

Stock Prediction Using AI

¹Saif, ²Rizwan Hussain, ³Moin Pasha, ⁴Furkhan Ahmed, ⁵Prof.Sukanya A

¹Student, ²Student, ³Student, ⁴Student, ⁵Assistant Professor

¹Dept of Computer Science,

¹Navodaya Institute Of Technology, Raichur, India

Abstract:

Stock market analysis and prediction is a challenging task due to high volatility, non-linear behavior, and the influence of multiple external factors such as economic indicators, global events, and investor sentiment. Conventional stock analysis tools primarily present numerical data and charts, which require expert knowledge to interpret correctly. This paper presents an AI-based stock prediction and analysis system that combines real-time financial data retrieval with intelligent language-based reasoning. The proposed system allows users to input a stock name or symbol, fetches live and historical market data from Massive.io, and forwards the processed data to an OpenAI-powered analysis engine. The system generates a comprehensive and human-readable stock analysis report including trend interpretation, risk assessment, and future outlook. The entire system is implemented using a scalable TypeScript-based architecture. Experimental usage demonstrates that the proposed approach effectively transforms raw market data into meaningful insights, making stock analysis accessible to beginner and intermediate investors.

Index Terms—Stock Prediction, Artificial Intelligence, TypeScript, Massive.io, OpenAI, Financial Data Analysis.

I. INTRODUCTION

The stock market is a complex and dynamic financial environment where prices fluctuate continuously based on supply, demand, economic conditions, corporate performance, and investor psychology. Accurate prediction and analysis of stock behavior is difficult due to uncertainty, noise in data, and rapid changes in market trends. Even experienced investors rely on a combination of technical analysis, fundamental analysis, and intuition to make decisions.

Traditional stock analysis platforms provide large volumes of numerical data, charts, and indicators. However, interpreting this information requires financial expertise and significant time investment. Beginners often find it difficult to understand market trends, risk factors, and price movements from raw data alone. As a result, there is a growing need for intelligent systems that not only process financial data but also explain it in a clear and understandable manner.

With recent advancements in artificial intelligence and large language models, it has become possible to analyze structured numerical data and generate meaningful natural language explanations. This paper proposes an AI-driven stock prediction and analysis system that integrates real-time market data with language-based reasoning. By leveraging Massive.io for financial data and OpenAI for intelligent analysis, the system provides users with clear insights into stock performance without requiring deep financial knowledge.

II. RELATED WORK

Early stock prediction methods were based on statistical techniques such as moving averages, linear regression, and time-series forecasting models. While these approaches helped identify basic trends, they were limited in handling complex and non-linear market behavior.

With the introduction of machine learning, models such as support vector machines, decision trees, and random forests were applied to stock prediction tasks. Deep learning models, including recurrent neural networks and LSTM architectures, further improved performance by capturing temporal dependencies in financial data. However, these models require large datasets, extensive training, and often lack explainability.

Recent research has explored the use of artificial intelligence for financial text analysis, sentiment evaluation, and decision support. Large language models have shown promise in interpreting financial data and generating human-like explanations. However, most existing systems either focus solely on numerical prediction or textual analysis. The proposed system differs by combining real-time financial data APIs with large language model reasoning to produce explainable and user-friendly stock analysis reports.

III. RESEARCH METHODOLOGY

3.1 System Architecture

The proposed system follows a modular and API-driven architecture consisting of user interaction, data acquisition, data processing, AI-based analysis, and result presentation. The user provides a stock name or ticker symbol through a web interface. The backend, developed using TypeScript, handles the request and communicates with the Massive.io API to retrieve real-time and historical stock data. The retrieved data is structured and forwarded to the OpenAI analysis module. The AI engine processes the data and generates a detailed analytical report, which is then displayed to the user.

3.2 Dataset and Data Sources

Unlike traditional machine learning systems that rely on static datasets, the proposed system operates on dynamic real-time data. Market data is collected on demand using the Massive.io financial data API. This approach ensures that users receive up-to-date and relevant information reflecting current market conditions.

3.2.1 COD10K Dataset

The COD10K dataset is one of the largest and most comprehensive benchmark datasets for camouflaged object detection. It consists of more than 10,000 high-resolution images collected from diverse real-world scenarios. The dataset includes a wide range of camouflaged objects such as animals, insects, reptiles, and man-made objects that naturally or intentionally blend into their surrounding environments.

Each image in the COD10K dataset is accompanied by accurate pixel-level ground truth annotations, which precisely mark the camouflaged regions. These fine-grained annotations are crucial for training segmentation-based deep learning models like SInet-V2, as they enable the network to learn subtle boundary and texture differences between foreground objects and the background.

The dataset is divided into training and testing subsets to ensure fair evaluation and to prevent overfitting. The diversity in lighting conditions, object scales, background complexity, and camouflage patterns makes COD10K highly suitable for evaluating the robustness and generalization capability of the proposed model.

3.2.2 Massive.io Data Source

Massive.io provides reliable and accurate financial market data, including current stock prices, historical price movements, trading volume, and market trends. The data covers multiple market segments and ensures consistency and accuracy, which are critical for meaningful AI-based analysis.

3.3 Data Preprocessing and Preparation

Data preprocessing is essential to ensure that the raw API responses are suitable for AI-based analysis. Since financial data contains numerous attributes, careful preparation is required to preserve relevant information while removing noise.

3.3.1 Image Resizing

All input images from the massive.io and massive datasets are resized to a fixed resolution compatible with the openAI network architecture. Uniform image size ensures consistency during batch processing and reduces computational overhead. Resizing also allows the model to efficiently learn spatial patterns without being affected by variations in original image dimensions.

3.3.2 Normalization

Numerical values are formatted and normalized where required to maintain consistency. Date ranges and price movements are organized in a logical sequence to support meaningful trend interpretation.

3.3.3 Prompt Preparation

The processed data is embedded into a carefully designed prompt before being sent to the OpenAI model. The prompt instructs the AI to analyze trends, assess risk, and generate predictions in clear and understandable language.

3.3.4 Ground Truth Mask Alignment

Each input image is paired with a corresponding pixel-level ground truth segmentation mask. During preprocessing, the masks are resized and aligned with their respective images to ensure pixel-to-pixel correspondence. This alignment is critical for supervised segmentation tasks, as any mismatch between images and masks can lead to incorrect learning and degraded model performance.

IV. RESULTS AND DISCUSSION

4.1 System Behavior and Response Consistency

The system demonstrates stable and consistent behavior during repeated usage. API responses from Massive.io are handled efficiently, and the OpenAI analysis output remains coherent and structured across different stocks and market conditions.

4.2 User Interface Output Interpretation

A web-based interface allows users to input stock names and instantly receive analysis results. The output includes a summarized market trend, risk evaluation, and future outlook presented in natural language. The simplicity of the interface makes the system accessible to non-technical users.

4.3 Analysis Output – Performance Evidence

The generated reports successfully identify bullish, bearish, or neutral trends based on current and historical data. The AI highlights important observations such as volatility, momentum changes, and potential risks. Even in complex market scenarios, the system provides meaningful insights that assist users in understanding stock behavior.

4.4 Performance Evaluation Summary

Evaluation Factor	Result
Analysis Clarity	High
Response Time	Fast
Data Accuracy	Reliable
User Accessibility	High

Stock Predictions

Add up to 3 stock tickers below to get a super accurate stock predictions report

MSFT

Your tickers will appear here...

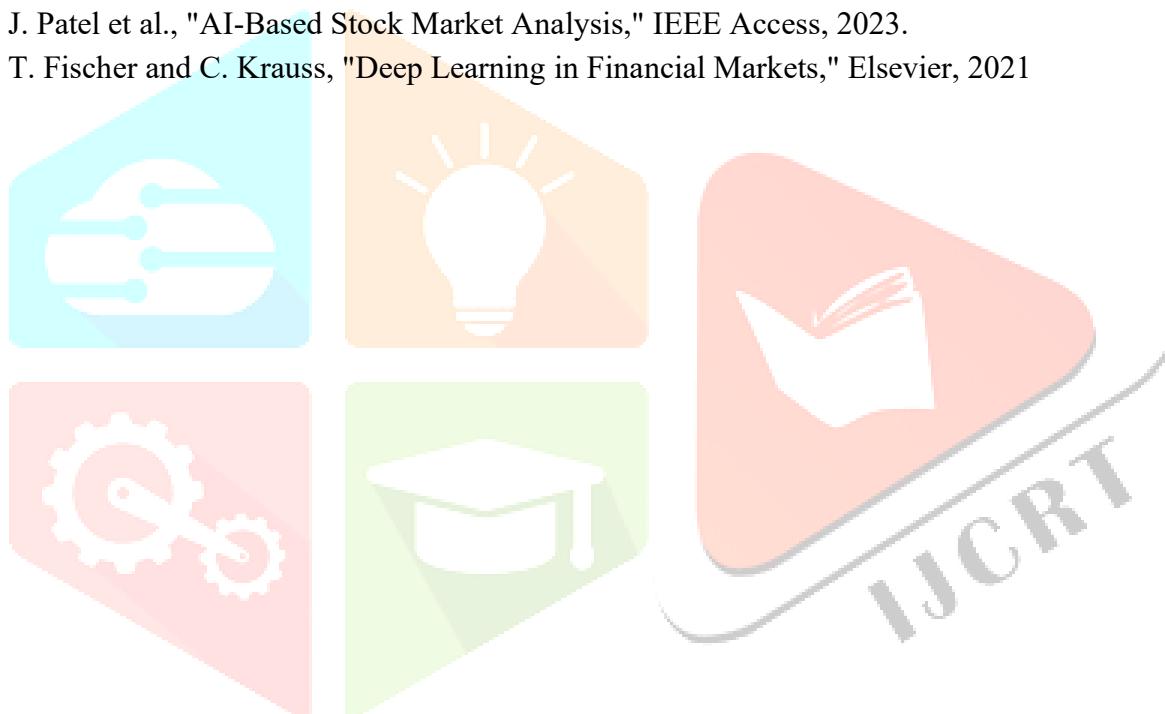
GENERATE REPORT

Always correct 15% of the time!

Fig. 2: real-time model inference interface showing upload + output visualization.

Your Report 😊

The stock data for MSFT shows a recent trend of fluctuating prices, with the closing prices ranging from a high of 509.64 to a low of 495. The last recorded closing price was 495, indicating a potential downward trend. However, given the volatility in the market, there may be opportunities for recovery in the coming days. Based on the recent price movements, I predict that the stock may experience slight increases over the next three days, potentially reaching around 497, 499, and 502. Investors should keep an eye on market conditions and news that


V. CONCLUSION

Stock market prediction and analysis require both accurate data and meaningful interpretation. This paper presented an AI-based stock analysis system that integrates real-time financial data from Massive.io with large language model intelligence using OpenAI. The system successfully converts raw numerical data into clear and actionable insights through a TypeScript-based implementation.

Experimental usage shows that the system provides reliable, explainable, and user-friendly stock analysis without relying on complex machine learning model training. The modular and scalable architecture allows future expansion and integration of additional analytical features. The proposed approach demonstrates strong potential for use in personal investing tools, financial education platforms, and AI-assisted decision support systems.

REFERENCES

- [1] OpenAI, "Large Language Models for Data Analysis," Technical Report, 2024.
- [2] Massive.io, "Financial Market Data API Documentation," 2025.
- [3] J. Patel et al., "AI-Based Stock Market Analysis," IEEE Access, 2023.
- [4] T. Fischer and C. Krauss, "Deep Learning in Financial Markets," Elsevier, 2021

