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Abstract:  Ovarian cancer remains a leading cause of gynaecological cancer mortality, with treatment 

outcomes heavily dependent on accurate subtype classification. Manual interpretation of gigapixel Whole 

Slide Images (WSIs) is labour-intensive and challenged by extreme resolution, background noise, and class 

imbalance, particularly in large datasets such as UBC‑OCEAN. This study presents a novel framework for 

ovarian cancer subtype classification that integrates a Vision Transformer (ViT-B/16) encoder within an 

attention-based Multi-Instance Learning (MIL) architecture. A hierarchical preprocessing pipeline 

incorporating texture-aware patch sampling is introduced to prioritize diagnostically informative regions by 

ranking patches using variance and edge density. The ViT encoder extracts context-rich representations from 

these selected patches, which are aggregated through single-head attention for slide-level prediction. The 

proposed system demonstrates strong classification performance across all five subtypes, achieving a balanced 

accuracy of 0.750, and offers a scalable, objective solution for computational pathology. These results 

highlight the effectiveness of combining transformer-based feature extraction with targeted sampling 

strategies to address key challenges in high‑resolution medical image analysis and support more accurate 

personalized diagnostics. 

 

Index Terms - Ovarian Cancer, Subtype Classification, Multi-Instance Learning (MIL), Vision Transformer 

(ViT), Whole Slide Images (WSI), Computational Pathology, Texture-Aware Sampling 

 

I. INTRODUCTION 

Ovarian cancer is one of the leading causes of gynaecological cancer deaths, representing the eighth most 

frequent disease in women globally [1]. It often carries a dismal prognosis, with approximately 324,000 

diagnosed cases equating to 207,000 deaths each year. About 90% of all ovarian cancers are classified into 

five major carcinoma subtypes: high-grade serous (HGSC, 70%), endometrioid (EC, 11%), clear cell (CCC, 

10%), low-grade serous (LGSC, 5%), and mucinous carcinomas (MC, 4%) [2]. These subtypes each display 

unique morphological patterns, treatment responses, and prognosis outcomes. Personalized treatment 

planning depends on accurate subtype classification from histopathological images; however, manual 

pathologist assessment of gigapixel-scale Whole Slide Images (WSIs) and Tissue Microarrays (TMAs) is 

challenging due to the immense data volume, making it laborious, subjective, and prone to inter -observer 

variability [1]. While recent developments in deep learning have showed promise in computational pathology, 

there are still major hurdles in managing the extreme resolution, background noise, and significant class 

imbalance seen in datasets such as the UBC-OCEAN [3] [4]benchmark from Kaggle [4] [4].Vision 

Transformers (ViTs), which utilize self-attention mechanisms to assess full images holistically, represent a 

breakthrough in deep learning for medical imaging. By analyzing images as patch embedding’s, ViTs can 

more accurately capture both local and global feature dependencies than conventional Convolutional Neural 
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Networks (CNNs). Recent research has demonstrated ViTs' higher performance in lung and breast  cancer 

categorization, underscoring their potential for ovarian cancer detection [5]. Conventional CNNs have 

difficulty with sparse tissue regions and global context, while simple patch-based approaches frequently fail 

to prioritize diagnostically important regions amidst large non-informative backdrops. Multi-Instance 

Learning (MIL) frameworks address these problems by treating slides as "bags" of patches, enabling slide-

level predictions without detailed annotations. However, applying MIL still requires complex sampling and 

aggregation strategies to effectively collect subtype-specific information. This work presents a strong 

attention-based MIL system for five-class ovarian cancer subtype classification from WSIs and TMAs. To 

address the data challenges, we propose a hierarchical preprocessing pipeline that incorporates a Vision 

Transformer (ViT-B/16) encoder, Single-Head Attention Pooling for dynamic instance weighting, and novel 

texture-aware patch sampling, which ranks patches by variance and edge density to favor cellularly rich 

regions. 

II. LITERATURE SURVEY 

The 2020 WHO Classification defines five primary histotypes for ovarian cancer subtypes based on 

histopathological characteristics: high-grade serous carcinoma (HGSC, ~70%), endometrioid carcinoma (EC, 

~11%), clear cell carcinoma (CCC, ~10%), low-grade serous carcinoma (LGSC, ~5%), and mucinous 

carcinoma (MC, ~4%). Since different histotypes have different cell origins, molecular changes, and 

therapeutic responses, accurate subclassification influences prognosis and treatment. [6] [2] 

 

2.1 Histotype Evolution 

 Following WHO changes in 2014, histotype definitions stabilized, classifying serous carcinomas as 

either LGSC (MAPK-mutated, indolent) or HGSC (TP53-mutated, aggressive). Reclassifications improved 

repeatability to over 90% by reducing "mixed" or "undifferentiated" diagnoses made using 

immunohistochemistry (IHC). Rare forms, such as mesonephric-like adenocarcinoma, have surfaced; these 

are frequently aggressive and KRAS-mutated. [6] 

 

2.1 Diagnostic Approaches 

Principal histotypes can be distinguished with around 90% accuracy using a four-marker IHC panel 

(WT1/p53/napsin A/PR); for example, WT1+/p53 abnormal validates HGSC over EC. On datasets like 

TCGA-OV, deep learning (DL) models such as CNNs and hybrids (ResNet, VGG-16) categorize subtypes 

from histology with 94-100% accuracy. Current research uses morpho-genomics (CNN-ViT) to predict 

subtypes and mutations from H&E slides. [6] [7] [8] [9]  

 

2.3 Diagnostic Approaches 

Principal histotypes can be distinguished with around 90% accuracy using a four-marker IHC panel 

(WT1/p53/napsin A/PR); for example, WT1+/p53 abnormal validates HGSC over EC. On datasets like 

TCGA-OV, deep learning (DL) models such as CNNs and hybrids (ResNet, VGG-16) categorize subtypes 

from histology with 94-100% accuracy. Current research uses morpho-genomics (CNN-ViT) to predict 

subtypes and mutations from H&E slides. [6] [7] [8] [9]  

 

2.4 DL Advances 

CNNs (such as DenseNet-121 and YOLO) that achieve AUCs of 0.91-0.99 for subtype recognition 

across ultrasound, CT, MRI, and histology are highlighted in DL surveys. In multi-class problems (HGSC, 

EC, CCC, LGSC, MC), hybrid models (CNN-LSTM, fine-KNN) outperform conventional techniques. 

Foundation models emphasize the need for data augmentation while evaluating histopathology for subtypes. 

[6] [2] [10] [7] 

III. METHODOLOGY 

The methodology for this study focused on developing a robust computer-aided diagnosis system for ovarian 

cancer subtype classification using Whole Slide Images (WSIs) and Tissue Microarrays (TMAs). The 

approach integrated specialized image preprocessing, a patch-based feature extraction pipeline, and an 

attention-based deep learning architecture to handle the high resolution and heterogeneity of histopathological 

data. The dataset consists of histopathological images from the UBC-OCEAN [4] obtained from Kaggle [3], 

comprising both Whole Slide Images (WSI) and Tissue Microarrays (TMA). 
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3.1 Hierarchical Data Acquisition and Preprocessing 

A multi-stage, hierarchical patch extraction strategy was employed to efficiently manage the high-

resolution histopathological data and prepare consistent inputs for the model. The extraction pipeline 

prioritized patches from available low-resolution thumbnails. If thumbnails were absent, the system 

implemented a regional cropping strategy, extracting 1024 ×1024 pixel regions from the full WSI. Crucially, 

deterministic cropping was used for the validation set to ensure evaluation reproducibility, while stochastic 

cropping was used during training to enhance generalization. To isolate informative cellular regions from the 

background, a binary tissue mask was generated by converting images to the HSV colour space and applying 

a threshold (> 20)to the saturation channel. Patches extracted from WSIs were standardized to 224× 224 

pixels. TMA cores, often captured at higher magnifications, were initially extracted at 448 × 448 pixels and 

subsequently down sampled to 224 × 224to maintain input consistency. Finally, a density filtering step was 

applied, retaining patches only if their tissue coverage density, as determined by the binary mask, exceeded 

30%. 

 

3.2 Texture-Based Informative Patch Sampling 

To ensure the model focused on diagnostically relevant regions and to manage the computational cost 

of WSIs, a custom, texture-aware ranking sampler was implemented to select a representative "bag" of 

instances for each slide. Patches were ranked based on a linear combination of pixel variance (𝜎2)and edge 

density (∇) where edge density was calculated as the mean absolute gradient in the x and y directions:  

             𝑆𝑐𝑜𝑟𝑒 = 0.7𝜎2 + 0.3∇ (1) 

 

 Patches with a mean pixel intensity ≥ 0.90 were excluded as near-white background or blank space. 

For each slide, the top 32 patches with the highest texture scores were selected to form the Multi -Instance 

Learning (MIL) bag, concentrating the model's effort on areas exhibiting high cellularity and architectural 

complexity. 

3.3 Architecture: Attention-Based Multi-Instance Learning 

The classification was structured as a Multi-Instance Learning (MIL) [11] task, where each slide (the 

bag) was represented by the set of 32 selected patches (the instances). A Vision Transformer (ViT-B/16) [12], 

pre-trained on ImageNet-1K [13], was used as the feature encoder. The standard classification head was 

replaced by a linear projection layer that mapped the CLS token feature into a 768-dimensional embedding 

space. The resulting patch embeddings were then aggregated using a Single-Head Attention Pooling 

mechanism [11]. This learned module dynamically computes a scalar weight for each patch, reflecting its 

diagnostic importance, and calculates a weighted sum to produce the final, aggregated slide-level feature 

vector. This aggregated feature was passed through Layer Normalization and a final linear layer to predict 

one of the five ovarian cancer subtypes. 

 

3.4 Training Protocol and Optimization 

The model was trained for 20 epochs using a highly optimized protocol designed to handle severe 

class imbalance and maximize computational efficiency. Class Balancing was achieved using inverse-

frequency class weights, which were integrated into two mechanisms: a Weighted Random Sampler in the 

DataLoader to ensure equal class representation across epochs, and direct application within the loss 

calculation. The effective training optimization was governed by a Focal Loss [14] (𝛾 = 2.0) applied within 

the step_batch function, utilizing the inverse-frequency class weights(α).Although a standard 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 with label smoothing (𝜖 = 0.05)was defined, the model was primarily optimized by the 

class-balanced Focal Loss. The AdamW optimizer [15] (𝐿𝑅 =  3 × 10−5, Weight Decay = 0.01 was utilized, 

paired with a Cosine Annealing Learning Rate Scheduler. Finally, training leveraged Automatic Mixed 

Precision (AMP) for accelerated performance, with gradient updates performed using gradient accumulation 

over 4 steps, effectively increasing the batch context for each optimization step. The implementation utilized 

the PyTorch [16] and PyTorch Image Models (timm) [17] libraries. 
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IV. RESULTS AND ANALYSIS 

4.1 Training Dynamics and Model Selection 

 The training process for the attention-based Multi-Instance Learning (MIL) model spanned 20 epochs, 

utilizing a class-weighted Focal Loss to address the severe class imbalance in the training set. The Training 

vs Validation Loss curve (Figure 1) shows a sharp decrease in training loss (approaching 0.0000), while the 

validation loss stabilizes around 0.006–0.008. This divergence reflects the intense optimization of the 

weighted training loss. The Training vs Validation Accuracy curves (Figure 2) illustrate rapid convergence 

on the training data, but generalization performance was governed by the Balanced Accuracy metric. The 

model achieved its peak generalization performance at Epoch 7, yielding a Balanced Accuracy of 0.750 (Val 

Accuracy 0.741) (Figure 3). This epoch was selected as the final checkpoint for all subsequent analysis and 

evaluation, as further training led to a decline in balanced accuracy, indicative of increasing overfitting.  

 

 

 

 

 
fig 4.1.1 training and validation loss 

 
fig 4.1.2. training and validation    accuracy 

 

 

 
fig 4.1.3. validation balanced accuracy 

 

 

4.2 Subtype-Specific Classification Performance 

The selected model demonstrated a robust capacity for distinguishing between the five ovarian cancer 

subtypes, achieving a Macro F1-Score of 0.74. The detailed performance metrics are summarized in the 

Classification Report (Table 1), and the sample-level performance is visually represented in the Confusion 

Matrix 
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table 4.2.1. classification report metrics  

Class 
Precisio

n 

Recal

l 

F1-

Scor

e 

Suppor

t 

CC 0.80 0.80 0.80 20 

EC 0.64 0.84 0.72 25 

HGS

C 
0.81 0.67 0.73 45 

LGS

C 
0.67 0.89 0.76 9 

MC 0.83 0.56 0.67 9 
 

 
fig 4.2.1. confusion matrix (best epoch 7) 

 

 

4.2.1 High-Grade Serous Carcinoma (HGSC) 

As the most prevalent class (Support: 45), the model demonstrated strong predictive quality for HGSC, 

achieving the highest precision at 0.81 among all subtypes. However, the recall was lower at 0.67, suggesting 

that the model had difficulty distinguishing approximately one-third of the HGSC samples, primarily 

misclassifying them as Endometrioid Carcinoma (EC) in the confusion matrix. This common 

misclassification highlights the architectural and cytological overlap between the two subtypes.  

 

4.2.2 Endometrioid Carcinoma (EC) 

The EC subtype (Support: 25) achieved a high recall of 0.84, meaning the majority of true EC cases 

were correctly identified. However, its precision was the lowest among all classes at 0.64. This indicates that 

while the model rarely missed an EC case, a substantial number of its EC predictions were incorrect, often 

being confused with HGSC, thus contributing significantly to the overall false positive rate for this class.  

 

4.2.3 Clear Cell Carcinoma (CC) 

The performance for Clear Cell Carcinoma (CC, Support: 20) was highly balanced, with both a 

precision and recall of 0.80. This consistent performance resulted in the highest F1-Score among the three 

most common classes (CC, EC, HGSC) and suggests that the texture-based patch sampling strategy 

successfully captured the distinct pathological features of clear cell morphology. 

 

4.2.4 Low-Grade Serous Carcinoma (LGSC) 

Despite being a minority class (Support: 9), the LGSC subtype demonstrated the highest classification 

sensitivity, achieving a remarkable recall of 0.89 (8 out of 9 samples correctly identified). This exceptional 

performance is a direct result of the integrated class-balancing mechanisms (Weighted Sampler and Focal 

Loss) used during training, which successfully prioritized the correct identification of rare, diagnostically 

critical subtypes [14]. The precision stood at 0.67, contributing to a strong F1-Score of 0.76. 

 

4.2.5 Mucinous Carcinoma (MC) 

Mucinous Carcinoma (MC, Support: 9) was also a challenging minority class. It achieved the highest 

overall precision across all classes at 0.83, indicating that when the model classified a slide as MC, the 

prediction was highly reliable. However, it exhibited the lowest recall at 0.56, suggesting that almost half of 

the true MC cases were missed, which points to a potential limitation in the feature encoding or sampling 

process for this particular subtype's architectural patterns. 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                       © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882 

IJCRT2601135 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b143 
 

4.3 Discriminative Power and Robustness 

The overall discriminative capability of the model was further validated through the analysis of the 

Area Under the Curve (AUC) from the Receiver Operating Characteristic (ROC) curves and the Precision-

Recall (PR) curves. The ROC analysis (Figure 5) showed that the model maintains a strong separation margin 

across all classes, with AUC values consistently above 0.88. Notably, MC achieved the highest AUC of 0.952, 

followed by CC at 0.920. This indicates that despite the low recall for MC, the model's confidence scores are 

highly reliable in distinguishing positive from negative cases for this subtype. The Precision-Recall curves 

(Figure 6) also confirmed the model's robustness against class imbalance, as the curves for all classes, 

especially the minority ones (LGSC, MC), were significantly elevated above the baseline, reinforcing the 

reliability of the classification system. 

 

fig 4.3.1. roc curves (AUC) for all subtypes 

 

fig 4.3.2. precision-recall (PR) curves  

 

 

 

V. CONCLUSION 

This study developed an attention-based Multiple Instance Learning (MIL) framework for five-class 

ovarian cancer subtype classification from Whole Slide Images. By combining texture-based informative 

patch sampling, a ViT [12] encoder, and Single-Head Attention Pooling [11], the model effectively handled 

gigapixel-scale variability. 

 

The best performance was achieved at Epoch 7, with a Balanced Accuracy of 0.750 and a Macro F1-Score 

of 0.74. Class-balancing strategies enabled high sensitivity for rare subtypes, including a recall of 0.89 for 

LGSC, while all subtypes achieved AUC values above 0.88. Overall, this work demonstrates a reliable and 

clinically meaningful computational pathology system capable of accurately distinguishing major ovarian 

cancer subtypes 
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