

Online Bike Servicing With Pick-Up And Drop Scheduling.

Project Guide: Prof. N. D. Rathi

Abhay S. Lokare¹, Sameer S. Chandekar², Harshal G. Panchal³ and Krushna R. Chavan⁴

^{1,2,3,4}B-tech Student, Department of Artificial Intelligence and Data Science,

Karmaveer Dadasaheb Kannamwar, college of engineering, Nagpur.

Abstract:- A revolutionary Web Application which will revolutionize the two wheeler servicing industry by online bike service booking with pickup and drop. Long queues, poor service transparency and booking woes are the usual pitfalls of a bike servicing. These problems are eliminated by offering a digital platform to register, schedule services, add more tasks, and pay online for the services and track vehicle online in real time throughout the service life. Customers receive milestone updates such as an e-commerce tracker, service centres receive revenue from automated request routing, real time status, and digital record keeping. Digital invoicing, multi-channel payments and ratings and feedback are user experience and trust. It connects consumers and service providers, ensuring openness, effectiveness and customer satisfaction for urban mobility. It is intended to scale and integrate with AI and IoT.

- **Index Terms**— Online bike service, scheduling for pickup and drop-off, Web application, online payment integration, real-time tracking, feedback system, and service centre automation the shift to digital AI-driven Scheduling, Two-Wheeler Maintenance, Admin Dashboard, IoT Integration, Vehicle Servicing Platform, and Customer Satisfaction

I. INTRODUCTION:

The two wheeler servicing industry is undergoing a rapid digital transformation due to urbanization and demand for comfort and transparency. In the past, bike owners have had to endure unpleasant hand-offs, long waits and no real-time updates about getting their bikes serviced. The rise of web and mobile apps has since made it possible to imagine auto maintenance as an intuitive user experience.

The recommended online bike service eliminates these issues by providing a full-service digital experience for registering, scheduling maintenance, arranging pick-up and drop-off services, secure online payments, and monitoring services in real time from any device. This shift is the foundation of modern urban mobility as it saves time, is convenient, and safer. Through milestones, records, and feedbacks, digitalization helps businesses and service centres to optimize resources, reduce administrative costs and increase customer engagement. These platforms eventually lead to a smarter, more transparent and efficient servicing experience for customers and service providers of innovation.

II. LITERATURE REVIEW:

There are a lot of studies and industry reports demonstrating digital platforms and web applications are changing how bikes are maintained. The operational benefits of digital scheduling have been demonstrated by leading car and bike service websites such as Go Mechanic who showed that customers booking online saved up to 30-40%. Service selection is possible through apps such as Bike Bazaar but they do not provide advanced tracking and milestone notification to a satisfied customer.

According to a recent survey, most two wheelers prefer booking online when it's easy and transparent. GPS tracking and clouds makes work easy and provide best pick-up and drop-off services. Auto repair apps and cloud services have secure billing, appointment scheduling, and history. They use IoT and AI recommendations for predictive maintenance and personalization.

Digital sterilization in the automotive industry is driving customer engagement through integrated solutions, operational improvement and business innovation, according to several studies. These studies are by Piz aioli (2025) and Prez-Moure et al. (2024) the literature also shows that integrated digital solutions for easier communication between clients and service providers are replacing paper-based systems. Despite these benefits, industry reports point out barriers to technology adoption, including the digital divide between populations with and without a solid technological foundation, system reliability, and user data security. Predictive maintenance alerts, intelligent resource allocation, AI-driven recommendations, and smooth IoT system integration are the main areas of future development in this field.

So after all, the literature has it right: modernizing vehicle servicing needs milestone-based digital service platforms. With real-time updates, secure payments and service records, it makes it faster, less prone to manual error and happier customers. The literature review on Online Bike Service with Pick-up and Drop Scheduling shows how digital platforms are changing the auto repair industry. Users want simple digital appointments and online

booking sites such as Go Mechanic can decrease wait time by 30-40%. While real time tracking and milestones are a big part of customer satisfaction, mobile apps rarely offer a complete service.

The efficiency and transparency of pick-up/drop services is proven to be increased by the use of cloud technologies and GPS integration, so that service centres and users could communicate.

III. MOTIVATION:

Servicing and maintenance have to be done on time more than before for the safe and long running life of vehicles, especially with the sudden rise of urban two-wheelers. Many bike owners struggle to find convenient, high quality servicing, with long waiting times, poor communication and laborious manual booking process. In addition, due to the busy lives and traffic, users are unable to visit the service centers.

Inspired by these real world problems, this project hopes to use technology to simplify bike repair. Customers enjoy unmatched convenience, transparency and control over their servicing process through an online portal for service booking, pick-up & drop scheduling, real time status tracking and secure online payments. Improved customer engagement, resource allocation and faster request processing are some of the benefits for service centres.

This digital transformation is also reflected in daily services and smart mobility. We fill the gap between bike owners and service providers in a one-stop shop, scalable and powerful platform, fixing the problems of current servicing systems and setting the stage for future AI scheduling and predictive maintenance.

IV. AIM AND OBJECTIVE:

Aim:- To provide a reliable, easy-to-use online bike service platform for customers to be more convenient and efficient for service centers by integrating safe digital payments, real-time status, pick-up/drop scheduling.

Goals:

- Allows easy user registration, login and service scheduling via customizable options.

- Add multi-channel payments, UPI, and QR codes.
 - Real-time notifications and tracking of milestones.
 - Automate billing and request management in the Service Centre
 - Centralize service, payment and feedback records.
 - To improve service quality with ratings and feedback system
 - Develop SMS and push notifications for communication purposes.
 - Implement role based access dashboards
- Prepare for intelligent scheduling and predictive maintenance with AI and IoT for future growth.

V. PROPOSED METHODOLOGY:

In order to expedite bike maintenance and pick-up/drop-off, the Online Bike Service platform is being built in a modular and user-centric fashion using web, database and real-time communication technologies.

1. System Architecture

The main three modules are the architecture:

- **User Module:** allows bike owners to book appointments, sign up and authenticate. Users can choose their desired pick-up and drop-off time, choose services such as cleaning, oil change and servicing, and pay online through gateways.
- **Service Centre Module:** Manages requests, assigns mechanics, tracks statuses, reviews tasks and collects feedback. To provide real-time service updates, it also easily communicates with the user module.
- **Database and Admin Module:** Users, service requests, payments, and service histories are all stored in a single database. For methodical work the admin dashboard provides communication, resources and analytics.

2. Workflow Design

- The first step is to register and log in to web application.
- Users select service tasks, set up pick-up and drop-off time, and complete online payment after logging in.
- A secure payment gateway is employed by the system for validating transactions.
- The service request module takes incoming requests from clients and directs them to available mechanics based on their availability.
- Service progress is tracked by: picked up, at service centre, servicing in progress, finished, sent out for delivery, delivered.
- Users receive real-time updates and notifications at every milestone.
- To ensure quality, users rate and comment after completing them.

3. Technology Stack

- Frontend: Angular or React.js for responsive user interface development.
- Backend: Django or Node.js for scalable API services
- Database: MySQL or MongoDB to handle both relational and non-relational data
- Payment Gateway: Secure connections with popular systems accepting credit/debit cards, UPI and QR Codes
- Notifications: Real-time communication via email and SMS APIs.
- AWS/Azure Cloud Hosting for Secure, Scalable, Flexible Data

4. Security and Data Privacy

- User information is kept secret when communicating (HTTPS, SSL/TLS)
- Role-based access control limits access to authorized users and regular backups maintain data integrity and disaster recovery.

5. Testing and Validation

- Component testing is carried out for unit and integration testing
- UAT will demonstrate the functionality and usability.
- Work flows and UI/UX designs are improved by real users.

6. Scalability and Future Enhancements

- AI algorithm integration for predictive maintenance scheduling is supported.
- Bicycle IoT sensor data can be used to populate the system for intelligent fault diagnosis.
- Accessibility will be enhanced with the addition of mobile app interfaces.

These dashboards display customer behaviour and how to improve it.

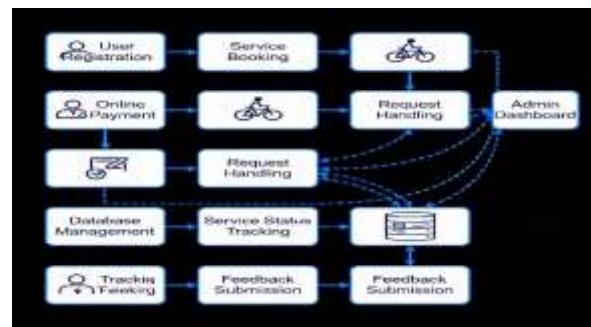


Fig. 1: Flowchart of work

It provides a safe, economical and customer-friendly service by digitizing bike servicing through a digital pick-up and drop service and keep it easy and transparent.

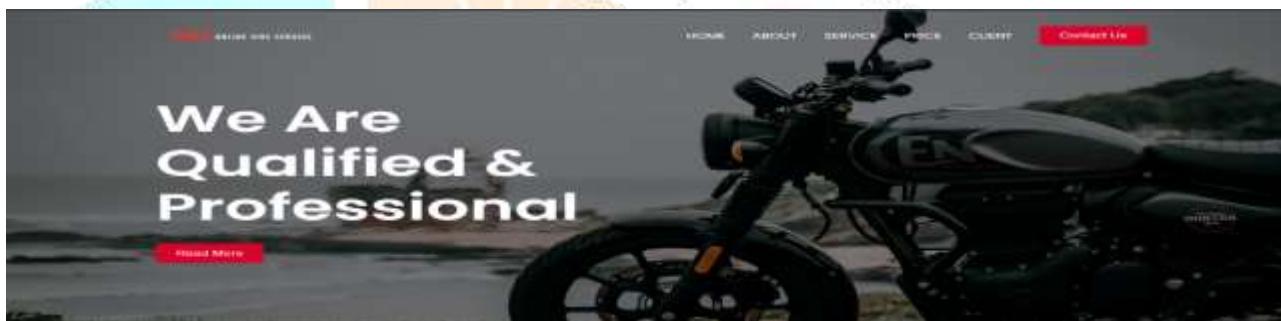


Fig. 2: User Interface

BEST PACKAGES Our Pricing Plans

We offer a range of affordable and flexible pricing options.

SILVER PACKAGE

₹999

ROUTINE MAINTENANCE:
- Diagnostic Services
- Wheel Alignment
- Brake and Suspension
- Air Conditioning
- Instrumental Maintenance

[Go Basic](#)

PLATINUM PACKAGE

₹1899

ROUTINE MAINTENANCE:
- Diagnostic Services
- Engine Tune-Ups
- Tire Sales and Services
- Exhaust system inspection
- Scheduled Maintenance

[Go Premium](#)

GOLD PACKAGE

₹1299

ROUTINE MAINTENANCE:
- Diagnostic Services
- Brake and Suspension
- Scheduled Maintenance
- Wheel Alignment
- Air Conditioning

[Go Standard](#)

Fig. 3: Subscription Model

Fig. 4: Contact

VI. COMPARISON WITH EXISTING METHOD:

Feature/Aspect	Traditional Bike Service	Existing Online Services	Proposed Online Bike Service with Pick-up & Drop Scheduling
Booking Process	Walk-in or phone call	Online booking available	Enhanced online booking with customizable task selection
Payment Mode	Cash on delivery or at centre	Mostly digital payments	Multiple secure online payments (UPI, QR, cards) integrated
Pick-up and Drop Service	Limited or none, mostly self-arranged	Offered by some platforms	Fully integrated scheduling for pick-up and drop by service providers
Real-time Service Tracking	None	Limited to service status updates	Milestone-based real-time tracking via notifications and dashboard
Request Management	Manual, paper-based	Partially automated	Automated request handling and mechanic assignment
Transparency	Low, customer often unaware of progress	Basic updates available	Full transparency with detailed stage-wise service progress updates
Feedback System	Mostly verbal or paper-based	Available online	Integrated digital feedback and rating system
Service History Tracking	Difficult, often manual	Partially digital	Centralized, searchable digital service and payment history
Customer Convenience	Low due to physical presence requirement	Moderate	High with app/web access, pick-up/drop convenience, and notifications
Operational Efficiency	Low due to manual processes	Improved	Streamlined through automation and data-driven task allocation
Scalability and Future-proofing	Poor, limited by manual methods	Moderate	Designed for integration with AI, IoT, and predictive analytics

VII. ADVANTAGES

- **Convenience:** By using a website or app, they can book bike maintenance at any time and place, without having to go to service centers.
- **Time Saving:** Customers save time and hassle by not having to pick up the bike themselves with the integrated pick-up and drop scheduling.
- **Real-time tracking:** Knowing what the status of their bike maintenance is helps encourage open and confident milestone service tracking.
- **Digital Payments for the Secure:** Credit/debit cards, UPI, and QR codes enable quick, secure, cashless payments with less chances of error.
- **Centralized Management:** Request processing, mechanic assignment and progress monitoring from an admin dashboard at service centers.
- **Feedback System:** Customer feedback and satisfaction drives integrated review and rating to promote continual service improvement.
- **Data-Driven Decisions:** Decisions are driven by analytics of customer behavior, payments, and services provided by the central database.
- **Scalability:** The platform architecture is designed for future integration with AI and IoT technologies for intelligent scheduling and predictive maintenance.
- **Better Customer Satisfaction:** The satisfaction and loyalty of users are increased by clear and efficient servicing procedures.
- **Resource Optimization:** Mechanics are more effectively used and service centres have less downtime thanks to optimized workflows and task distribution.

VIII. CONCLUSION

The Online Bike Service with Pick-up and Drop Scheduling project overcomes the biggest flaws of bike servicing. It is very convenient,

transparent and rewarding to book online, pay online, track services and schedule pick-up/drop off online.

It automates request processing, mechanic assignment, and progress for service centres. While the database is centralized for data-driven business, digital feedback drives quality improvement. Future AI-driven predictive maintenance and IoT integration will be facilitated by its scalable architecture.

Overall, the project shows how web and cloud technology can empower auto repair to be effortless and intuitive for evolving customer demands and business needs. This digital transformation also paves the way for smarter mobility services in addition to improving the quality of service.

References:

1. Alpha tech Services (2025). The Future of Smart Vehicle Tracking with AI and IoT. [Online].
2. IRJMETS (2025). Cloud and IoT Integration in a Vehicle Service and Repair Management System.
3. Apna Mechanic (2025). Online Platform for Doorstep Bike Service and Repair Apps.
4. Yule Bikes (2025). The Inner Workings of IoT to Improve the Intelligence of Your Rides.
5. Riden Repair (2025). Pricing and Service Analysis of a Two-Wheeler Repair Platform.
6. Govea, R., Kok are, G., Humbe, T., Dhivakar, A., & Mohite, S.D. (2024). An observational study on the online bike rental system. Modernization in Engineering, Technology, and Science: An International Research Journal, Volume 6, Issue 6.
7. Orange Mantra (2024). Hero Motor Smart Motorcycle Maintenance.
8. Media for Future Mobility (2024). How connected two-wheeler are being revolutionized by generative AI.
9. Bierock (2024). The advantages of doorstep bike services in cities.
10. VOC Automobiles (2024). Bangalore Doorstep Bike Service Benefits.

11. Z. Dong (2023). A Study of Bike-Sharing Service Pricing Strategies. Elsevier, Transport Policy.
12. Pow Unity (2023). GPS tracking, bicycles, and the internet of things: the future is interconnected.
13. The Pluto-Men. (2023). Automotive care is being revolutionized by digital vehicle inspection.
14. ScienceDirect (2023). How the E-Bike Industry Is Being Revolutionized by IoT Solutions.
15. S. Leminen (2022). Digital Sovietization Business Models for Autonomous Vehicle Solutions. Elsevier, Technological Forecasting and Social Change.
16. Ríos, R., and Jimenez, J. (2022). AI-powered scheduling and resource management for auto repair.
17. D.A.K. Panigrahi (2021). An analysis of Rapido, the biggest online bike taxi service in India. The SSRN Electronic Journal.
18. G. Cartage (2020). Smart IoT-based Cycling Training Solution: Connected Bike. MDPI and sensors.
19. Chen, L., and Speech, M. (2019). Blockchain Technology for Safe Auto Repair Services. Embedded Computing Systems: ACM Transactions.
20. Wipro Limited (2011). Automotive centres are being digitalized to improve the customer experience. The Wipro Automotive Report.

