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Abstract: Ovarian cancer remains a leading cause of gynaecological cancer mortality, with treatment
outcomes heavily dependent on accurate subtype classification. Manual interpretation of gigapixel Whole
Slide Images (WSiIs) is labour-intensive and challenged by extreme resolution, background noise, and class
imbalance, particularly in large datasets such as UBC-OCEAN. This study presents a novel framework for
ovarian cancer subtype classification that integrates a Vision Transformer (ViT-B/16) encoder within an
attention-based Multi-Instance Learning (MIL) architecture. A hierarchical preprocessing pipeline
incorporating texture-aware patch sampling is introduced to prioritize diagnostically informative regions by
ranking patches using variance and edge density. The ViT encoder extracts context-rich representations from
these selected patches, which are aggregated through single-head attention for slide-level prediction. The
proposed system demonstrates strong classification performance acrossall five subtypes, achieving a balanced
accuracy of 0.750, and offers a scalable, objective solution for computational-pathology. These results
highlight the effectiveness of combining transformer-based feature extraction with targeted sampling
strategies to address key challenges in high-resolution medical image analysis and support more accurate
personalized diagnostics.

Index Terms - Ovarian Cancer, Subtype Classification, Multi-Instance Learning (MIL), Vision Transformer
(VIT), Whole Slide Images (WSI), Computational Pathology, Texture-Aware Sampling

l. INTRODUCTION

Ovarian cancer is one of the leading causes of gynaecological cancer deaths, representing the eighth most
frequent disease in women globally [1]. It often carries a dismal prognosis, with approximately 324,000
diagnosed cases equating to 207,000 deaths each year. About 90% of all ovarian cancers are classified into
five major carcinoma subtypes: high-grade serous (HGSC, 70%), endometrioid (EC, 11%), clear cell (CCC,
10%), low-grade serous (LGSC, 5%), and mucinous carcinomas (MC, 4%) [2]. These subtypes each display
unique morphological patterns, treatment responses, and prognosis outcomes. Personalized treatment
planning depends on accurate subtype classification from histopathological images; however, manual
pathologist assessment of gigapixel-scale Whole Slide Images (WSIs) and Tissue Microarrays (TMAS) is
challenging due to the immense data volume, making it laborious, subjective, and prone to inter-observer
variability [1]. While recent developments in deep learning have showed promise in computational pathology,
there are still major hurdles in managing the extreme resolution, background noise, and significant class
imbalance seen in datasets such as the UBC-OCEAN [3] [4]benchmark from Kaggle [4] [4].Vision
Transformers (ViTs), which utilize self-attention mechanisms to assess full images holistically, represent a
breakthrough in deep learning for medical imaging. By analyzing images as patch embedding’s, ViTs can
more accurately capture both local and global feature dependencies than conventional Convolutional Neural
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Networks (CNNSs). Recent research has demonstrated ViTs' higher performance in lung and breast cancer
categorization, underscoring their potential for ovarian cancer detection [5]. Conventional CNNs have
difficulty with sparse tissue regions and global context, while simple patch-based approaches frequently fail
to prioritize diagnostically important regions amidst large non-informative backdrops. Multi-Instance
Learning (MIL) frameworks address these problems by treating slides as "bags" of patches, enabling slide-
level predictions without detailed annotations. However, applying MIL still requires complex sampling and
aggregation strategies to effectively collect subtype-specific information. This work presents a strong
attention-based MIL system for five-class ovarian cancer subtype classification from WSIs and TMAs. To
address the data challenges, we propose a hierarchical preprocessing pipeline that incorporates a Vision
Transformer (ViT-B/16) encoder, Single-Head Attention Pooling for dynamic instance weighting, and novel
texture-aware patch sampling, which ranks patches by variance and edge density to favor cellularly rich
regions.

Il. LITERATURE SURVEY

The 2020 WHO Classification defines five primary histotypes for ovarian cancer subtypes based on
histopathological characteristics: high-grade serous carcinoma (HGSC, ~70%), endometrioid carcinoma (EC,
~11%), clear cell carcinoma (CCC, ~10%), low-grade serous carcinoma (LGSC, ~5%), and mucinous
carcinoma (MC, ~4%). Since different histotypes have different cell origins, molecular changes, and
therapeutic responses, accurate subclassification influences prognosis and treatment. [6] [2]

2.1 Histotype Evolution

Following WHO changes in 2014, histotype definitions stabilized, classifying serous carcinomas as
either LGSC (MAPK-mutated, indolent) or HGSC (TP53-mutated, aggressive). Reclassifications improved
repeatability to over 90% by reducing "mixed” or “undifferentiated” diagnoses made using
immunohistochemistry (IHC). Rare forms, such as mesonephric-like adenocarcinoma, have surfaced; these
are frequently aggressive and KRAS-mutated. [6]

2.1 Diagnostic Approaches

Principal histotypes can be distinguished with around 90% accuracy using a four-marker IHC panel
(WT1/p53/napsin A/PR); for example, WT1+/p53 abnormal validates HGSC over EC. On datasets like
TCGA-OV, deep learning (DL) models such as CNNs and hybrids (ResNet, VGG-16) categorize subtypes
from histology with 94-100% accuracy. Current research uses morpho-genomics (CNN-VIT) to predict
subtypes and mutations from H&E slides. [6] [7] [8] [9]

2.3 Diagnostic Approaches

Principal histotypes can be distinguished with around 90% accuracy using a four-marker IHC panel
(WT1/p53/napsin A/PR); for example, WT1+/p53 abnormal validates HGSC over EC. On datasets like
TCGA-OV, deep learning (DL) models such as CNNs and hybrids (ResNet, VGG-16) categorize subtypes
from histology with 94-100% accuracy. Current research uses morpho-genomics (CNN-VIT) to predict
subtypes and mutations from H&E slides. [6] [7] [8] [9]

2.4 DL Advances

CNNs (such as DenseNet-121 and YOLO) that achieve AUCs of 0.91-0.99 for subtype recognition
across ultrasound, CT, MRI, and histology are highlighted in DL surveys. In multi-class problems (HGSC,
EC, CCC, LGSC, MC), hybrid models (CNN-LSTM, fine-KNN) outperform conventional techniques.
Foundation models emphasize the need for data augmentation while evaluating histopathology for subtypes.

[6] [2] [10] [7]
I1l. METHODOLOGY

The methodology for this study focused on developing a robust computer-aided diagnosis system for ovarian
cancer subtype classification using Whole Slide Images (WSIs) and Tissue Microarrays (TMAS). The
approach integrated specialized image preprocessing, a patch-based feature extraction pipeline, and an
attention-based deep learning architecture to handle the high resolution and heterogeneity of histopathological
data. The dataset consists of histopathological images from the UBC-OCEAN [4] obtained from Kaggle [3],
comprising both Whole Slide Images (WSI) and Tissue Microarrays (TMA).
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3.1 Hierarchical Data Acquisition and Preprocessing

A multi-stage, hierarchical patch extraction strategy was employed to efficiently manage the high-
resolution histopathological data and prepare consistent inputs for the model. The extraction pipeline
prioritized patches from available low-resolution thumbnails. If thumbnails were absent, the system
implemented a regional cropping strategy, extracting 1024 x1024 pixel regions from the full WSI. Crucially,
deterministic cropping was used for the validation set to ensure evaluation reproducibility, while stochastic
cropping was used during training to enhance generalization. To isolate informative cellular regions from the
background, a binary tissue mask was generated by converting images to the HSV colour space and applying
a threshold (> 20)to the saturation channel. Patches extracted from WSIs were standardized to 224x 224
pixels. TMA cores, often captured at higher magnifications, were initially extracted at 448 x 448 pixels and
subsequently down sampled to 224 x 224to maintain input consistency. Finally, a density filtering step was
applied, retaining patches only if their tissue coverage density, as determined by the binary mask, exceeded
30%.

3.2 Texture-Based Informative Patch Sampling
To ensure the model focused on diagnostically relevant regions and to manage the computational cost

of WSIs, a custom, texture-aware ranking sampler was implemented to select a representative "bag" of
instances for each slide. Patches were ranked based on a linear combination of pixel variance (¢?)and edge
density (V) where edge density was calculated as the mean absolute gradient in the x and y directions:

Score = 0.7¢% + 0.3V (1)

Patches with a mean pixel intensity > 0.90 were excluded as near-white background or blank space.
For each slide, the top 32 patches with the highest texture scores were selected to form the Multi-Instance
Learning (MIL) bag, concentrating the model's effort on areas exhibiting high cellularity and architectural
complexity.

3.3 Architecture: Attention-Based Multi-Instance Learning

The classification was structured as a Multi-Instance Learning (MIL) [11] task, where each slide (the
bag) was represented by the set of 32 selected patches (the instances). A Vision Transformer (ViT-B/16) [12],
pre-trained on ImageNet-1K [13], was used as the feature encoder. The standard classification head was
replaced by a linear projection layer that mapped the CLS token feature into a 768-dimensional embedding
space. The resulting patch embeddings were then aggregated using a Single-Head Attention Pooling
mechanism [11]. This learned module dynamically computes a scalar weight for each patch, reflecting its
diagnostic importance, and calculates a weighted sum to produce the final, aggregated slide-level feature
vector. This aggregated feature was passed through Layer Normalization and a final linear layer to predict
one of the five ovarian cancer subtypes.

3.4 Training Protocol and Optimization

The model was trained for 20 epochs using a highly optimized protocol designed to handle severe
class imbalance and maximize computational efficiency. Class Balancing was achieved using inverse-
frequency class weights, which were integrated into two mechanisms: a Weighted Random Sampler in the
DataLoader to ensure equal class representation across epochs, and direct application within the loss
calculation. The effective training optimization was governed by a Focal Loss [14] (y = 2.0) applied within
the step_batch function, utilizing the inverse-frequency class weights(a).Although a standard
CrossEntropyLoss with label smoothing (e = 0.05)was defined, the model was primarily optimized by the
class-balanced Focal Loss. The AdamW optimizer [15] (LR = 3 x 10~>, Weight Decay = 0.01 was utilized,
paired with a Cosine Annealing Learning Rate Scheduler. Finally, training leveraged Automatic Mixed
Precision (AMP) for accelerated performance, with gradient updates performed using gradient accumulation
over 4 steps, effectively increasing the batch context for each optimization step. The implementation utilized
the PyTorch [16] and PyTorch Image Models (timm) [17] libraries.
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1VV. RESULTS AND ANALYSIS

4.1 Training Dynamics and Model Selection

The training process for the attention-based Multi-Instance Learning (MIL) model spanned 20 epochs,
utilizing a class-weighted Focal Loss to address the severe class imbalance in the training set. The Training
vs Validation Loss curve (Figure 1) shows a sharp decrease in training loss (approaching 0.0000), while the
validation loss stabilizes around 0.006-0.008. This divergence reflects the intense optimization of the
weighted training loss. The Training vs Validation Accuracy curves (Figure 2) illustrate rapid convergence
on the training data, but generalization performance was governed by the Balanced Accuracy metric. The
model achieved its peak generalization performance at Epoch 7, yielding a Balanced Accuracy of 0.750 (Val
Accuracy 0.741) (Figure 3). This epoch was selected as the final checkpoint for all subsequent analysis and
evaluation, as further training led to a decline in balanced accuracy, indicative of increasing overfitting.
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4.2 Subtype-Specific Classification Performance

The selected model demonstrated a robust capacity for distinguishing between the five ovarian cancer
subtypes, achieving a Macro F1-Score of 0.74. The detailed performance metrics are summarized in the
Classification Report (Table 1), and the sample-level performance is visually represented in the Confusion
Matrix
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table 4.2.1. classification report metrics
Confusion Matrix (Best Epoch)
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4.2.1 High-Grade Serous Carcinoma (HGSC)

As the most prevalent class (Support: 45), the model demonstrated strong predictive quality for HGSC,
achieving the highest precision at 0.81 among all subtypes. However, the recall was lower at 0.67, suggesting
that the model had difficulty distinguishing approximately one-third of the HGSC samples, primarily
misclassifying them as Endometrioid Carcinoma (EC) in the confusion matrix. This common
misclassification highlights the architectural and cytological overlap between the two subtypes.

4.2.2 Endometrioid Carcinoma (EC)

The EC subtype (Support: 25) achieved a high recall of 0.84, meaning the majority of true EC cases
were correctly identified. However, its precision was the lowest among all classes at 0.64. This indicates that
while the model rarely missed an EC case, a substantial number of its EC predictions were incorrect, often
being confused with HGSC, thus contributing significantly to the overall false positive.rate for this class.

4.2.3 Clear Cell Carcinoma (CC)

The performance for Clear Cell Carcinoma (CC, Support: 20) was highly balanced, with both a
precision and recall of 0.80. This consistent performance resulted in the highest F1-Score among the three
most common classes (CC, EC, HGSC) and suggests that the texture-based patch sampling strategy
successfully captured the distinct pathological features of clear cell morphology.

4.2.4 Low-Grade Serous Carcinoma (LGSC)

Despite being a minority class (Support: 9), the LGSC subtype demonstrated the highest classification
sensitivity, achieving a remarkable recall of 0.89 (8 out of 9 samples correctly identified). This exceptional
performance is a direct result of the integrated class-balancing mechanisms (Weighted Sampler and Focal
Loss) used during training, which successfully prioritized the correct identification of rare, diagnostically
critical subtypes [14]. The precision stood at 0.67, contributing to a strong F1-Score of 0.76.

4.2.5 Mucinous Carcinoma (MC)

Mucinous Carcinoma (MC, Support: 9) was also a challenging minority class. It achieved the highest
overall precision across all classes at 0.83, indicating that when the model classified a slide as MC, the
prediction was highly reliable. However, it exhibited the lowest recall at 0.56, suggesting that almost half of
the true MC cases were missed, which points to a potential limitation in the feature encoding or sampling
process for this particular subtype's architectural patterns.
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4.3 Discriminative Power and Robustness

The overall discriminative capability of the model was further validated through the analysis of the
Area Under the Curve (AUC) from the Receiver Operating Characteristic (ROC) curves and the Precision-
Recall (PR) curves. The ROC analysis (Figure 5) showed that the model maintains a strong separation margin
across all classes, with AUC values consistently above 0.88. Notably, MC achieved the highest AUC of 0.952,
followed by CC at 0.920. This indicates that despite the low recall for MC, the model's confidence scores are
highly reliable in distinguishing positive from negative cases for this subtype. The Precision-Recall curves
(Figure 6) also confirmed the model's robustness against class imbalance, as the curves for all classes,
especially the minority ones (LGSC, MC), were significantly elevated above the baseline, reinforcing the
reliability of the classification system.
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V. CONCLUSION

This study developed an attention-based Multiple Instance Learning (MIL) framework for five-class
ovarian cancer subtype classification from Whole Slide Images. By combining texture-based informative
patch sampling, a ViT [12] encoder, and Single-Head Attention Pooling [11], the model effectively handled
gigapixel-scale variability.

The best performance was achieved at Epoch 7, with a Balanced Accuracy of 0.750 and a Macro F1-Score
of 0.74. Class-balancing strategies enabled high sensitivity for rare subtypes, including a recall of 0.89 for
LGSC, while all subtypes achieved AUC values above 0.88. Overall, this work demonstrates a reliable and
clinically meaningful computational pathology system capable of accurately distinguishing major ovarian
cancer subtypes
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