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Abstract: 

Facial Recognition (FR) is a technique that helps recognize people’s faces and has wide applications. New 

methodologies based on computer vision, deep learning, and transfer learning have been used to perform 

face recognition. However, limitations still exist. This study proposes a comprehensive methodology that 

evaluates multiple Convolutional Neural Network (CNN) and transfer learning-based models, including 

VGG16, InceptionV3, and CBAM-enhanced CNNs, us- ing a Kaggle celebrity face dataset. The VGG16-

based model achieved the highest validation accuracy (88.65%) and lowest loss (0.4267), while a custom 

CNN (256 units, 128x128) offered a balance of accuracy (85.13%) and compu- tational efficiency. 

Challenges such as overfitting and computational cost were observed, particularly in regularized models. 

Future work aims to enhance generalization through data augmentation, hyperparameter tuning, and model 

ensemble techniques to address scalability and real-world distortions. 

Index Terms: Facial Recognition (FR), Deep Learning, 3D Face Modeling, OpenCV, LS-SIFT Descriptor 

 

1 Introduction 

Facial Recognition (FR) is a prominent biometric technique. It is applied in security, healthcare, and 

identity verifica- tion. Recent advances have changed FR from traditional to advanced deep learning and 

hybrid approaches, addressing challenges such as illumination, pose variations, occlusions, and aging 

[Gururaj et al., 2024, Abdelbar et al., 2024]. Various surveys emphasize the role of large-scale datasets, 

generative AI for 3D modeling, and tools like OpenCV and, Python, in FR. However, they also highlight 

unresolved issues such as cross-sensor compatibility, ethical concerns, and robustness [Gururaj et al., 2024, 

Abdelbar et al., 2024]. Optimization techniques have gained focus, which reduce com- putational complexity 

while maintaining high accuracy in resource-constrained environments [Ouloul et al., 2025, Shi et al., 

2024]. Novel approaches, such as the augmentation method by [Malakar et al., 2024] and the LS-SIFT 

descrip- tor, further improve accuracy and robustness in diverse datasets [Malakar et al., 2024, Lin and 

Otoya, 2024]. Despite progress, challenges such as scalability, real-world distortions, and computational 

efficiency still persist [Ho et al., 2024, Zhu et al., 2025, Robbins et al., 2024]. 

This paper describes the various face recognition techniques, with latest algorithms. After that, we have 

proposed our research methodology on face recognition using different CNN and transfer learning-based 

models. 
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2 Literature Review 

Facial Recognition (FR) is a crucial technique in biometrics, including other applications such as security, 

healthcare, and identity verification. The survey conducted by the authors highlights face recognition 

techniques from conventional to sophisticated hybrid and deep learning approaches [Gururaj et al., 2024]. 

They categorize FR methods to address challenges such as illumination variations, pose differences, 

occlusions, and aging. Their review further emphasizes the importance of large-scale datasets and the 

integration of generative AI for 3D facial modeling. Moreover, they recognize ethical considerations and 

privacy-preserving mechanisms for better FR systems development [Gururaj et al., 2024]. 

In similar research, the authors conducted a systematic review of FR techniques, focusing on security, 

identity ver- ification, and autonomous systems [Abdelbar et al., 2024]. Their work extends the survey by 

[Gururaj et al., 2024], which classifies FR methods into different advanced techniques, including appearance-

based and hybrid models in deep learning and 3D facial recognition [Gururaj et al., 2024, Abdelbar et al., 

2024]. Both studies highlighted the prominent role of OpenCV and Python in building FR-based 

applications. However, despite technological progress, core issues such as cross-sensor compatibility, 

ethical concerns, and robustness remain unsolved [Gururaj et al., 2024, Abdelbar et al., 2024]. 

Recent developments in FR systems have increasingly emphasized optimization techniques to increase 

performance with low-cost embedded architectures, reducing computational complexity while maintaining 

high accuracy. The authors [Ouloul et al., 2025], proposed an embedded FPGA-based FR system utilizing 

the centrally overlapped blocks-local binary pattern (COB-LBP) descriptor, achieving high recognition rates 

and real-time processing [Ouloul et al., 2025]. Their research highlights the trade-offs between hardware 

limitations and algorithm robustness. The COB-LBP method demonstrates significant effectiveness in 

resource-constrained environments [Ouloul et al., 2025]. 

The authors [Shi et al., 2024] introduced a lightweight model, LighterFace, integrated with CSPNet and 

ShuffleNetv2 with a Global Attention Mechanism (GAMAttention) [Shi et al., 2024]. Their approach results 

in an 85.4% reduction in computational load and a 66.3% increase in processing speed compared to YOLOv5 

while maintaining 90.6% detection accuracy. Designed for edge devices such as the Raspberry Pi, LighterFace 

showcases its practical viability in community security applications [Shi et al., 2024]. 

A comprehensive review by the authors discusses how face recognition systems process collected facial 

images using automated equipment [Li et al., 2016]. They discussed important evaluation criteria and 

benchmark databases for researchers to assess system performance. The authors identified existing 

limitations in practical applications and suggested future solutions, including the development of specialized 

cameras with high image quality and 3D techniques to handle facial rotation and occlusion. Their future 

work focuses on advancements that could enhance capabilities in image filtering, reconstruction, and 

denoising [Li et al., 2016]. 

The authors [Malakar et al., 2024] introduced a novel approach that improves the accuracy of recognition 

by aug- mentation, occluding the lower portion of the face rather than reconstructing the entire facial 

structure [Malakar et al., 2024]. Their approach preserves individual identity more effectively than 

conventional inpainting methods. The pro- posed methodology integrates CNN-based feature matching with 

SURF-based geometric alignment, producing realistic full-face images from masked inputs and achieving 4-

6% higher accuracy than existing techniques. The proposed model reduces computational complexity while 

maintaining robustness across datasets such as LFW and CASIA-WebFace [Malakar et al., 2024]. 

The authors [Lin and Otoya, 2024] introduced LS-SIFT, an innovative learned descriptor that enhances 

traditional SIFT by incorporating landmark-specific nonlinear transformations, thereby increasing the 

robustness of images [Lin and Otoya, 2024]. Their framework integrates head pose classification for visible 

landmark selection with a novel Mahalanobis Similarity (MS) as the base learner model. It achieved 

remarkable accuracy on the CMU-PIE dataset and over 94% Rank-1 accuracy on Multi-PIE datasets. The 

two-stage methodology of the system outperformed conventional SIFT by 4-8% across multiple benchmarks 

while preserving robustness [Lin and Otoya, 2024]. 

The authors [Sohail et al., 2024] proposed a YOLO-V5-based real-time face matching framework that 

analyzes dif- ferent facial orientations [Sohail et al., 2024]. It utilizes a multi-pose pattern recognition 

technique where facial features are aligned according to spectral similarity in specific regions. This approach 

effectively minimizes computational com- plexity while preserving high accuracy. In addition, the system 

presents an innovative error function that integrates execution time, accuracy loss, and identity loss [Sohail 
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et al., 2024]. 

The authors [Ho et al., 2024] performed a systematic review of 70 studies published between 2018 and 

2023, analyz- ing Principal Component Analysis (PCA)-based methods in modern contexts [Ho et al., 2024]. 

This research categorizes Eigenface applications, benchmarking datasets, and outlines implementation 

pipelines. The technique focuses on exist- ing challenges of sensitivity to lighting, occlusions, and scalability 

limitations. The study also integrates traditional and contemporary research for variants of the eigenface, 

surveillance, and emotion detection. For the future, they proposed focusing on dataset-specific performance 

benchmarking with deep learning architectures [Ho et al., 2024]. 

The introduction of Ghost modules by the authors addressed the challenges of employing cost-effective 

linear trans- formations for feature maps [Alansari et al., 2023]. This technique optimizes the computational 

cost of the transformation process. The authors proposed GhostFaceNets—a series of lightweight models 

with attention mechanisms to enhance feature representation. When evaluated on benchmark datasets, 

GhostFaceNets achieved high performance with lower computational requirements compared to 

conventional CNNs [Alansari et al., 2023]. 

The authors conducted a survey on FR methods for traditional and deep learning-based algorithms [Wang et 

al., 2022]. They conducted an analysis to check the performance of these algorithms under various conditions 

such as illumination, pose, and occlusion. The research highlighted a shift from hand-made features to end-

to-end neural networks in FR methods. They also examined the influence of large-scale datasets on model 

generalization. In addition, the authors explore emerging trends such as self-supervised learning and bias 

mitigation, along with open challenges in cross- domain robustness and computational efficiency [Wang et 

al., 2022]. 

The authors proposed a novel technique to identify the relationship between feature norms and image 

quality in FR [Gim and Sohn, 2024]. According to them, higher feature norms show more similarity to those 

learned by deep learning models. They introduced the Noise Direction Regularization (NDR) technique, which 

comprises noise samples identified by feature norms to enhance FR performance in low-resolution images. 

However, the approach currently detects only a subset of noise samples, with future work aimed at 

improving precision [Gim and Sohn, 2024]. 

The authors proposed DEFOG, a cross-age FR algorithm that enhances deep learning with an attention 

mechanism and Arcface loss to address challenges for age-related facial changes [Zhu et al., 2025]. By 

integrating Retinaface for face detection and an improved Resnet-50 model with attention mechanisms, the 

method extracts robust facial features. It achieved higher accuracy and robustness across diverse age groups. 

Despite being effective, the large-scale feature extraction network of the model presents challenges for 

deployment in resource-constrained systems [Zhu et al., 2025]. The authors introduced DaliID, a robust 

method for FR and person re-identification under real-world image distor- tions [Robbins et al., 2024]. The 

approach employs a novel distortion-adaptive technique with atmospheric distortion augmentation and an 

easy-to-hard adaptive weighting schedule. Additionally, a magnitude-weighted feature fusion of parallel 

distortion-adaptive and clean backbones improves performance across high- and low-quality images. 

DaliID achieves state-of-the-art results on seven benchmarks, including IJB-S, TinyFace, and MSMT17, 

and introduces new long-distance (750+ meters) datasets for evaluating realistic distortions. Future work 

aims to explore self-paced curricu-lum learning and diverse backbone combinations [Robbins et al., 2024]. 

 

3 Research Methodology 

This research methodology consists of data collection, preprocessing, face detection, model development, 

training, and evaluation. 

 

3.1 Data Collection and Preprocessing 

The dataset is taken from Kaggle, containing images of celebrity faces. A CSV file of metadata with image 

IDs and corresponding celebrity labels is provided for annotation. Images are loaded and CSV file is read to 

map image IDs to celebrity labels. Then, images are resized to 224x224 pixels for models requiring this 

input or 128x128 pixels for the CBAM-enhanced model to standardize input dimensions. Pixel values are 

normalized to the range [0, 1] by dividing by 255 to improve model convergence. 

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882 

IJCRT2601134 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b133 
 

 

 

Figure 1: celebrity faces and celebrity faces recognized by mtcnn 

 

 

3.2 Face Detection 

A deep learning-based face detection model, called MTCNN is used, that detects facial bounding boxes with 

higher accuracy. It ensures precise face extraction for model training. 

 

3.3 Model Development 

Distinct models were developed and evaluated to compare their performance in face recognition. They are as 

follows: 

1. Baseline CNN: A simple CNN with three convolutional layers (32, 64, 128 filters), each followed by 

max-pooling. Includes a dense layer with 512 units (ReLU activation), dropout (0.5), and a softmax 

output layer. Input size: 128 × 128 × 3. No regularization applied. 

2. Custom CNN (256 units, Regularized): A deeper CNN with four convolutional layers (32, 64, 128, 

256 filters), followed by max-pooling. Includes a dense layer with 256 units (ReLU activation) with L1 

(0.001) and L2 (0.001) regularization, batch normalization, dropout (0.7), and a softmax output layer. 

Input size: 128 × 128 × 3. 

3. Custom CNN (128 units, Regularized): Similar to the 256-unit variant but with a dense layer of 128 

units. Includes L1 (0.001) and L2 (0.001) regularization, batch normalization, dropout (0.5), and a 

softmax output layer. Input size: 128 × 128 × 3. 

4. InceptionV3-Based Model: A transfer learning model using pre-trained InceptionV3 (with frozen 

weights), fol- lowed by global average pooling, a dense layer with 512 units (ReLU activation), 

dropout (0.5), and a softmax output layer. Input size: 224 × 224 × 3. No regularization applied. 

5. CBAM CNN: A CNN with three convolutional layers (32, 64, 128 filters) enhanced with 

Convolutional Block Attention Modules (CBAM), followed by max-pooling. Includes a dense layer 

with 512 units (ReLU activation), dropout (0.5), and a softmax output layer. Input size: 224 × 224 × 3. 

No regularization applied. 

6. VGG16-Based Model: A transfer learning model using pre-trained VGG16 (with frozen weights), 

followed by flattening, a dense layer with 512 units (ReLU activation), batch normalization, dropout 

(0.5), and a softmax output layer. Input size: 224 × 224 × 3. Uses data augmentation for regularization. 

7. Custom CNN (512 units, 224×224): A CNN with four convolutional layers (32, 64, 128, 256 filters), 
followed by max-pooling. Includes a dense layer with 512 units (ReLU activation), batch 
normalization, dropout (0.7), and a softmax output layer. Input size: 224 × 224 × 3. No regularization 
applied. 

8. Custom CNN (512 units, BatchNorm): A CNN with three convolutional layers (32, 64, 128 filters), 

followed by max-pooling. Includes a dense layer with 512 units (ReLU activation), batch 

normalization, dropout (0.5), and a softmax output layer. Input size: 128 × 128 × 3. No regularization 
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applied. 

9. Custom CNN (256 units, 128×128): A CNN with four convolutional layers (32, 64, 128, 256 filters), 
followed by max-pooling. Includes a dense layer with 256 units (ReLU activation), batch 
normalization, dropout (0.5), and a softmax output layer. Input size: 128 × 128 × 3. No regularization 
applied. 

Each model is designed to balance accuracy, computational efficiency, and generalization, with variations 

in depth, input resolution, and regularization strategies to address overfitting and enhance performance.  

 

3.4 Training and Validation 

The face recognition dataset is split into training and validation sets, with images resized to the respective 

input sizes based on the model requirements. Adam optimizer is used for all models with default learning 

rate, except for VGG16, which uses learning rate reduction. Batch size is 32 for all models. Epochs varied 

by models from 20 to 40. Data augmentation is applied to VGG16 to enhance generalization. 

 

4 Results and Discussion 

4.1 Validation Accuracy and Loss 

The key observations from the Table are: 

• The VGG16-Based Model achieves the highest validation accuracy (0.8865) and lowest validation loss 

(0.4267). 

• The Custom CNN (256 units, 128x128) performs strongly with a validation accuracy of 0.8513 and a 

low valida- tion loss of 0.5633, making it a lightweight but effective model. However, it is showing 

some overfitting. 

• The CBAM CNN yields the lowest validation accuracy (0.6634). 

• Regularized Custom CNN models (256 and 128 units) show moderate performance (0.7730 and 0.7495 

validation accuracy), but high validation losses (2.2034 and 1.9012) suggest overfitting despite 

regularization. 
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Figure 2: vgg16 transfer learning model architecture 

 

4.2 Training Performance 

The Key Observations of the training performance of all the models is as follows: 

• The Custom CNN (512 units, BatchNorm), Custom CNN (512 units, 224x224), and Custom CNN 

(256 units, 128x128) achieve perfect training accuracy (1.0000) with extremely low training losses 

(0.0042, 0.0079, 0.0121), but their validation accuracies (0.8180–0.8513) indicate overfitting. 

• The Baseline CNN shows high training accuracy (0.9645) and low training loss (0.0998) with the 
fastest training time (∼1.21s per epoch), making it computationally efficient. 

• The VGG16-Based Model has the longest training time (∼24–32s per epoch) due to its deep architecture 
and data augmentation, but its validation performance justifies the computational cost. 

• The InceptionV3-Based Model balances training accuracy (0.9079) and computational efficiency 
(∼5.81s per epoch), but its validation accuracy (0.7319) is lower than VGG16. 

The research methodology prioritizes models based on validation accuracy, validation loss, and 

computational effi- ciency for face recognition selection. VGG16-Based Model is selected as the primary 

model due to its superior vali- dation accuracy (0.8865) and low validation loss (0.4267). Despite its high 

computational cost (∼24–32s per epoch), 
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Table 1: validation accuracy and loss for all models 

Model Val. 

Accuracy 

Val. 

Loss 

Epoch

s 

Input Size Regularization 

Baseline CNN 0.6947 1.7243 20 128 × 128 × 
3 

None 

Custom CNN (256 units, Regularized) 0.7730 2.2034 40 128 × 128 × 
3 

L1=0.001; 
L2=0.001 

Custom CNN (128 units, Regularized) 0.7495 1.9012 40 128 × 128 × 
3 

L1=0.001; 
L2=0.001 

InceptionV3-Based Model 0.7319 0.9929 20 224 × 224 × 
3 

None 

CBAM CNN 0.6634 1.7996 20 224 × 224 × 
3 

None 

VGG16-Based Model 0.8865 0.4267 30 224 × 224 × 
3 

Data 
Augmentation 

Custom CNN (512 units, 224 × 224) 0.8395 0.6096 20 224 × 224 × 
3 

None 

Custom CNN (512 units, BatchNorm) 0.8180 0.6641 20 128 × 128 × 
3 

None 

Custom CNN (256 units, 128 × 128) 0.8513 0.5633 20 128 × 128 × 
3 

None 

 

Table 2: training performance of all models 

Model Final Training 

Accuracy 

Final Training 

Loss 

Training Time per 

Epoch (s) 

Baseline CNN 0.9645 0.0998 ∼1.21 
Custom CNN (256 units, 
Regularized) 

0.9133 1.6053 ∼4.60 

Custom CNN (128 units, 
Regularized) 

0.9530 1.1221 ∼4.57 

InceptionV3-Based Model 0.9079 0.3426 ∼5.81 
CBAM CNN 0.9440 0.1793 ∼2.29 
VGG16-Based Model 0.8599 0.5344 ∼24–32 
Custom CNN (512 units, 224 × 224) 1.0000 0.0079 ∼4.63 
Custom CNN (512 units, 
BatchNorm) 

1.0000 0.0042 ∼1.41 

Custom CNN (256 units, 128 × 128) 1.0000 0.0121 ∼1.44 

 

its robustness, enhanced by data augmentation and pre-trained weights, makes it ideal for high-accuracy 

applications. Secondary Choice could be Custom CNN (256 units, 128x128), offering a validation accuracy 

of 0.8513, low validation loss (0.5633), and fast training time (∼1.44s per epoch). 

 

5 Conclusion and Future Work 

In conclusion, we will extend the data augmentation to all models to improve generalization, as demonstrated 

by VGG16. Also, optimize learning rates, batch sizes, and regularization parameters using grid search for 

hyper-parameter tuning. We will also refine CBAM CNN by increasing training epochs or simplifying 

attention modules to better suit the dataset. Top-performing models can also be combined to potentially 

improve accuracy. This research ensures flexibility for future improvements and adaptability to varying 

computational constraints. 
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