
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAC02022 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 111

AUTOMATED THREAD ERROR DETECTION

1Prof.Deepak Patil, 2 Digambar P. Patil, 3Priyanka L. Gaikwad

1Miyalal Irshad Mulla 1Om Anil Rote, 1Tanmay khairnar

1Electronics and Telecommunication,

Nutan Maharashtra Institute of Engineering & Technology, Talegaon Dabhade, Pune, India
2Department of A&R DIT Pimpri Pune India 411018

3Computer Science and Engineering MIT ADT Loni Kalbhor, India

Abstract

This work proposes Automated Thread Error Detection, a system

employing machine learning to examine program execution traces to

discover threading issues such as data races and deadlocks.

distinguishes between harmless and serious faults and has scalability

and adaptability. Automated Thread Error Detection appears to be a

promising solution to improve software quality and productivity through

experiments and case studies, as it demonstrates superior performance

in identifying threading errors the accuracy statistic shows the

proportion of properly predicted labels. In this instance, the model's

accuracy was 92.45%, meaning that 92.45% of the test dataset's samples

were properly identified. High accuracy shows that the model can

generalize well to new data and has picked up useful patterns from the

training set.

INTRODUCTION

Thread errors can have a substantial negative impact on textile

quality, which can leave customers unhappy and cost producers

money. The development of autonomous solutions has been

driven by the requirement for effective and precise mistake

detection systems. By developing an automatic thread error

detection system that can accurately identify errors and their

locations, our project seeks to meet this demand. We hope to

increase customer satisfaction, cut waste, and improve product

quality by putting this approach into place.

One crucial use of computer vision and machine learning

technology that has transformed the textile sector is automated

thread fault identification. This sophisticated device is intended

to quickly and precisely detect a wide range of flaws,

irregularities, and defects in textile materials, from industrial

thread to apparel and upholstery. This technology seeks to

minimize human interaction while optimizing the quality,

productivity, and dependability of thread production processes

through the use of computer algorithms and advanced imaging

techniques.

Manual inspection procedures in conventional thread manufacture

are labor-intensive, time-consuming, and prone to human error

and weariness. To overcome these difficulties, automated thread

fault detection techniques have surfaced. These systems use a mix

of software driven by machine learning and artificial intelligence

algorithms and hardware elements like high-resolution cameras or

sensors.

 1.OBJECTIVE

Developing and implementing a system or technique that can

precisely and effectively identify different kinds of flaws or

irregularities in textile materials is the goal of automated thread

error identification. This goal accomplishes several crucial goals:

1.Quality Assurance: Make sure that premium thread is produced

by identifying and eliminating faulty materials, which lowers the

possibility of giving clients subpar goods.

2.Cost Reduction: By detecting flaws early in the manufacturing

process, you can cut down on waste and production costs by

minimizing the need for manual inspection and rework.

3.EnhancedProductivity and Efficiency: Automate the inspection

process to cut down on the time and manpower needed for error

discovery, hence increasing productivity.

4.Consistency:Preserve dependable and consistent error detection

outcomes by getting rid of the unpredictability brought.

5. Data Collection: To support process optimization and quality

control, collect important data on defect types, frequencies, and

locations.

3.FLOWCHAT

 Fig. 3.1 Flowchart

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAC02022 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 112

4.TOOLS&TECHNOLOGIES TOBEUSE

Parameter

Value

ProgrammingLanguage

Python

Machine-LearningModel
CNN,ResNet-34,VGG-

19

Parameter

Value

Libraries & Framework Open, CV,Tensor

Flow, Electron

 Table 4.1 Parameter details

 5.DATASET

Figure 5.1 Textile image dataset

6.WORKING

The Automated Thread fault detection code provides an example of

a simple convolutional neural network (CNN) for PyTorch picture

The Automated Thread fault detection code provides an example of

a simple convolutional neural network (CNN) for PyTorch picture

categorization. Let's analyze it in more detail:

1. Mounting Google Drive: The first step involves mounting Google

Drive in Colab so that files saved there can be accessed.

2. Loading Dataset: To load photos from the supplied directory

(`/content/drive/MyDrive/dataset1}), use "ImageFolder" from

"torchvision.datasets."

-The preprocessing step "transform" resizes the photos to 224 × 224

pixels, transforms them into PyTorch tensors, and then normalizes

them using predetermined mean and standard deviation values.

 3:Building a Data Loader

"Data Loader" is designed to load the dataset in training batches

efficiently.

"shuffle=True" indicates that the dataset should be shuffled prior

to each epoch, and "batch_size" defines the number of samples in

each batch.

4. CNN Model Definition: The CNN model's architecture is

defined by the "Simple CNN" class. The forward method specifies

the model's forward pass, which consists ofactivation functions,

pooling layers, convolutional layers, and fully connected layers.

5. Setting up the Optimizer, Loss Function, and Model: -To

instantiate the model "Simple CNN," supply "num_classes," which

is the number of output classes.

For multi-class classification problems, the loss function

"CrossEntropyLoss" is utilized.

-A stochastic gradient descent (SGD) optimizer with a momentum

of 0.9 and a learning rate of 0.005 is used to optimize the model

parameters.

6.The training loop operates for a predetermined number of epochs,

denoted as "num_epochs." {cnn_model.train()} has the model in

training mode.

-The optimizer's gradients are zeroed, a forward pass is made, a

loss is computed, gradients are backpropagated, and an optimizer

step is taken for each batch of images and labels in the dataloader.

7. Evaluation: The performance of the trained model on the

validation/test set is assessed using the "evaluate_model" function.

- The model is set to evaluation mode ("model. eval()").

Predictions are produced, and accuracy is computed for every batch

of photos and labels in the dataloader.

8. Putting the Code into Practice: The training loop is initiated, and

the loss for each epoch is recorded. After the trained model has

been evaluated on the test set, its acuracy is printed.

7. RESULTS

1. Class Names Derived from the information source: The classes

or categories that are present in the dataset that was used to train

the model are indicated in this line. When dealing with a dataset of

photos that feature several fruit varieties, for instance, the classes

might be "apple," "banana," "orange," and so on. Understanding the

data distribution and interpreting model predictions are made easier

with the use of this information, which is essential for both the

training and evaluation phases.

2. Time interval [1/2]: diminished: 0.3521 The model goes through

several iterations, or epochs, throughout training. The training

dataset is run through the model once for each epoch. This line

represents the model's training progress; it shows that it has

finished the first of two epochs. Furthermore, the average loss

(error) calculated throughout the training procedure for the first

epoch is indicated by the loss value of 0.3521. Lower numbers

indicate higher performance. The loss shows how well the model's

predictions match the real labels.

3. Loss: 0.2874 for Epoch [2/2]: This line, like the one before it,

signifies the end of the second training epoch. The average loss

calculated during the second period is represented by the loss value

of 0.2874. As training goes on, we typically anticipate a decrease in

the loss, which shows that the model is picking up new skills and

becoming more effective.

 4.Accuracy: 92.45%: The trained model's performance is assessed

on a different test dataset following the training procedure. Out of

all the samples in the test dataset, the accuracy statistic shows the

proportion of properly predicted labels. In this instance, the model's

accuracy was 92.45%, meaning that 92.45% of the test dataset's

samples were properly identified. High accuracy shows that the

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAC02022 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 113

model can generalize well to new data and has picked up useful

patterns from the training set.

[1] Threading errors are important because they can lead to major

consequences like system failures, lower performance, and

security vulnerabilities. Data races, deadlocks, and resource

contention are examples of threading problems that frequently

occur in concurrent software systems. An examination of the

effects of threading problems on software stability,

maintainability, and dependability highlights the significance

of effective detection and corrective techniques.

[1] Difficulties with Conventional Approaches:

Conventional debugging techniques frequently have

trouble precisely and quickly identifying

threadingissues. For big and complicated software

systems,manual inspection and debugging can be time-

consuming, prone to errors, and not very

scalable.Outlining the drawbacks and restrictions

ofconventional methods prepares the ground for

theintroductionofautomated alternatives.

[2] Machine Learning's Role: Automating thread

faultdetection with machine learning techniques presents

apromising avenue. The promise of machine learning(ML)

in this field is illustrated by talking about howML

techniques, such as anomaly detection, patternrecognition,

and classification, may examine programexecution logs to

find patterns suggestive of

threadingissues.Thecaseisstrengthenedfurtherbyhighlightin

ghow ML-based techniques may be scaled and adjustedto

fita varietyofsoftwarecontexts.

[3] Future Directions and Challenges: Examining

possibleavenues for research and development in

automatedthread error detection in the future, such as

utilizingsophisticated machine learning methods,

incorporatingdevelopment tools and workflows, and

tackling

newissuesinconcurrentsoftwaresystems,encouragesmoredeb

ateandcreativityinthisarea.

AdditionalConsiderations:

● Real-timeMonitoringandAlerting:Toensuretimely

error identification and correction, investigate

ATED' sreal-time alerting feature.

● Improved Model Explainability and Debugging

Support: Boost the model's explainability and offer

debugging assistance.

● Dynamic Adaptation and Self-Learning: Enable

ATED to adapt dynamically and self-learn

forimproved performance.

● Privacy and Data Confidentiality: InATED, uses a

fedata handling methods to protectprivacy.

● Collaborative Debugging and Knowledge

Exchange: ByutilizingATED, developers may

collaborate and exchange knowledge.

● Integration with Software Quality Assurance: To

improve mistake detection all the way through the

development life cycle, integrate ATED with Q

Aprocedures.

 8. DISADVANTAGE
1. Initial Investment: Installing an automated system

fordetecting thread errors might be expensive. It

entailsobtainingspecializedknowledge,software,andhardware,

whichcould necessitatea largeinitialoutlayoffunds.

2. Costsassociatedwithmaintenance:Toguaranteethesystem'scon

tinuousaccuracyanddependability,updatesandmaintenancearereq

uired.Thelong-termoperatingcostsmayincreaseasa result.

3Complexity:Theimplementationandupkeepofautomatedsystems

can be difficult, and troubleshooting and operating the

equipment may call for qualified engineers and technicians.

4. Automatedsystemshavethepotentialtogenerate

falsepositives, which indicate errors that aren't actually

errors,and false negatives, which overlook true errors. It can

bedifficultto fine-tunethe systemto minimizetheseerrors.

5. Adaptability: Ongoing training and updates may

benecessaryforthesystemtoadjusttonovel

mistaketypesormodifications in the thread materials. It can be

difficult tomake sure the system continues to function well as

theproductionprocesschanges.

6. Pace vs. Precision Trade-off: Speeding up the

inspectionprocedure could result in a lower degree of accuracy.

It canbe difficult to find the ideal balance between precision

andquickness.

7. Data Security and Privacy:Sensitive and private data may be

collected and stored by automated systems. It can be

problematic to ensure data security and privacy, particularly

when these systems are coupled with other production

processes.

8. Skill Transition: Employment may be lost if automated

systems take the place of human inspectors. Retraining or

redeploying the displaced staff may be necessary as a resul to

this shift, which can be a delicate and involved procedure.

9. Types of Complicated Threads: It can be difficult

forautomated systems to precisely check some types of

thread,particularlythosewithcomplexpatterns,textures,orvariation

s.

9.FUTURE SCOPE

Automated Thread Error Detection has a bright future ahead of

it, with significant progress expected in several important fields.

Further improvements in machine learning techniques,

especially in deep learning, could lead to a notable increase in

thread fault detection accuracy. It is anticipated that Automated

Thread Error Detection, when integrated into DevOps

principles, will optimize development processes, resulting in

quicker software releases and improved quality. Solving

scalability issues with cloud infrastructure and parallel

computing will make it possible to examine large-scale

systems efficiently.

Further solidifying Automated Thread Error Detection's status

as an essential tool for improving the dependability and

efficiency of concurrent software systems will involve

broadening its application across a range of domains and

industries, as well as fostering developer collaboration and

protecting privacy. Furthermore, standardization initiatives will

promote uniformity and excellence throughout enterprises,

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAC02022 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 114

opening the door for broad acceptance and interoperability. In

conclusion, innovation, teamwork, and adaptation to changing

software development processes will be key factors in

Automated Thread Error Detection's future, securing its place

as a pillar of contemporary software systems' resilience.

10.REFERENCE

[1] Runhu Zhu, Binjie Xin, Na Deng & Mingzhu Fan (2023)

Fabric defect detection using ACS-based thresholding and

GA-based optimal Gabor filter, The Journal of The Textile

a. Institute, DOI: 10.1080/00405000.2023.2231188

[2] S. Wang, C. Lv, S. Wang, Z. Zhang and X. Shang,

"Patterned Fabric Defect Detection Based on Double-

branch Parallel Improved Faster-RCNN," 2021 China

Automation Congress (CAC), Beijing, China, 2021, pp.

3798-3803, doi: 10.1109/CAC53003.2021.9727366.

[3] D. Xia, Z. Yu and X. Deng, "A Real-time Unsupervised

Two-stage Framework for Fabric Defect Detection," 2021

3rd International Academic Exchange Conference on

Science and Technology Innovation (IAECST),

Guangzhou, China, 2021, pp. 535-538, doi:

10.1109/IAECST54258.2021.9695639.

[4] W. Chong, W. Jinghua, W. Jing and D. Huan, "Fabric

Defect Detection Method Based on Projection Location

and Superpixel Segmentation," 2022 4th International

Conference on Natural Language Processing (ICNLP),

Xi'an, China, 2022, pp. 20-25, doi:

10.1109/ICNLP55136.2022.00012.

[5] M. Liu, J. Sun, Z. Fan and S. Zhang, "Automatic location

and extraction of woven fabric blocks based on Gaussian

blur and maximization thought," 2014 International

Conference on Mechatronics and Control (ICMC),

Jinzhou, China, 2014, pp. 950-954, doi:

10.1109/ICMC.2014.7231694.

[6] U. Hatthasin, N. Setamung, P. Piyawongwisal and S.

Tisom, "A Talking Distance Measuring Wheel for the

Visually Impaired," 2018 15th International Conference on

Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-

CON), Chiang Rai, Thailand, 2018, pp. 517-520, doi:

10.1109/ECTICon.2018.8619923.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou, ‘‘Learning from

mistakes: A comprehensive study on real world

concurrency bug characteristics,’’ in Proc. 13th Int. Conf.

Architectural Support Program. Lang. Operating Syst.

(ASPLOS). New York, NY, USA: Association Computing

Machinery, 2008, vol. 43, no. 3, pp. 329–339, doi:

10.1145/1346281.1346323.

[8] Y. Lin and S. S. Kulkarni, ‘‘Automatic repair for multi-

threaded programs with deadlock/livelock using maximum

satisfiability,’’ in Proc. Int. Sympt. Software. Test. Anal.

(ISSTA). New York, NY,USA: Association Computing

Machinery, 2014, pp. 237–247, doi:

10.1145/2610384.2610398.

[9] D. Giebas and R. Wojszczyk, ‘‘Deadlocks detection in

multithreaded applications based on source code analysis,’’

Appl. Sci., vol. 10, no. 2, p. 532, Jan. 2020, doi:

10.3390/app10020532.

[10] M. Singhal, ‘‘Deadlock detection in distributed systems,’’

Computer, vol. 22, no. 11, pp. 37–48, Nov. 1989, doi:

10.1109/2.43525.

[11] Y. Wang, F. Gao, L. Wang, T. Yu, J. Zhao, and X. Li,

‘‘Automatic detection, validation and repair of race

conditions in interrupt-driven embedded software,’’ IEEE

Trans. Software. Eng., early access, Apr. 20, 2020, doi: 10.

1109/TSE.2020.2989171.

[12] J. Park, B. Choi, and S. Jang, ‘‘Dynamic analysis method for

concurrency bugs in multi-process/multi-thread

environments,’’ Int. J. Parallel Program., vol. 48, no. 6, pp.

1032–1060, Dec. 2020, doi: 10.1007/s10766- 020-00661-3.

http://www.ijcrt.org/
https://doi.org/10.1080/00405000.2023.2231188

