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Abstract  

This study investigates midpoint convex sets as a relaxation of classical convexity in linear spaces. Every convex 

set is midpoint convex, but the converse need not hold. We establish foundational results: stability under 

intersections, Minkowski combinations, linear images and pre-images, and translations. We also clarify when 

midpoint convexity upgrades to full convexity, notably under closedness, local boundedness, or mild regularity 

(e.g. measurability). Several examples and counterexamples are provided, and we correct a common 

misconception: unions of midpoint convex sets are generally not midpoint convex unless the family is nested 

(i.e. a chain). Short geometric figures illustrate the midpoint property, non-midpoint-convex union, and dyadic 

construction that underlies many proofs. These observations are relevant to functional analysis, convex 

geometry, optimisation, and the study of Jensen-type structures. 
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1. Introduction 

Convexity plays a fundamental role in functional analysis, optimisation, and topological studies. A subset 𝐴 of 

a linear space 𝐿 is convex if, for any two points 𝑥, 𝑦 ∈ 𝐴, the line segment joining them lies entirely in 𝐴. 

That is, 

𝐴 is convex ⇔ 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐴 for all 𝑥, 𝑦 ∈ 𝐴 and 0 ≤ 𝛼 ≤ 1. 

This definition ensures that every convex combination of two points in the set remains within the set [1].  

However, a weaker form of convexity can be defined by considering only the midpoint between two points 

rather than all convex combinations. This leads to the concept of a midpoint convex set, which relaxes the 

usual convexity condition but retains several useful geometric properties. 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2025 IJCRT | Volume 13, Issue 3 March 2025 | ISSN: 2320-2882 

IJCRT25A3479 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org m840 
 

Let 𝐿 be a real linear space. A set 𝐴 ⊆ 𝐿 is convex if 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐴 for all 𝑥, 𝑦 ∈ 𝐴 and all 𝛼 ∈ [0,1] [1,3]. 

A weaker requirement is the midpoint condition, which only demands the membership of the midpoint:  

Definition 1.1 Midpoint convex set  

Let A set 𝐴 ⊆ 𝐿 be midpoint convex if 𝑥 + 𝑦 2⁄ ∈ 𝐴 whenever 𝑥, 𝑦 ∈ 𝐴 [2,4]. 

Every convex set is midpoint convex (choose 𝛼 = 1 2⁄ ). The converse fails in general; nonetheless, with 

closedness in a topological vector space (TVS) or with measurability/local boundedness, midpoint convexity 

often implies convexity (see [1,3,5,6]). Figure 1 shows the midpoint condition. 

 

Figure 1. Midpoint 𝑚 = 𝑥 + 𝑦 2⁄  lies on the segment [𝑥: 𝑦] (definition of midpoint convexity). 

 

2. Preliminaries and Notation 

For 𝑥, 𝑦 ∈ 𝐿, denote the line segment by 

[𝑥: 𝑦] = {𝛼𝑥 + (1 − 𝛼)𝑦:  𝛼 ∈ [0,1]}. 

For a scalar 𝜆 and set 𝐴 ⊆ 𝐿, let 𝜆𝐴 = {𝜆𝑎: 𝑎 ∈ 𝐴} and 𝐴 + 𝐵 = {𝑎 + 𝑏: 𝑎 ∈ 𝐴,  𝑏 ∈ 𝐵}. 
For 𝑥 ∈ 𝐿, the translation is 𝑥 + 𝐴 = {𝑥 + 𝑎: 𝑎 ∈ 𝐴} [1,4]. 

 

3. Basic Properties and Theorems 

Theorem 3.1 Midpoint characterization 

If 𝐴 ⊆ 𝐿 is midpoint convex, then 

𝐴 = {
𝑎1 + 𝑎2

2
: 𝑎1 , 𝑎2 ∈ 𝐴}. 

Proof. Trivial containment 𝐴 ⊆ {⋯ } uses 𝑎 = 𝑎 + 𝑎 2⁄ . The reverse follows from the midpoint property of the 

triangle.  

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2025 IJCRT | Volume 13, Issue 3 March 2025 | ISSN: 2320-2882 

IJCRT25A3479 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org m841 
 

Proof. 

Let 𝑎 ∈ 𝐴. Then clearly, 

𝑎 =
𝑎 + 𝑎

2
, 

which implies 𝑎 ∈ {
𝑎1+𝑎2

2
: 𝑎1 , 𝑎2 ∈ 𝐴}. Hence, 

𝐴 ⊆ {
𝑎1 + 𝑎2

2
: 𝑎1 , 𝑎2 ∈ 𝐴}. 

Conversely, let 𝑥 = 𝑎1 + 𝑎2 2⁄  for some 𝑎1 , 𝑎2 ∈ 𝐴. 

Since 𝐴 is midpoint convex, 𝑥 ∈ 𝐴. Hence, 

{
𝑎1 + 𝑎2

2
: 𝑎1 , 𝑎2 ∈ 𝐴} ⊆ 𝐴. 

From (3.1) and (3.2), the following equality holds  

 

 

Figure 2. Two lines 𝐴1, 𝐴2 through the origin: both midpoint convex, but the union is not    

                 midpoint convex (midpoint of 𝑝 ∈ 𝐴1, 𝑞 ∈ 𝐴2 falls outside). 

 

Theorem 3.2 (Minkowski combination with scalars). 

If 𝐴1, 𝐴2 ⊆ 𝐿 are midpoint convex and 𝑙1 , 𝑙2 ∈ ℝ, then 

𝑙1𝐴1 + 𝑙2𝐴2 = { 𝑙1𝑎1 + 𝑙2𝑎2: 𝑎1 ∈ 𝐴1 ,  𝑎2 ∈ 𝐴2  } 

is midpoint convex. 

Proof.  
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Proof. 

Let 𝑥1, 𝑥2 ∈ 𝑙1𝐴1 + 𝑙2𝐴2. Then 

𝑥1 = 𝑙1𝑎1 + 𝑙2𝑏1 and 𝑥2 = 𝑙1𝑎2 + 𝑙2𝑏2, where 𝑎1 , 𝑎2 ∈ 𝐴1 and 𝑏1 , 𝑏2 ∈ 𝐴2. 

Now, 

𝑥1 + 𝑥2

2
= 𝑙1 (

𝑎1 + 𝑎2

2
) + 𝑙2 (

𝑏1 + 𝑏2

2
). 

Since 𝐴1 and 𝐴2 are midpoint convex, 𝑎1 + 𝑎2 2⁄ ∈ 𝐴1 and 𝑏1 + 𝑏2 2⁄ ∈ 𝐴2. 

Hence, 𝑥1 + 𝑥2 2⁄ ∈ 𝑙1𝐴1 + 𝑙2𝐴2 . Therefore, the sum is midpoint convex.  

Theorem 3.3 Intersection stability 

The intersection of any family of midpoint-convex sets is also midpoint-convex. 

Proof. 

Let {𝐴𝑖: 𝑖 ∈ 𝐼} be a family of midpoint convex sets in a linear space 𝐿, and define 

𝐴 = ⋂
𝑖∈𝐼
𝐴𝑖. 

For any 𝑥, 𝑦 ∈ 𝐴, we have 𝑥, 𝑦 ∈ 𝐴𝑖 for each 𝑖. 
Since each 𝐴𝑖  is midpoint convex, 𝑥 + 𝑦 2⁄ ∈ 𝐴𝑖 for all 𝑖. 
Hence, 𝑥 + 𝑦 2⁄ ∈ ⋂𝑖∈𝐼𝐴𝑖 = 𝐴. 
Therefore, 𝐴 is midpoint convex.  

Remark (Unions are delicate). 
The union of midpoint convex sets need not be midpoint-convex, even if they intersect pairwise. 

Counterexample in ℝ2: Let 𝐴1 = {(𝑡, 0): 𝑡 ∈ ℝ} and 𝐴2 = {(𝑡, 2𝑡): 𝑡 ∈ ℝ}. Both are convex (hence 

midpoint convex) and intersect at (0,0). Pick 𝑝 = (2,0) ∈ 𝐴1 and 𝑞 = (−2,−4) ∈ 𝐴2. Then 

𝑝 + 𝑞 2⁄ = (0,−2) ∉ 𝐴1 ∪ 𝐴2. (See Fig. 2.) 

Theorem 3.4 Union of a chain 

The intersection of any family of midpoint-convex sets is also midpoint-convex. 

Proof. 

Let {𝐴𝑖: 𝑖 ∈ 𝐼} be a family of midpoint convex sets in a linear space 𝐿, and define 

𝐴 = ⋂
𝑖∈𝐼
𝐴𝑖. 

For any 𝑥, 𝑦 ∈ 𝐴, we have 𝑥, 𝑦 ∈ 𝐴𝑖 for each 𝑖. 
Since each 𝐴𝑖  is midpoint convex, 𝑥 + 𝑦 2⁄ ∈ 𝐴𝑖 for all 𝑖. 
Hence, 𝑥 + 𝑦 2⁄ ∈ ⋂𝑖∈𝐼𝐴𝑖 = 𝐴. 
Therefore, 𝐴 is midpoint convex.  

Theorem 3.5. (Image and Inverse Image under Linear Transformation)  

Let 𝑇: 𝑋 → 𝑌 be a linear transformation between linear spaces. 

Then: 

1. The image of a midpoint convex set in 𝑋 is midpoint convex in 𝑌; and 

2. The inverse image of a midpoint convex set in 𝑌 is midpoint convex in 𝑋. 

Proof. 

Let 𝐴 ⊆ 𝑋 be midpoint convex. 

For 𝑧1, 𝑧2 ∈ 𝑇(𝐴), there exist 𝑥1, 𝑥2 ∈ 𝐴 such that 𝑧1 = 𝑇(𝑥1) and 𝑧2 = 𝑇(𝑥2). 
Then 
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𝑧1 + 𝑧2

2
= 𝑇 (

𝑥1 + 𝑥2

2
). 

Since 𝐴 is midpoint convex, 𝑥1 + 𝑥2 2⁄ ∈ 𝐴. Thus 𝑧1 + 𝑧2 2⁄ ∈ 𝑇(𝐴). 

Hence, the image is mid-point convex. 

Now let 𝐵 ⊆ 𝑌 be midpoint convex and consider 𝑇−1(𝐵). 
For 𝑥1, 𝑥2 ∈ 𝑇−1(𝐵), we have 𝑇(𝑥1), 𝑇(𝑥2) ∈ 𝐵. 

As 𝐵 is midpoint convex, 

𝑇(𝑥1) + 𝑇(𝑥2)

2
= 𝑇 (

𝑥1 + 𝑥2

2
) ∈ 𝐵. 

Therefore, 𝑥1 + 𝑥2 2⁄ ∈ 𝑇−1(𝐵), proving that 𝑇−1(𝐵) is midpoint convex.  

Theorem 3.6 (Translation of a set). 

If 𝐴 is a subset of a linear space 𝐿 and 𝑥 ∈ 𝐿, the set 

𝑥 + 𝐴 = { 𝑥 + 𝑎: 𝑎 ∈ 𝐴 } 

is called the translate of 𝐴 by 𝑥 [4]. 

Theorem 3.7. 

If 𝐴 is a midpoint convex subset of 𝐿, then every translate 𝑥 + 𝐴 is also midpoint convex. 

Proof. 

Let 𝑦1 , 𝑦2 ∈ 𝑥 + 𝐴. 

Then 𝑦1 = 𝑥 + 𝑎1 and 𝑦2 = 𝑥 + 𝑎2 for some 𝑎1 , 𝑎2 ∈ 𝐴. 

Now, 

𝑦1 + 𝑦2

2
= 𝑥 +

𝑎1 + 𝑎2

2
. 

Since 𝐴 is midpoint convex, 𝑎1 + 𝑎2 2⁄ ∈ 𝐴. 

Hence, 𝑦1 + 𝑦2 2⁄ ∈ 𝑥 + 𝐴. 

Therefore, 𝑥 + 𝐴 is midpoint convex.  

 

4. From Midpoint Convexity to Convexity 

Midpoint convexity gives all dyadic combinations. 

𝑚/2𝑛 = 1 2⁄ (1 2⁄ (⋯ )
⏟

n midpoints

⋯), 

so 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐴 for every dyadic 𝛼 ∈ [0,1]. Approximating general 𝛼 by dyadics then yields convexity 

under mild closure or regularity. 

Theorem 4.1 (Closed midpoint convex ⇒ convex) [1,3]. 

If 𝐴 ⊆ 𝐿 is midpoint convex and closed (in a TVS), then 𝐴 is convex. 

Proof sketch. Let 𝛼𝑛 be dyadics with 𝛼𝑛 → 𝛼. Since 𝛼𝑛𝑥 + (1 − 𝛼𝑛)𝑦 ∈ 𝐴 and 𝐴 is closed, the limit 𝛼𝑥 + (1 −
𝛼)𝑦 ∈ 𝐴. 
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Theorem 4.2 (Local boundedness or measurability) [5,6]. 

If 𝐴 ⊆ ℝ𝑛 is midpoint convex and either (i) locally bounded at one point or (ii) Lebesgue-measurable with 

nonempty interior, then 𝐴 is convex. 

Idea. Apply Jensen-type upgrading: midpoint convexity + mild regularity ⇒ full convexity (classical for 

functions; adapt via indicator sets) [5,6]. 

(Figure 3 illustrates dyadic constructions converging to a general 𝛼.) 

 

Figure 3. Dyadic construction: repeated midpoints generate 𝛼 = 𝑚/2𝑛 and approximate any 𝛼 ∈ [0,1]; 
closedness then yields full convexity. 

5. Examples and Counterexamples 

Example 5.1 (Convex ⇒ midpoint convex). Every affine subspace or half-space is convex; hence, it is midpoint 

convex [1,3]. 

Example 5.2 (Midpoint convex but not convex). 

Let 𝑓:ℝ → ℝ be a discontinuous additive function (Hamel basis construction) [6]. Its epigraph 𝐸 =
{(𝑥, 𝑡): 𝑡 ≥ 𝑓(𝑥)} is midpoint convex (Jensen additivity) yet not convex due to lack of regularity of 𝑓. 

Counterexample 5.3 (Union failure): 

Union of two distinct lines through the origin in ℝ2 fails midpoint convexity (Fig. 2). 

 

6. Discussion and Concluding Remarks 

6.1 Conceptual significance 

Midpoint convexity captures a “first-order” convex behaviour-stability under averaging two points without 

committing to all convex combinations. Thus, it is well-suited to iterative methods that proceed by halving or 

averaging steps (e.g. bisection-like feasibility updates, Krasnosel’ skiĭ–Mann iterations, and other projection 

schemes where the midpoint is a natural choice). In such contexts, midpoint-convex feasible regions allow the 

algorithm to remain feasible under midpoint updates, even when the full convexity of the feasible set is unknown 

or too strong. 

6.2 When midpoint convexity suffices-and when it does not 

If the workflow only uses midpoints (e.g. repeated halving) and the data/space confer mild regularity, midpoint 

convexity may be functionally adequate. 

 Intersections preserve midpoint convexity (Theorem 3.2), so multi-constraint settings remain tractable in 

this case. 

 Linear images/preimages preserve midpoint convexity (Theorem 3.4), so switching coordinates or 

enforcing linear constraints does not break the structure of the problem. 
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 Translations preserve midpoint convexity (Theorem 3.5), which is valuable for sensitivity analysis or 

recentering. 

However, midpoint convexity fails to guarantee closure under many standard convex operations that crucially 

use non-dyadic coefficients, and unions jeopardise the property unless nested (Theorem 3.7). Therefore, true 

convexity is indispensable in applications that require arbitrary convex combinations. 

6.3 Links to Jensen convexity and dyadic limits 

The midpoints-to-dyadics passage parallels the core idea behind Jensen’s convex functions (midpoint convex 

functions). Classical theorems assert: Jensen convexity + measurability/local boundedness ⇒ convexity [5,6]. 

This is mirrored here: midpoint convex sets + closedness (or the set analogue of “nice” regularity) ⇒ convex 

sets. Consequently, midpoint convexity can be seen as a pre-convex property that becomes convex “in the limit” 

when a minimal analytic structure is present. 

6.4 Geometric and functional contexts 

 Convex geometry: Midpoint convex bodies share some geometric intuitions with convex bodies but not 

the full Brunn-Minkowski apparatus [8]. However, averaging arguments and barycentric ideas (e.g. in 

uniformly convex spaces [7]) resonate with midpoint logic. 

 Optimisation: In feasibility-seeking, where constraints are only known to be midpoint convex (e.g. 

empirical constraints closed under pairwise averaging), one can design averaging-based algorithms that 

maintain feasibility and then attempt to show convexity via regularity checks (closedness, measurability).  

 Variational analysis: The epigraph perspective connects midpoint convexity to Jensen-type structures 

and sublevel sets of midpoint convex functions [5,6]. 

6.5 Correcting the union misconception 

The counterexample in ℝ2 (Figure 2) shows that even very “nice” midpoint convex sets (lines) can have a union 

that is not midpoint convex. Therefore, arguments that rely on “gluing” feasible regions via union should seek 

nested constructions or rely on intersections (which are safe). 

6.6 Limitations and open problems 

Several natural research problems have emerged. 

1. Midpoint Carathéodory 

For convex sets in ℝ𝑑, Carathéodory’s theorem bounds the number of points needed to represent a convex 

combination. What is the sharp dyadic/halving analogue for closed midpoint convex sets (or those that 

satisfy upgrading conditions)? 

2. Quantitative upgrading. 

Given a closed midpoint convex set 𝐴 ⊂ ℝ𝑛, what is an effective rate by which dyadic approximations 

(via midpoints) fill all convex combinations? Can one bound the number of halvings needed to 𝜀-

approximate 𝛼 ∈ [0,1]? 

3. Stability under nonlinear maps 

While linear images and preimages preserve midpoint convexity, general nonlinear maps do not preserve 

it. Which classes (e.g. affine, monotone operators, proximal mappings) preserve the midpoint convexity 

of images or preimages? 

4. Separation phenomena 

Separation theorems are central to convex analysis [1,3]. Are there weak separation results for midpoint-

convex sets under additional regularity? What role do supporting functionals play in this process? 
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5. Measure-theoretic refinements 

Extending Jensen-type regularity upgrades for sets, can we classify minimal measure-theoretic 

assumptions ensuring midpoint convex ⇒ convex in ℝ𝑛? 

Addressing these issues would better place midpoint convexity within the landscape of convex analysis and 

could suggest new algorithmic heuristics. 

Midpoint convexity is a compelling and surprisingly robust weakening of convexity that preserves many 

useful operations, intersections, linear images/preimages, translations, and certain Minkowski 

combinations. This supports a constructive dyadic approach to building general convex combinations through 

repeated halving. While midpoint convex sets may fail to be convex in general, closedness (in a TVS) or mild 

regularity (measurability/local boundedness) often upgrades the midpoint convexity to full convexity. This 

bridges a practical gap: in settings where only midpoint stability is known or easily verified, convexity can still 

be obtained by checking the light regularity conditions. The corrected understanding of unions (unsafe unless 

nested) prevents common pitfalls. We anticipate that further studies, particularly quantitative dyadic 

approximations, midpoint analogues of classical convex theorems, and stability under structured nonlinear maps, 

will enhance both the theoretical foundations and algorithmic applications of this elegant concept. 

 

7. Applications and Outlook 

Midpoint convexity appears in averaging algorithms, projection and splitting methods that use repeated halving, 

and relaxations where dyadic stability is sufficient (e.g. feasibility heuristics). The transformation properties 

(Theorems 3.5-3.7) allow midpoint convexity to propagate through linear mappings and translations, while 

Theorems 4.1-4.2 provide practical criteria to recover full convexity in TVSs or ℝ𝑛. Future directions include 

midpoint analogues of Carathéodory’s theorem, stability under nonlinear images, and links to Jensen’s convex 

functionals in variational analysis [5,6]. 
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