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Abstract:  Robotic-assisted surgery (RAS) has emerged as a transformative force in modern surgical practices, 

particularly in minimally invasive surgery (MIS). This survey paper explores the evolution, current state, and 

prospects of RAS, underscoring its role in augmenting surgical precision and overcoming the constraints of 

conventional MIS techniques.  Despite these advantages, RAS is seen without its challenges. Significant 

difficulties such as high operational costs, limitations in haptic feedback, and potential latency issues between 

control interfaces and robotic mechanisms are critically analysed. In this comprehensive review, we identify 

and discuss key research gaps within the domain of RAS. These include the need for advanced feature 

extraction methods capable of capturing essential details in surgical procedures, improved temporal and 

spatial modelling techniques, and the development of more efficient computational strategies to enhance the 

practicality of RAS systems. Additionally, this paper explores the intersection of RAS with surgical phase 

recognition technologies, a critical component in refining surgical workflows and augmenting real-time 

decision-making, as well as the importance of deep learning methodologies in advancing surgical phase 

recognition, highlighting their potential to significantly elevate the accuracy and efficiency of RAS.  

 

Index Terms - Robotic-assisted surgery (RAS), Minimally invasive surgery (MIS), Temporal and spatial 

modeling, Surgical phase recognition technologies, Deep Learning. 

I. INTRODUCTION 

“Robotic-assisted surgery” refers to a surgical technique in which robotic technology is utilized to perform 

treatments. This surgical sub-specialty was framed to improve a surgeon's procedural skills and address the 

drawbacks of minimally invasive surgery (MIS). Even though it's frequently linked to minimally invasive 

surgery (MIS), open surgery occasionally makes use of robotic minimally invasive surgery (RMIS). Because 

robotic surgery offers more benefits than traditional Management Information Systems (MIS), it is considered 

more advantageous. The advantages that patients receive from minimally invasive surgery (MIS) are 

comparable. Following their hospital stays, patients should recover more quickly and also track the decrease 

in discomfort, tension, and scarring. Additionally, there will be a significant decrease in the risk of bleeding 

and infection. Surgeons benefit greatly from the increased visual capabilities, increased accuracy, and 

increased dexterity that the Robotic Minimally Invasive Surgery (RMIS) system offers. The increased agility 

that a robotic surgical system offers the surgeon is one of its main benefits. The use of robotic arms makes it 

possible to do jobs in constrained areas [1-2].  

Furthermore, the robot doesn't get tired, which means the surgeon may work longer and in a more 

ergonomically comfortable posture during surgeries. The capacity to execute exact motions during an 

operation—a capability that traditional surgery cannot match—is one of the benefits of robotic surgery [3]. 

The surgeons' control over the robot's arms, as opposed to their own, is responsible for the increased precision 

and mobility in the small area. Furthermore, since robots never get tired, the accuracy of their arms is 

unaffected. The presence of supporting components like sensors and haptic feedback guarantees the precision 

of the robot arms' motions [4]. The increased visibility that robotic surgery provides is an additional benefit. 
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This is made possible by the robotic equipment's incorporation of cameras, which record and provide high-

quality pictures of the patient's surgical operation. Moreover, the camera may be adjusted, providing the 

surgeon with a new perspective by allowing it to be repositioned. This gives the surgeon a better perspective 

of the process as it is being performed. Even though RMIS has many benefits, a few obstacles are preventing 

its wider implementation.  

The haptic feedback restrictions and related expenses are among the robotic system's shortcomings. Because 

they are more expensive to operate than other systems, robotic systems are used less frequently. A surgeon's 

ability to maintain optimal force control may be hampered by inaccurate haptic feedback, which might lead 

to difficulties throughout the surgical operation. Furthermore, there's a chance that the robot and computer 

will experience lag. It is necessary to evaluate the existing constraints of robotic systems in great detail before 

they are standardized and approved for general use. To address any lingering issues, it is also crucial to have 

in-depth conversations and carry out more tests [5]. Here, robotic surgical systems are mentioned. 

 Zeus: One of the top suppliers of medical equipment and technology is Zeus Surgical Equipment. 

Zeus Surgical Equipment provides a broad selection of surgical tools and places a high priority on 

innovation and quality. A robotic tool made especially for endoscopes is called the Automated 

Endoscopic Device for Optimal Positioning (AESOP). The FDA-authorized robot-assisted surgical 

system in question was the ground-breaking apparatus in dispute. The year 1994 saw Computer 

Motion Inc. release it onto the market. Figure 1 shows the Zeus Surgical System. 

 

Figure 1 Zeus Surgical System 

 Da Vinci Surgical System: The first robotic surgical system for general laparoscopic surgery, the Da 

Vinci system from Intuitive Surgical Inc., has received FDA approval. Subsequently, a greater variety 

of surgical procedures, such as thoracic, head & neck, colorectal, urologic, and cardiac surgeries, have 

been performed using this technique. Figure 2 shows the Da Vinci Surgical System. 

 

Figure 2 Da Vinci Surgical System 
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 Raven: Figure 3 shows the beginning development of RAVEN at the University of Washington in 

2002. The goal of the Raven system's design was to maximize the transfer of forces and position. 

Utilizing a large database of position and force data from laparoscopic surgeries, this was 

accomplished. 

 

Figure 3 Raven 

 Flex Robotic: One unique robotic arm made by Medrobotics Corporation is the Flex Robotic System, 

as seen in Figure 4. The Flex Colorectal Drive, a component of the Flex Robotic Colorectal System, 

may be used to move it along a non-linear route. 

 

 

Figure 4 Flex Robotic 

 Sport: Single-port laparoscopic surgery may be performed with the robotic surgical system SPORT. 

The tool's removable end effector tips provide it with a great degree of versatility. The surgeon may 

set up and arrange the workstation, and a flat-screen display will provide visual feedback. Figure 5 

shows the Sport. 

 

 

Figure 5 Sport 
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The significance of surgical phase identification for assessing and optimizing surgical workflow has made it 

a key topic in the field of computer-assisted interventions (CAI). Technology for real-time surgical phase 

identification is critical to the creation of context-aware systems. These devices can automatically update 

surgeons on the status of their procedures and send out alerts if there are any anomalies in the surgical process. 

Furthermore, context-aware systems are essential to improving human experiences. Videos are made up of a 

sequence of single frames, or still images, that are played backward and forward over a predetermined amount 

of time. The pictures that are displayed provide light on the ideas of time and place as well as the 

characteristics of human-object interactions. In a surgical video, the physician plays the part of the subject 

who alters the item, which stands for the operating field, to accomplish a certain goal [6]. Because surgical 

operations are performed regularly around the world, a significant amount of surgical video footage and 

related metadata have been collected. Advanced criteria for data management and organization are necessary 

due to the growing use of surgical video data applications. Furthermore, as surgical video data finds more and 

more uses, there is a growing demand for efficient data governance and the deployment of technologies like 

computer vision, machine learning, and artificial intelligence (AI) to facilitate deeper data analysis [7]. 

Physicians can get support from the Computer-Assisted Surgery (CAS) system during the intra-operative and 

post-operative phases. It does this by automatically determining the tool and surgical phase. By identifying 

rare occurrences and different variants, intra-operative identification can provide doctors with real-time 

caution. By facilitating effective communication among surgical team members, the system can assist less 

experienced surgeons in their decision-making [8]. Online recognition can improve OR resource management. 

Understanding the present surgical workflow and the particular instrument being used is required to get an 

estimate of how long the surgery will take to complete. Because of this feature, operating room efficiency is 

increased and patient wait times are decreased as clinical staff may proactively prepare for the next patient. 

Furthermore, post-operative recognition might improve the productivity of labor-intensive manual jobs that 

take a lot of time and effort to complete, such as indexing video databases and writing surgical reports. An 

indexed record of surgical procedures may improve the surgeon's training, review, and competency 

assessment. To enhance the surgical procedure, statistical information may be derived from the completely 

annotated database [9]. There are several obstacles in the way of developing automated methods to precisely 

identify the surgical phase and identify the presence of tools from the surgical film. A wide range of surgical 

tools is available, covering several special cases, including partial appearances and tool overlap. Considerable 

surgical treatments result in minor differences between phases and considerable oscillations within a specific 

phase.  

Tool action and gas generation can cause the surgical sights to become partially or completely covered, 

especially if the camera lens is smeared with blood. The identification responsibilities are further complicated 

by the inclusion of noise and artifacts during the subsequent lens-cleaning procedure. To overcome the 

aforementioned problems, researchers used a variety of manual procedures in earlier experiments. These 

methods included the use of intensity values, combinative descriptors, and gradient magnitude [10]. However, 

the empirical creation of these low-level characteristics is not able to properly capture the fine distinctions 

seen in surgical recordings, since it significantly depends on domain experience. Since the emergence of deep 

learning, several attempts have been made to adapt convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs) for the aim of surgical video analysis [11].  

 The majority of deep learning methods now in use treat phase and tool identification tasks as discrete entities, 

ignoring their intrinsic connection. Using the appropriate tool sets at the appropriate phases of surgery is 

crucial for surgeons to comply with the regulations controlling the surgical process. There is a strong 

correlation between the surgical phase and tool use. The dissection processes used in the cholecystectomy 

approach [12] usually require the use of hooks. On the other hand, clippers and scissors are used throughout 

the cutting and clipping stages. Prior research that directly used binary instrument usage signals has 

successfully proved the usefulness of tool information in phase recognition [13]. Tool and phase recognition 

are both included in the multi-task framework that was created. During the feature learning phase, this 

architecture incorporates tool information and shares early layers. The favorable outcome implies that better 

phase identification and tool presence recognition depend on making the most of it [14]. The interdependence 

of many work functions frequently involves a high degree of complexity. In the setting of surgical films, it is 

typical for one tool to be used more than once, and different instrument combinations may be used at different 

stages of an operation. In light of the situation, it's critical to recognize that the previously described methods 

have significant shortcomings that could make it more difficult for them to accurately capture the relationship. 

[15] Present a method that applies temporal restrictions on phase prediction using a hidden Markov model 
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(HMM) in the context of video-based activities. This method is not the same as adding sequential data while 

the network is being trained. 

The rapid evolution of robotic-assisted surgery (RAS) in the field of minimally invasive surgery (MIS) serves 

as a motivation for the comprehensive survey. This advancement is not just a technological leap but a 

paradigm shift in surgical practices, offering enhanced precision, reduced patient trauma, and improved 

postoperative outcomes. However, the integration of RAS into mainstream healthcare is hindered by 

significant challenges, including high costs, technical limitations, and the need for advanced computational 

strategies. Our motivation is driven by the potential to overcome these barriers, leveraging pioneering research 

in feature extraction, spatial-temporal modeling, and deep learning. Inspired by the prospect of refining 

surgical workflows and decision-making processes, ultimately leading to more effective, efficient, and 

patient-centric surgical care. This survey aims to not only outline the current state of RAS but also to 

illuminate the path forward, identifying key areas for future research and development of robotic systems in 

surgery. Further contribution is given as follows. 

 It discusses the evolution, current state, and prospects of RAS, highlighting its benefits and challenges.  

 The survey identifies key research gaps in RAS, such as the need for advanced feature extraction 

methods, improved temporal and spatial modeling techniques, and more efficient computational 

strategies. 

  It also emphasizes the importance of adaptive approaches for the dynamic nature of surgical 

environments and explores the integration of RAS with surgical phase recognition technologies, 

underlining the role of deep learning in advancing these areas. 

 The conclusion underscores the significance of addressing these research gaps for the future 

advancement of RAS, aiming to enhance surgical workflows and decision-making processes. 

2. RELATED WORK 

In the initial stages of studying surgical phase recognition from surgical movies, the focus was on utilizing 

hand-crafted features. These features encompassed pixel values and intensity gradients, spatial-temporal 

features, as well as features that were composed of color, texture, and form. Previous studies have employed 

different linear statistical models to capture the temporal information in surgical recordings. These models 

include Conditional Random Fields, hierarchical HMM, left-right HMM, Hidden semi-Markov Model, and 

Dynamic Time Warping [16]. The performance of these systems, however, is constrained by the low-level 

characteristics that have been established using empirical methods. In recent years, there has been notable 

advancement in the capability of neural networks to extract spatial and temporal data from surgical videos. 

This technological advancement has facilitated the identification and categorization of different phases within 

surgical procedures. The techniques can be classified into two distinct groups. The primary goal of this 

category is to effectively model both temporal and spatial characteristics by employing frame-wise labeling 

techniques. In their study, they utilized ResNet for feature extraction at the video level. Their findings 

showcased the effectiveness of this approach in accurately detecting surgical phases. In their study, [17] 

presented SV-RCNet, a comprehensive framework designed to progressively train spatial-temporal 

characteristics for the specific task of surgical phase identification. The system incorporates the integration of 

ResNet and an LSTM module. The researchers have developed TMRNet, a memory bank that has been 

specifically designed to integrate long-range and multi-scale temporal features. The main objective of this 

development is to accurately identify surgical phases.   

The aim of [18] was to accurately capture the prolonged temporal dynamics linked to surgical procedures. In 

the study conducted by [18], a hybrid embedding aggregation transformer is employed to augment the 

significance of spatial characteristics in phase identification, while simultaneously capturing temporal 

information. In the domain of surgical phase recognition, several studies have utilized a multistage design 

approach. This methodology involves the integration of a refinement stage following the initial predictor 

phase. The objective of the refinement stage is to accurately correct any misclassifications that might have 

taken place during the predictor stage. The multistage temporal convolution network (MS-TCN) was adapted 

for online surgical scenarios by TeCNO through the use of dilated and causal convolutions. In their study, 

[19] put forward an alternative training approach. They found that using MS-TCN directly did not result in 

significant enhancements in performance. Another category employs supplementary data, such as the 

implementation of multitasking learning techniques, to enhance the performance of surgical phase 

recognition.  
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In their study, [20] presented the application of multitasking in the execution of a shared task. The 

methodology employed in this study encompassed phase recognition and tool presence detection to facilitate 

feature extraction. In their forecasting model, they employed a ResNet to make predictions on binary 

outcomes related to the presence of tools. The predictions and characteristics were subsequently combined to 

enhance the process of phase recognition. The MTRCNet-CL utilizes a distinct correlation loss to explicitly 

articulate the connections between tool presence and phase categorization. The study conducted by [21] 

involved the integration of multiple cues, such as management tools, ontology, and production norms, along 

with tool information, to enhance performance optimization. Multiple studies have been conducted to perform 

supplementary analysis for extracting optical fluxes and integrating motion data. This is done to improve the 

learning capabilities of the model. The implementation of these techniques leads to increased costs for 

multitasking annotations or introduces computational intricacies when incorporating new modalities, such as 

optical flows. 

Earlier approaches have developed fixed multi-scale sliding windows, which are commonly used as 

recommendations for video grounding or temporal action localization. A recent study was conducted by 

researchers to construct an input-level frame pyramid. This was achieved by sampling frames at various 

temporal speeds. Furthermore, distinct networks were employed to extract frames from individual levels of 

the pyramid, facilitating the capture of pertinent mid-level features. The final prediction was generated by 

combining these features [22]. The implementation of these techniques necessitated the integration of 

supplementary networks, which could lead to increased computational costs. In their study, they have utilized 

a singular input to effectively capture visual tempos across various feature levels. This approach was inspired 

by the feature pyramid network (FPN). To adequately handle various temporal scales, the researchers utilized 

a feature pyramid network that integrates the downsampling of features over time. Table 1 shows the survey 

table for surgical phase identification. 

Table 1 Survey table for surgical phase identification 

Reference Methodology Advantage Disadvantage Research Gap 

[11], [12] Hand-crafted 

Features 

Simple to 

implement 

Limited to 

basic image 

properties 

Need for 

more 

complex 

feature 

extraction 

[13] Left-Right 

HMM 

Good at 

sequence 

analysis 

Limited in 

capturing 

complex 

temporal 

patterns 

Requires 

advanced 

temporal 

modeling 

techniques 

[14] Hidden 

Semi-

Markov 

Model 

Better 

temporal 

dynamics 

May not 

fully capture 

intricate 

spatial 

details 

Integration of 

spatial 

information 

[3], [15]-

[17] 

Conditional 

Random 

Fields, 

Dynamic 

Time 

Warping 

Effective 

in spatial-

temporal 

relation 

modeling 

Complex to 

implement 

and tune 

Need for 

more efficient 

computational 

models 

[25]-[27] Multi-scale 

Sliding 

Windows 

Useful for 

action 

localization 

Fixed 

temporal 

window 

limits 

flexibility 

Development 

of adaptive 

temporal 

analysis 

methods 

 

The authors [23] propose a solution for the temporal action segmentation problem. They introduce a multi-

stage temporal convolution network (MSTCN) that utilizes cascaded dilated 1D convolutions to capture long-

range temporal information by expanding the receptive fields. This feature enables the collection of long-term 
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data on movies. They have proposed a method for long-range temporal order verification that allows for the 

isolation of activities from their context in a self-supervised manner. This approach effectively reduces the 

need for costly manual annotation in the analysis of long movies. Existing models can be categorized into two 

distinct categories. The initial category comprises single-stage models that utilize input visual information to 

generate prediction outcomes. Several studies have utilized various techniques such as conditional random 

fields, dynamic temporal warping, and different variants of Hidden Markov Models (HMM) to analyze 

retrieved visual features. The RNN model follows an end-to-end approach. It begins by utilizing a highly 

complex ResNet to extract visual attributes from each frame. Subsequently, the model employs an LSTM 

network to capture the temporal dependencies between consecutive frames. The second category comprises 

multi-stage models that employ an additional refinement step on top of the prediction findings to further 

enhance their performance.  [24] Introduced a multi-stage architecture for the problem of surgical phase 

recognition. A subsequent causal Temporal Convolutional Network (TCN) is utilized to enhance the accuracy 

of predictions. This is done following the initial use of a causal TCN to generate preliminary predictions based 

on pre-extracted Convolutional Neural Network (CNN) features. The multi-stage design is considered to be 

well-suited for addressing the challenge of surgical phase identification. Multi-stage architecture networks 

have been widely employed in various computer vision applications that involve complex patterns. These 

applications include action segmentation and human posture estimation. In certain cases, the initial predictions 

generated by the predictor stage may exhibit errors that deviate from the inherent patterns in the data. This 

can occur due to the presence of visually complex characteristics that are challenging to identify.  

For instance, instances of minuscule over-segmentation errors may occur during continuous motion, or there 

may be deviations in the human posture estimate findings that do not align with the connections between 

joints. The refining stage plays a crucial role in enhancing the accuracy of the initial predictions φyp [25]. In 

the refining step, only the initial predictions are utilized as input. This is done to avoid any interference from 

noisy visual characteristics. By focusing solely on the fundamental patterns in the data, the refinement process 

can be more effective. Furthermore, it has been observed that surgical video materials exhibit a wealth of 

temporal patterns and organization. The utilization of the intricate temporal patterns to enhance predictive 

capabilities has served as a source of inspiration for various endeavors. They have developed a mapping model 

that can be used to determine the phase label of the hard frames that have been identified, as previously 

expected. The accomplishments of the researchers serve as evidence that the implementation of a multi-stage 

design can rectify misclassifications that arise due to ambiguous visual indications during the predictor step 

[26]. Table 2 shows the survey table for surgical phase classification. 

Table 2 Survey table for surgical phase classification 

Reference Methodology Advantage Disadvantage Research 

Gap 

[3], [18] ResNet Effective 

at video-

level 

feature 

extraction 

May overlook 

finer details in 

large datasets 

Need for 

more 

detailed 

feature 

extraction 

[19] SV-RCNet Combines 

spatial and 

temporal 

learning 

Complexity in 

model training 

and tuning 

Balancing 

model 

complexity 

with 

performance 

[5] TMRNet Captures 

long-range 

temporal 

dynamics 

Potential for 

overlooking 

short-term 

variations 

Inclusion of 

short-term 

feature 

analysis 

[6] Hybrid 

Embedding 

Aggregation 

Transformer 

Enhances 

spatial 

feature 

recognition 

May be less 

effective in 

complex 

scenarios 

Improving 

performance 

in diverse 

surgical 

contexts 

[7], [9], 

[20] 

MS-TCN Adapted 

for real-

Initial 

misclassifications 

Refinement 

of 
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time 

scenarios 

in the predictor 

stage 

prediction 

accuracy 

Surgical process modeling (SPM) has various benefits owing to its ability to identify separate surgical phases. 

Furthermore, the possibilities of SPM will expand with the advanced image recognition of deep learning [27]. 

Recognition technology for surgical phases using deep learning has been used in a variety of cases; for 

instance, predicting an operation’s end time with an image of the surgical field, supporting surgeons’ 

intraoperative decision-making, indexing surgical videos in a database, and assessing operation skills using 

videos. Notably, a deep learning model used in an operating room must have high versatility for an unknown 

image. Recently, deep learning systems to assist surgeons in decision-making have undergone remarkable 

developments, and the demand for surgical phase recognition techniques will increase shortly. 

Similarly, related studies [28] have reported that surgical tools provide effective information to improve the 

recognition accuracy of the surgical phase. Importantly, in this method, using surgical tools to identify the 

surgical phase, the recognition accuracy often declines owing to the different colors of the hook shaft of 

endoscopic instruments. Additionally, blood on surgical tools and manipulations behind the organs are factors 

decreasing the recognition accuracy of the surgical phase. Furthermore, after upgrading the appearance of a 

surgical tool, the author must reconstruct the learning model by repeating a series of development cycles, such 

as annotation, training, and evaluation. If the learning model has already been embedded in a commercially 

available medical device, the reconstructed learning model must undergo regulatory examination at each 

redesign related to the appearance of a surgical tool. Considering the cost involved in updating the learning 

model, accurately recognizing the surgical phase without relying on the information provided by surgical tools 

is important to predict the surgical phase. EndoNet achieved approximately 0.82 overall accuracy for surgical 

phase recognition in laparoscopic cholecystectomy (LC), in which the features of an image from an 

endoscopic camera and a surgical tool are used to predict the surgical phase. The authors used the open 

datasets Cholec80 and EndoVis, which contain the video data of LC performed in a single facility. 

Additionally, the authors adopted long short-term memory (LSTM) in a recurrent neural network to estimate 

the surgical phase while considering the surgical phase to a certain point, resulting in 0.963 recognition 

accuracy. Also, the authors proposed a deep learning model with LSTM to estimate the remaining surgery 

duration intraoperatively [29]. However,  it is considered that LSTM is not desirable to intraoperatively 

identify the surgical phase because unexpected intraoperative events happen frequently. In this regard, no 

redundant phase between the surgical phases was defined in either Cholec80 or EndoVis [30]; therefore, the 

benefits of LSTM were limited in these datasets. With the development of the latest deep learning models, it 

has become possible to recognize the surgical process with high accuracy without using the recognition 

information of surgical instruments for decision-making. However, for extracorporeal images, misty images 

during sectioning, and out-of-focus images, it is difficult for even deep learning models to accurately estimate 

the surgical process from the information from a single image. Therefore, in addition to improving the 

accuracy of the learning model, postprocessing to estimate the surgical process is important for the clinical 

use of the learning model. In this study, we aimed to construct a deep CNN model that intraoperatively 

identifies the surgical phase in LC and can be available as embedded software in a medical device. To 

accomplish our purpose, the surgical phase was recognized using only the endoscopic images obtained in LC 

[17]. 

Recently, the use of a deep CNN model to reduce the incidence of BDI has been reported. [21] proposed an 

AI system that intraoperatively indicates the anatomical landmarks during confirming Calot's triangle; 

proposed an automatic assessment tool for CVS during dissection of Calot's triangle; developed a deep 

learning model that visually identifies safe (Go) and dangerous (No-Go) zones for liver, gallbladder, and 

hepatocytic triangle dissection during LC. The purpose of these applications is limited to the specified surgical 

phase of confirming Calot’s triangle and Calot’s triangle dissection. Authors assume the surgical phase 

recognition model would be expected as a trigger for these applications [24]. 
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2.1. RESEARCH GAP 

 Improving Low-Level Feature Extraction: Current methods relying on hand-crafted features like 

pixel values and intensity gradients are limited by their simplistic nature. There's a gap in developing 

more complex, automated feature extraction techniques that can capture intricate details in surgical 

videos. 

 Enhanced Temporal Modeling: Existing models like the Hidden Semi-Markov Model and left-right 

HMM are limited in capturing complex temporal dynamics. Advanced temporal modeling techniques 

are needed to better understand and represent the sequential nature of surgical procedures. 

 Spatial Feature Integration: While some methods focus on temporal information, integrating spatial 

information into these models can provide a more holistic understanding of surgical videos. 

 Computational Efficiency: Techniques such as Conditional Random Fields and Dynamic Time 

Warping are computationally intensive. There's a need for more efficient computational models that 

maintain accuracy while reducing processing time. 

 Adaptive Temporal Analysis Methods: Fixed temporal window methods like multi-scale sliding 

windows lack flexibility. Research is needed to develop adaptive temporal analysis methods that can 

adjust to the varying nature of surgical videos. 

 Detailed Feature Extraction in Large Datasets: Methods like ResNet, while effective at a general 

level, may overlook finer details, especially in large datasets. Research is required to enhance the 

granularity of feature extraction. 

 Balancing Model Complexity and Performance: Frameworks like SV-RCNet, which combines 

spatial and temporal learning, face challenges in balancing model complexity with performance. 

Simplifying these models without sacrificing accuracy is a key research gap. 

 Short-term Feature Analysis in Long-range Models: Models capturing long-range temporal 

dynamics sometimes overlook short-term variations. Incorporating short-term feature analysis into 

these models could provide a more comprehensive understanding. 

 Performance in Diverse Surgical Contexts: Spatial feature enhancement methods may 

underperform in complex surgical scenarios. Research is needed to optimize these methods for diverse 

and unpredictable surgical environments. 

 Reducing Reliance on Additional Data Inputs: Many multi-task learning models require additional 

data inputs, such as tool presence, which increase the annotation cost and computational load. 

Developing methods that reduce reliance on such inputs while maintaining accuracy is a crucial 

research area. 

3. CONCLUSION 

In conclusion, robotic-assisted surgery (RAS) stands at the forefront of innovation in minimally invasive 

surgery (MIS), offering significant enhancements in precision and efficiency over traditional techniques. 

However, the evolution of RAS also brings to light challenges such as high operational costs and technical 

limitations, which necessitate ongoing research and development. Addressing key research gaps, particularly 

in advanced feature extraction, temporal and spatial modeling, and computational efficiency, is crucial for the 

future advancement of RAS. The integration of RAS with surgical phase recognition, strengthened by deep 

learning methodologies, presents a promising avenue for refining surgical workflows and improving decision-

making processes. As we continue to navigate these challenges and explore these integrations, RAS is poised 

to redefine surgical standards, promising a future where surgical interventions are more accurate, efficient, 

and adaptable to the dynamic nature of clinical environments. 
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