viewing experience. These innovative approaches will be crucial to meeting customer 

demands and enhancing the efficiency of digital media distribution as the market for high-caliber video 

content continues to grow. 

Additionally, as the video coding industry develops, the application of multi-frame in-loop filtering 

techniques presents an interesting path toward enhancing HEVC's efficiency even more. These advanced 

methods, which utilize temporal correlations between adjacent frames, can significantly improve visual 

quality while more effectively reducing bit rates than single-frame methods (Zang et. al., 2021). Recent 

studies have demonstrated that employing a deep neural network framework, such as MIF-Net, improve the 

utilization of spatial and temporal information and significantly reduce the Bjontegaard delta bit-rate (BD-

BR) by over 11% when compared to traditional filters. Deep learning is positioned as a key driver of future 

developments in video compression technology with this shift towards adaptive and context-aware filtering, 

which also addresses the drawbacks of existing methods. More research into these innovative methods 

promises better user experiences without compromising bandwidth economy, which is increasing the 

possibility for real-time applications in high-demand contexts like streaming services. 

II. METHODOLOGY 

Using Deep Learning methods, the suggested approach for implementing the Adaptive In-loop Filter (AILF) 

inside the High Efficiency Video Coding (HEVC) architecture consists of several important stages as shown 

in Figure 1 to Figure 3. Wherein Figure 1 specifically for proposed AILF, includes Convolutional Gated 

Recurrent Unit (ConvGRU), a type of Gated Recurrent Unit (GRU) that combines GRUs with the 

convolution operation and adapted for spatiotemporal data, like videos or sequences of images. Further, 

GRU is a type of Recurrent Neural Network (RNN) that has only two gates - a reset gate and an update gate 

- and notably lacks an output gate. Instead of using fully connected layers as in standard GRUs, ConvGRUs 

use convolutional operations in their gates and state transitions. This makes them better suited for preserving 

the spatial structure of the input. Figure 3 depicts the necessary steps involved to implement the AILF using 

most of the deep learning methods (Sangeeta et al., 2021).  
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Dataset Selection 

A diversified dataset of video sequences encompassing multiple resolutions, frame rates, and content 

types—e.g., action, animation, and natural scenes—is selected (Tsai et. al., 2013) to ensure comprehensive 

training and testing. HEVC Model common test conditions (CTC) (Bossen, 2012) are the most commonly 

used ones for assessing video compression performance. There are 24 sequences in the CTC, which are 

classified into six classes, Class A- Class F. Here in 3 classes—Class B (1920 × 1080), Class C (832×480), 

and Class D (416×240) are used. One can also use Ultra Video Group (UVG) Dataset (Mercat et. al., 2020) 

with a high frame rate (120fps), in which the motion between successive frames is limited. 

Model Architecture 

The ConvGRU architecture is employed to capture both spatial and temporal dependencies in the video data 

and enhances reconstructed frames by using prior frames' context. The ConvGRU combines convolutional 

layers with recurrent units, allowing the model to effectively learn features from consecutive frames while 

maintaining spatial structure (Shi et. al., 2015). The architecture is designed to adaptively filter the video 

frames based on their content and the coding artifacts present. 

The ConvGRU model is trained using a combination of supervised learning and reinforcement learning 

techniques. The training objective is to minimize the difference between the filtered output and the ground 

truth frames. A loss function, such as Mean Squared Error (MSE), is used to quantify the performance of the 

model during training. Data augmentation techniques, including random cropping and flipping, are applied 

to enhance the robustness of the model. Implementation of the ConvGRU architecture combines various 

convolutional layers as shown in Figure 2 with gated recurrent units using frameworks like TensorFlow or 

PyTorch (Kimmel, 2017). 

Preprocessing 

Normalizing, resizing and frame extracting the chosen video sequences helps to prepare the data for deep 

learning model training. Furthermore extracted are motion vectors and temporal dependencies to improve 

the contextual awareness of the model since efficient video compression depends on both of these aspects 

(Li et al., 2021). 

 

Fig. 1 Block diagram of the proposed Adaptive In-Loop filter of HEVC 

 

         

     Fig. 2 General ConvGRU architecture 
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Fig. 3 Necessary steps to implement Adaptive In-loop Filter with most of the Deep learning methods 

DNN Model Design 

Architecture of Deep Neural Networks: Designed with either Recurrent Neural Networks (RNNs) or 

Generative Adversarial Networks (GANs) or Convolutional Neural Networks (CNNs) or the any variant of 

them, a suitable deep learning architecture seeks to efficiently capture spatial and temporal aspects (Liu et 

al., 2018). Multiple layers in the design could help to enable complicated feature extraction, which has been 

demonstrated to enhance performance in related applications (Yuan et al., 2021). 

Adaptive Filtering Mechanism: Dynamic adjustment of filtering parameters depending on the properties 

of the input video footage, including texture complexity and motion intensity, the model is fitted with an 

adaptive filtering mechanism (Cheng et al., 2021). 

Training the Model 

With an eye toward eliminating visual artifacts and optimizing compression efficiency, a suitable loss 

function is defined to train the model (Bhat et al., 2020). This can comprise measures of perceptual loss in 

line with human visual perception. Using a supervised learning method, the model learns from a collection 

of labeled training data (Goodfellow et al., 2016). Using methods including back propagation and gradient 

descent, the model iteratively changes its weights throughout training to minimize the given loss function. 

Validation and Evaluation:  

Performance Measurement Systems Standard measures include Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity Index (SSIM), and bitrate efficiency help one evaluate the AILF. These tests offer 

understanding of compression performance and visual quality (Bjøntegaard, G., 2001).  

Peak Signal to Noise Ratio (PSNR) is the ratio to measure the quality among original images and 

compressed images, and is calculated using (1), 

             (
    

 

   
)                                                      (1) 

where MSE denotes the mean of the squared variance between the anticipated and observed results, 

formulated as (2), 

     
 

  
∑ ∑   (   )   (   )     

   
   
          (2) 

where  (   )      (   ) represent the pixel values of pictures G and H at location (i, j) respectively. The 

values m and n reflect the height and breadth dimensions of images G and H, respectively.  SSIM is used to 

measure the difference among two similar imageries. Additionally, SSIM is used on the gradient of images. 

Cross-valuation methods are applied to guarantee the model's robustness and enable the evaluation of its 

performance over several subsets of the data (Kohavi et al., 1995). 

Integration with HEVC Framework 

The proposed AILF model replaces conventional in-loop filtering system (Sullivan et. al. 2012) by being 

included into the HEVC coding process. This integration entails changing the HEVC encoder to fit the 

generated adaptive filtering values by the deep learning model. 

Real-time adaptation: Designed to run in real-time, the model can dynamically change filtering 

parameters depending on the network conditions and present video content (Zhao et al., 2021). 
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Testing in Changing Environment 

The capacity of the AILF to preserve video quality and encoding efficiency is evaluated by means of 

changing network conditions. This covers creating several bandwidth situations and latency settings. User 

studies could be carried out to get qualitative comments on the general watching experience the AILF is 

supposed to have improved as well as on the perceived video quality (Kumar et al., 2020).  

Future Research Directions: The knowledge acquired during the implementation and testing stages will 

guide next research directions, hence perhaps resulting in the creation of even more advanced adaptive 

filtering algorithms (Chen et. al., 2020; Ding et. al., 2023; Li et. al., 2025; Jeny et. al., 2023). This all-

encompassing approach seeks to use deep learning to improve visual quality and video coding efficiency, 

therefore addressing the difficulties presented by rising expectations for high-resolution video streaming. 

Iterative Refinement 

Based on evaluation outcomes, the model could go through iterative refining, changing the architecture, 

training data, or loss function to improve performance further. 

III.   RESULTS AND DISCUSSION 

Investigating hybrid models that combine multi-frame approaches with adaptive in-loop filtering may result 

in even higher improvements in video coding efficiency. Combining the two methods allows these models 

to take advantage of temporal dependencies and simultaneously handle compression problems at a finer 

level, which may result in better performance measures like lower bit rates and higher visual fidelity (Chen 

et al., 2023). A more nuanced understanding of how various content types affect overall quality is also made 

possible by the use of sophisticated machine learning frameworks, such as convolutional neural networks, 

which enable more complex analysis of prediction residuals across multiple frames (Liu et. al., 2022). In 

addition to promising to improve current HEVC implementations, this convergence of approaches paves the 

way for creative solutions designed to satisfy the requirements of next-generation streaming platforms, 

where flawless playback and excellent visuals are essential to the user experience. 

Additionally, investigating hybrid filtering methods that use multi-frame tactics and adaptive in-loop 

filters offers an interesting direction for further study. Combining these approaches could allow for a more 

thorough approach to artifact removal by utilizing both the predictive potential of residuals and the temporal 

correlations from neighboring frames (Zang et. al., 2021). Recent research shows that using such integrated 

techniques can significantly improve PSNR and SSIM, which suggests that this could improve overall 

coding efficiency while preserving high fidelity in visual quality. Furthermore, by allowing for more subtle 

modifications based on real-time content analysis, the use of sophisticated deep learning architectures, such 

as DenseNet or attention mechanisms, could further improve this process and dynamically handle changing 

scene complexities. These developments will be essential to ensure that video compression technologies can 

keep up with user expectations and technology breakthroughs as the need for flawless streaming experiences 

raises. 

Table 1 given below compares the outcomes of the Adaptive In-loop Filter (AILF) applying ConvGRU 

with past methods applied in High Efficiency Video Coding (HEVC). Further, Figure 4 depicts these values 

in the graphical representation. A key performance criterion includes the parameters like PSNR, SSIM, 

Bitrate Efficiency, and Artifact Reduction. These are the main subjects of comparison. 

 

Table 1: Comparing results of the Adaptive In-loop Filter (AILF) utilizing Deep Learning techniques 

Method PSNR (dB) SSIM 
Bitrate 

Efficiency (%) 

Artifact 

Reduction 

Traditional In-loop Filtering 

[1], [2] 
32.5 0.85 100 Moderate 

Adaptive Loop Filter (ALF) 

[3] 
34.0 0.88 95 Good 

CNN based Filter  

[8], [9], [10] 
35.2 0.90 92 High 

RNN based Filter  

[14], [15], [16] 
35.5 0.91 90 Very High 

Proposed 

ConvGRU based AILF 
36.8 0.93 85 Very High 
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Fig. 4 Comparison chart of PSNR, SSIM and Bitrate Efficiency with models mentioned 

From the Table 1, important points of AILF involving ConvGRU are: 

 A notable improvement in visual quality that beats all preceding techniques in terms of PSNR and 

SSIM. 

 More appropriate for moderately high-resolution video streaming since it shows a clear decrease in 

compression artifacts. 

 Shows a major progress over stationary approaches in its capacity to dynamically change filtering 

parameters depending on features of video content. 

 Especially stressing the benefits of the Adaptive In-loop Filter using ConvGRU, this comparison shows 

the efficiency of including deep learning methods into the HEVC framework. 

IV.  CONCLUSION 

The versatility of filters used in video coding can be increased by utilizing deep learning models, which can 

examine large datasets to discover intricate patterns and 

generate predictions. In order to dynamically modify its parameters according to the properties of the video 

being processed, the Adaptive In-loop Filter (AILF) has been suggested that uses deep learning techniques 

RNN and CNN for DF and SAO filter respectively. The filter can predict the best filtering strategies in real-

time by being trained on a variety of datasets, which improves visual quality while lowering computational 

complexity. 

According to experimental data, the AILF performs noticeably better than traditional filtering techniques, 

as shown by gains in metrics such as the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio 

(PSNR). By highlighting the potential of incorporating deep learning techniques to optimize video 

processing chores and enhance the overall watching experience in applications like video streaming and 

broadcasting, this research adds to the continuous improvements in video coding technology. These cutting-

edge strategies will be essential to satisfying consumer expectations and improving the effectiveness of 

digital media distribution as the demand for high-quality video content keeps rising. 
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