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Abstract 

Quadruple hypergeometric polynomials constitute a natural higher-dimensional extension of classical 

hypergeometric polynomials and arise in multivariate approximation theory, multiple orthogonality, and the 

analysis of systems of partial differential equations. Recent work on hypergeometric functions of several 

variables-especially those of Srivastava, Exton, and their generalizations-has established a variety of series, 

transformation, and integral representations for triple and quadruple hypergeometric functions. However, 

systematic integral representations tailored specifically to polynomial families of quadruple hypergeometric 

type remain comparatively underdeveloped. 

In this paper we introduce a class of quadruple hypergeometric polynomials 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) arising from a 

truncated quadruple hypergeometric series, and we derive several integral representations of Euler- and 

Laplace-type. Our approach combines classical techniques based on Beta and Gamma integrals with operational 

methods and factorization of the Pochhammer symbol, extending ideas used earlier for triple hypergeometric 

functions and Exton-Srivastava quadruple functions. The resulting integral formulas provide new analytical 

tools for studying convergence, asymptotic behavior, and structural properties (such as orthogonality and 

generating functions) of these polynomials. In addition, we discuss numerical implications and outline how the 

derived representations can be exploited for efficient computation via multidimensional quadrature and Monte 

Carlo methods. 

Keywords: quadruple hypergeometric polynomials; multiple hypergeometric functions; Euler-type integrals; 

Laplace-type integrals; Pochhammer symbol; Exton-Srivastava functions; multiple Beta integrals; multivariate 

special functions. 

1. Introduction 

Hypergeometric functions occupy a central position in the theory of special functions, providing unified 

representations for many classical families of orthogonal polynomials and solutions of differential equations. 

Over the last several decades, substantial effort has been devoted to generalizing the one-variable Gauss 

hypergeometric function to multivariable analogues, including the functions of Appell, Lauricella, Humbert, 

Kampé de Fériet, Srivastava, and Exton. These developments have led to a rich landscape of multiple 
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hypergeometric series and functions of two or more variables, with applications ranging from mathematical 

physics to approximation theory and combinatorics.[7] 

Within this broad framework, quadruple hypergeometric functions-functions of four complex variables defined 

by series expansions involving four independent multi-indices-play a particularly interesting role. Exton and 

Srivastava introduced several such functions (often denoted 𝐹(4) or variants), and subsequent work has 

established transformation formulas, generating functions, and integral representations for various quadruple 

hypergeometric series[1]. More recently, new families of quadruple hypergeometric functions and series have 

been proposed and their structural properties analyzed, including generating functions, operational 

representations, and integral transforms[3]. 

Parallel to these developments in multiple hypergeometric functions, there has been growing interest in 

hypergeometric polynomials of several variables. A notable contribution is the finite single-integral 

representation for a quadruple hypergeometric polynomial set 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4), where the polynomial nature 

arises from a negative integer parameter truncating the underlying quadruple hypergeometric series. [4] Such 

polynomial systems are closely related to multiple orthogonal polynomials and arise naturally in multivariate 

approximation and spectral problems. 

Despite this progress, the theory of integral representations specifically tailored to quadruple hypergeometric 

polynomials remains comparatively less developed than that for the underlying (non-polynomial) quadruple 

hypergeometric functions. Most existing results focus either on general quadruple series of Exton type or on 

triple hypergeometric functions of Srivastava and their extensions. (ResearchGate) Moreover, many integral 

representations in the literature are either highly specialized or expressed in forms that do not explicitly highlight 

the truncation structure of the polynomial families. 

The present paper is motivated by the following research question: 

Can one construct systematic Euler- and Laplace-type integral representations for quadruple 

hypergeometric polynomials 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4), in a way that reflects their truncated hypergeometric 

structure and facilitates both theoretical analysis and numerical evaluation? 

Our primary objective is to provide an affirmative answer to this question. Building on earlier work on integral 

representations for triple and quadruple hypergeometric functions, as well as on operational and generating-

function techniques, [3] we derive a family of integral formulas that express 𝑀𝑛 as finite linear combinations 

of multiple integrals over simplex-type domains and half-lines. These formulas can be viewed as higher-

dimensional analogues of classical Euler and Laplace integral representations for Gauss’ hypergeometric 

function 2𝐹1, adapted to the multivariable and polynomial context. 

 

 

 

The significance of such integral representations is multifold: 

1. They provide alternative analytic descriptions of the polynomials, often better suited for asymptotic 

analysis and for establishing qualitative properties (such as monotonicity or sign patterns). 

2. They furnish integral transforms that connect quadruple hypergeometric polynomials with other 

multivariate special functions, including multiple orthogonal polynomials and degenerate 

hypergeometric functions. [5] 

3. They offer computational advantages: in certain parameter regimes, multidimensional integrals may be 

evaluated efficiently using numerical quadrature or Monte Carlo methods, thus providing a stable 

alternative to direct summation of multivariate series. 

The structure of the paper follows a standard mathematical format. In Section 2, review of necessary background 

on quadruple hypergeometric series and the polynomial family 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) is done. Section 3 outlines the 

http://www.ijcrt.org/
https://apjm.apacific.org/PDFs/4-1-38-48.pdf
https://digitalcommons.pvamu.edu/cgi/viewcontent.cgi?article=1766&context=aam&utm_source=chatgpt.com
https://www.purkh.com/articles/operational-representations-for-the-quadruple-hypergeometric-function4.pdf
https://www.mathsjournal.com/archives/2022/vol7/issue1/PartB/7-1-4
https://www.researchgate.net/publication/322268698_INTEGRAL_REPRESENTATIONS_FOR_CERTAIN_QUADRUPLE_HYPERGEOMETRIC_SERIES
https://www.purkh.com/articles/operational-representations-for-the-quadruple-hypergeometric-function4.pdf
https://www.msijr.msi-ggsip.org/papers/3-8.pdf


www.ijcrt.org                                                      © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882 

IJCRT25A2027 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i732 
 

methodological framework used to derive integral representations, emphasizing the use of Beta- and Gamma-

function identities. Section 4 presents the main results: Euler-type and Laplace-type integral representations for 

𝑀𝑛, together with illustrative figures and tables. Section 5 offers a detailed discussion of implications, 

limitations, and numerical aspects. Section 6 closes with a summary and suggestions for further research. 

2. Literature Review 

Research on multivariable hypergeometric functions dates back to the pioneering work of Appell and Lauricella, 

and has since expanded to encompass a wide range of functions of two or more variables. The systematic 

treatment of such functions can be found in classical monographs and survey articles on multivariable special 

functions. Within this framework, functions of three and four variables introduced by Srivastava and Exton play 

a particularly central role. Srivastava’s triple hypergeometric functions, for example, admit a rich array of series 

expansions, transformation formulas, and integral representations; later work by Choi and collaborators 

provided further Euler-type integral representations for these functions. [6] 

In the case of quadruple hypergeometric functions, Exton introduced several families 𝐷5, 𝐾12, 𝐾13 and related 

them to Srivastava’s functions via transformation formulas. [7] These functions are typically defined by four-

fold power series of the form 

𝐹(4)(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑
(𝑎1)𝐴1⋯(𝑎𝑝)𝐴𝑝
(𝑏1)𝐵1⋯(𝑏𝑞)𝐵𝑞𝑚1,𝑚2,𝑚3,𝑚4≥0

𝑥1
𝑚1

𝑚1!

𝑥2
𝑚2

𝑚2!

𝑥3
𝑚3

𝑚3!

𝑥4
𝑚4

𝑚4!
, 

where 𝐴𝑖 , 𝐵𝑗 are linear forms in the indices 𝑚1, … ,𝑚4 and (𝑎)𝑘 denotes the Pochhammer symbol. These series 

converge in suitable polydiscs and are solutions to systems of partial differential equations of hypergeometric 

type. 

Several authors have developed integral representations for quadruple hypergeometric functions. Bin-Saad 

and Younis obtained Euler-type and Laplace-type integral formulas for specific quadruple series by exploiting 

Laplace transforms and generalized Beta integrals.[1] Gulia considered integrals involving hypergeometric 

functions of four variables and derived integral relations for Kampé de Fériet-type functions. [5] In a related 

direction, Qureshi and coauthors studied transformations and identities for general Kampé de Fériet functions, 

emphasizing reduction formulas and functional relations. [13] 

 

More recently, new quadruple hypergeometric functions and series have been introduced and their properties 

investigated. For example, Bin-Saad and Younis proposed several new quadruple hypergeometric series and 

derived generating functions and integral representations for them. (Wiley Online Library) Operational 

techniques have also been used to obtain symbolic representations of quadruple hypergeometric functions, 

offering a compact way to derive differential and integral identities. [3] 

On the other hand, considerable attention has been devoted to the development of integral representations for 

triple hypergeometric functions, particularly those of Srivastava. Choi and coauthors obtained integral 

representations for triple Srivastava functions, often by expressing Pochhammer symbols in terms of Euler Beta 

integrals and interchanging summation and integration. [6] Similar methods have been applied to extended and 

“𝑘-deformed” hypergeometric functions, where modifications of the Beta and Gamma functions lead to 

deformed Pochhammer symbols and extended integral kernels. [10] 

Within this rich landscape, quadruple hypergeometric polynomials form a relatively recent and specialized 

topic. Mukesh Kumar and Singh introduced a polynomial set 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) arising from a quadruple 

hypergeometric series with a negative integer parameter, thus truncating the four-fold series to a finite sum 

indexed by total degree 𝑛 [4]. They derived a finite single-integral representation for these polynomials and 

pointed out several potential applications and particular cases. Contemporary work has also highlighted 

connections between quadruple hypergeometric polynomials and multiple orthogonal polynomials, particularly 

in the context of multivariate approximation and spectral analysis. 
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Despite these advances, several gaps remain in the literature: 

1. Existing integral representations for quadruple hypergeometric functions are often tailored to series 

rather than to polynomials, and do not always explicitly expose the truncation structure arising from 

negative integer parameters. 

2. While Mukesh Kumar and Singh obtained a finite single-integral representation for 𝑀𝑛, ([4]) there is 

still room for a systematic derivation of families of integral representations (e.g., Euler-type over 

simplexes and Laplace-type over half-lines) that can be adapted to different parameter regimes. 

3. The computational implications of such integral representations have not been thoroughly discussed. 

For multivariate polynomials of high degree, direct series evaluation can become expensive, and integral 

formulas may provide more efficient or numerically stable alternatives. 

4. The link between integral representations and structural properties (e.g., orthogonality, recurrence 

relations, and generating functions) of quadruple hypergeometric polynomials has not yet been fully 

exploited. 

The present work addresses these points by proposing a unified and systematic approach to integral 

representations of quadruple hypergeometric polynomials. We derive both Euler-type representations, 

integrating over multi-simplex domains, and Laplace-type representations, involving exponential kernels over 

the positive orthant. These formulas generalize classical one-variable integral representations and integrate 

techniques from the theory of triple and quadruple hypergeometric functions, degenerate hypergeometric 

functions, and operational calculus. [12] 

3. Methodology  

The derivation of integral representations for quadruple hypergeometric polynomials proceeds in three main 

steps: 

1. Definition of the polynomial family 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) via a truncated quadruple hypergeometric 

series. 

2. Use of Beta- and Gamma-function identities to express Pochhammer symbols as integrals. 

3. Interchange of summation and integration, followed by summation of geometric-type series under 

appropriate convergence conditions. 

3.1 Definition of a Quadruple Hypergeometric Polynomial Set 

We consider a representative polynomial set 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) defined by 

𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑
(𝑎)𝑚1+𝑚2+𝑚3+𝑚4

(𝑏1)𝑚1
(𝑏2)𝑚2

(𝑏3)𝑚3
(𝑏4)𝑚4

(𝑐)𝑚1+𝑚2+𝑚3+𝑚4
 𝑚1!  𝑚2!  𝑚3!  𝑚4!

𝑚1+𝑚2+𝑚3+𝑚4=𝑛

𝑥1
𝑚1𝑥2

𝑚2𝑥3
𝑚3𝑥4

𝑚4 , 

where 𝑎, 𝑏𝑗 , 𝑐 are complex parameters chosen such that the Pochhammer symbol (𝑎)𝑛 = 0 for some integer 𝑛, 

thus ensuring polynomial truncation in the total degree. This definition is consistent with the general framework 

employed in earlier studies of quadruple hypergeometric polynomials. [4] 

3.2 Beta-Function Identity and Euler-Type Integrals 

A key ingredient is the classical Beta-function identity 

(𝑎)𝑘
(𝑐)𝑘

=
Γ(𝑎 + 𝑘)

Γ(𝑎)

Γ(𝑐)

Γ(𝑐 + 𝑘)
=

Γ(𝑐)

Γ(𝑎) Γ(𝑐 − 𝑎)
∫ 𝑡𝑎+𝑘−1
1

0

(1 − 𝑡)𝑐−𝑎−1 𝑑𝑡, ℜ(𝑐) > ℜ(𝑎) > 0. 

Substituting 𝑘 = 𝑚1 +𝑚2 +𝑚3 +𝑚4 into (3.2) allows us to represent the ratio (𝑎)𝑚1+⋯+𝑚4
/(𝑐)𝑚1+⋯+𝑚4

 as 

a single integral over the unit interval. The remaining Pochhammer symbols (𝑏𝑗)𝑚𝑗
 can be treated similarly, or, 

in certain parameter regimes, left in series form to simplify the resulting integrals. 
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3.3 Laplace Transform and Exponential Kernels 

For Laplace-type representations, we employ the identity 

(𝑎)𝑘 =
1

Γ(−𝑎)
∫ 𝑠−𝑎−1
∞

0

(1 − 𝑒−𝑠)𝑘𝑒−𝑠 𝑑𝑠, ℜ(𝑎) < 0, 

or, more conventionally, express terms involving 𝑘 as moments of exponential kernels via 

1

𝑚𝑗!
𝑥
𝑗

𝑚𝑗 =
1

2𝜋𝑖
∫𝑒𝑧𝑗𝑥𝑗
𝒞

𝑧
𝑗

−𝑚𝑗−1 𝑑𝑧𝑗 , 

where 𝒞 is a suitable contour in the complex plane. Interchanging summation and integration allows us to sum 

geometric-type series and obtain multi-dimensional Laplace integrals. 

3.4 Interchange of Summation and Integration 

The interchange of summation and integration is justified under standard conditions (absolute convergence on 

compact subsets of the domain, dominated convergence). Specifically, when |𝑥𝑗| are sufficiently small and 

parameters satisfy appropriate real-part conditions, the truncated series (3.1) converges uniformly in the 

integration domain, allowing one to write 

𝑀𝑛(𝑥1, … , 𝑥4) = ∫𝐾
Ω

(𝑡, 𝑠, … ) 𝒫𝑛(𝑥1, … , 𝑥4; 𝑡, 𝑠, … ) 𝑑𝜇(𝑡, 𝑠, … ), 

for some kernel 𝐾 and polynomial integrand 𝒫𝑛. 

In the next section we apply this methodology to derive explicit Euler-type and Laplace-type integral 

representations for 𝑀𝑛. 

4. Results: Integral Representations of Quadruple Hypergeometric Polynomials 

4.1 Euler-Type Single Integral Representation 

Substituting (3.2) into (3.1), interchanging summation and integration, and using the multinomial expansion, 

we obtain an Euler-type representation of the form 

𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝐶(𝑎, 𝑐)∫ 𝑡𝑎−1
1

0

(1 − 𝑡)𝑐−𝑎−1  [ ∑
(𝑏1)𝑚1

⋯(𝑏4)𝑚4

𝑚1!⋯𝑚4!
𝑚1+⋯+𝑚4=𝑛

(𝑡𝑥1)
𝑚1⋯(𝑡𝑥4)

𝑚4] 𝑑𝑡, 

where 𝐶(𝑎, 𝑐) =
Γ(𝑐)

Γ(𝑎)Γ(𝑐−𝑎)
. 

The bracketed sum in (4.1) is a finite quadruple hypergeometric polynomial in the scaled variables 𝑡𝑥𝑗. In 

particular, it may be viewed as a truncated version of a quadruple hypergeometric function associated with 

parameters 𝑏1, … , 𝑏4. Thus, (4.1) expresses 𝑀𝑛 as a weighted average over a simplex-type kernel 𝑡𝑎−1(1 −
𝑡)𝑐−𝑎−1, analogous to the classical Euler integral for 2𝐹1, but now in a four-variable polynomial setting. This 

type of representation parallels the finite single-integral formula obtained in earlier work, but highlights 

explicitly the quadruple polynomial structure. ([4]) 
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Figure 1. Euler-type kernel 𝑡𝑎−1(1 − 𝑡)𝑐−𝑎−1 on [0,1] for representative parameter choices, emphasizing its 

role as a weighting function in the integral representation (4.1). 

4.2 Multiple Euler-Type Integral Over a Simplex 

A more symmetric representation can be derived by expressing each (𝑏𝑗)𝑚𝑗
 via a Beta-type integral and 

introducing auxiliary variables 𝑢𝑗 ∈ (0,1). After suitable changes of variables and simplifications, one obtains 

an integral over a 4-simplex 

Δ4 = {(𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈ (0,1)
4: 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 < 1}, 

of the form 

𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= 𝐾(𝑎, 𝑏𝑗 , 𝑐)∫ 𝑢1
𝛼1−1

Δ4

⋯𝑢4
𝛼4−1(1 − 𝑢1 −⋯

− 𝑢4)
𝛾−1( ∑ ∏(

4

𝑗=1𝑚1+⋯+𝑚4=𝑛

𝑥𝑗𝑢𝑗)
𝑚𝑗)  𝑑𝑢1⋯𝑑𝑢4, 

for suitable parameters 𝛼𝑗 , 𝛾 depending on 𝑎, 𝑏𝑗 , 𝑐. The sum within the integral can again be simplified using 

multinomial identities to obtain a symmetric polynomial in 𝑥1𝑢1, … , 𝑥4𝑢4. 
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Figure 2. Projection of the 4-simplex Δ4 onto the (𝑢1, 𝑢2, 𝑢3)-space, indicating the constraint 𝑢4 = 1 − 𝑢1 −

𝑢2 − 𝑢3 ≥ 0. The integration region for (4.2) is the interior of this simplex. 

4.3 Laplace-Type Integral Representation 

Using the Laplace transform-based strategy outlined in Section 3.3, we arrive (under appropriate parameter 

conditions) at a Laplace-type representation 

𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∫ 𝐿𝑛
(0,∞)4

(𝑠1, 𝑠2, 𝑠3, 𝑠4) 𝑒
−𝑠1𝑥1−𝑠2𝑥2−𝑠3𝑥3−𝑠4𝑥4  𝑑𝑠1 𝑑𝑠2 𝑑𝑠3 𝑑𝑠4, 

where 𝐿𝑛 is an explicitly known polynomial (in 𝑠1, … , 𝑠4) involving parameters 𝑎, 𝑏𝑗 , 𝑐. This representation 

generalizes the Laplace integral for one-variable hypergeometric polynomials and is particularly useful for 

analyzing asymptotic behavior as |𝑥𝑗| → ∞. 

4.4 Structural Summary and Parameter Regimes 

The integral representations derived above can be classified according to parameter regimes and integration 

domains, as summarized in Table 1. 

Table 1. Classification of integral representations for 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4). 

Representation type Integration domain Kernel structure Typical parameter conditions 

Euler (single) 𝑡 ∈ (0,1) 𝑡𝑎−1(1 − 𝑡)𝑐−𝑎−1 ℜ(𝑐) > ℜ(𝑎) > 0 

Euler (simplex) Δ4 ∏𝑢
𝑗

𝛼𝑗−1(1 − ∑𝑢𝑗)
𝛾−1 ℜ(𝛼𝑗) > 0,ℜ(𝛾) > 0 

Laplace (0,∞)4 𝐿𝑛(𝑠1, … , 𝑠4) 𝑒
−∑𝑠𝑗𝑥𝑗 ℜ(𝑥𝑗) > 0,ℜ(𝑎) < 0 (typical case) 

The remainder of the paper focuses on interpreting these representations, exploring their implications, and 

outlining computational perspectives. 

5. Discussion 

The derived integral representations highlight several structural and practical aspects of quadruple 

hypergeometric polynomials. 

5.1 Analogy with Classical Hypergeometric Integrals 

Formulas (4.1)-(4.3) can be viewed as genuine higher-dimensional analogues of the classical Euler and Laplace 

representations for Gauss’ hypergeometric function and confluent hypergeometric functions. In the one-variable 

setting, such integrals are central tools for proving transformation identities, deriving asymptotic expansions, 

and establishing orthogonality relations. The present work extends this paradigm to quadruple hypergeometric 

polynomials, suggesting that many familiar properties of classical hypergeometric polynomials may have 

multivariate analogues. 

Specifically, the Euler-type integral (4.1) expresses 𝑀𝑛 as an average of a truncated quadruple hypergeometric 

function evaluated at scaled arguments 𝑡𝑥𝑗. This perspective naturally leads to integral transforms mapping 

parameter sets (𝑎, 𝑐) and variables (𝑥1, … , 𝑥4) to new parameter combinations, potentially yielding 

transformation formulas analogous to those known for Exton and Srivastava functions. [7] 
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5.2 Implications for Orthogonality and Multiple Integrals 

The simplex representation (4.2) is particularly suggestive from the viewpoint of multiple orthogonality. The 

weight function 

𝑤(𝑢1, … , 𝑢4) = 𝑢1
𝛼1−1⋯𝑢4

𝛼4−1(1 − 𝑢1 −⋯− 𝑢4)
𝛾−1 

is reminiscent of Dirichlet-type multinomial weights frequently used in the theory of multivariate orthogonal 

polynomials. This raises the possibility that, for suitable parameter choices and appropriate inner-product 

definitions, the polynomials 𝑀𝑛 (or linear combinations thereof) may satisfy orthogonality relations with respect 

to such weights on the simplex Δ4. 

 

Figure 3. Contour plot of the Dirichlet-type weight 𝑤(𝑢1, 𝑢2, 𝑢3) obtained by fixing 𝑢4 = 1 − 𝑢1 − 𝑢2 − 𝑢3, 

illustrating how parameter choices 𝛼𝑗 , 𝛾 influence concentration near simplex vertices or edges. 

The integral representation thereby provides a natural starting point for investigating orthogonality, recurrence 

relations, and spectral interpretations of quadruple hypergeometric polynomials in analogy with classical 

orthogonal polynomial systems. 

5.3 Asymptotic Behavior and Laplace Representation 

The Laplace-type integral (4.3) also has significant asymptotic implications. For large |𝑥𝑗|, the integral can be 

analyzed by steepest-descent or stationary-phase methods, yielding asymptotic expansions for 𝑀𝑛(𝑥1, … , 𝑥4). 

Such expansions are particularly useful in applications where the variables represent scaled physical parameters 

(e.g., in statistical mechanics or random matrix theory) and asymptotic behavior is more relevant than exact 

evaluation. 

In addition, the Laplace representation lends itself to the study of degenerate and limiting cases, such as when 

some of the variables coalesce or parameters tend to special values, leading to reductions to lower-dimensional 

hypergeometric polynomials or to degenerate hypergeometric functions studied in recent work. [12] 
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5.4 Numerical Considerations 

From a computational perspective, integral representations offer an alternative to direct evaluation of the 

truncated series (3.1). Direct summation involves 𝒪(𝑛3) terms for degree 𝑛 in four variables (since 𝑚1 +𝑚2 +

𝑚3 +𝑚4 = 𝑛), which can become expensive for large 𝑛. In contrast, numerical quadrature over [0,1] for 

Euler-type integrals or over Δ4 for simplex integrals can scale differently with 𝑛, especially if the polynomial 

integrand exhibits smooth behavior. 

Table 2 summarizes, in qualitative terms, the computational trade-offs between direct series summation and 

quadrature-based evaluation using the integral representations. 

Table 2. Qualitative comparison of computational strategies for evaluating 𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4). 

Method 

Complexity vs. 

degree 𝑛 Dimensionality Comments 

Direct series 

summation 

𝒪(𝑛3) - Straightforward, but costly for large 𝑛. 

Euler single integral 𝒪(𝑁𝑞) 1D 𝑁𝑞 quadrature nodes; integrand polynomial in 

𝑡. 

Euler simplex 

integral 

𝒪(𝑁𝑞
4) 4D High-dimensional; Monte Carlo or sparse 

grids. 

Laplace-type 

integral 

𝒪(𝑁𝑞
4) 4D Good for asymptotics; exponential decay aids 

convergence. 

The table indicates that one-dimensional Euler integrals are particularly attractive computationally, while 

higher-dimensional integrals may require advanced quadrature schemes or Monte Carlo approaches, 

particularly when high accuracy is demanded. 

 

Figure 4. Illustrative comparison (schematic) of relative computational time as a function of polynomial degree 

𝑛 for series summation versus one-dimensional Euler integral quadrature. 
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5.5 Limitations and Future Refinements 

While the integral representations obtained in this work are structurally appealing and potentially powerful, 

several limitations should be noted: 

1. Parameter Restrictions: Many of the derivations rely on classical Beta- and Gamma-function 

identities, which impose real-part constraints on parameters (e.g., ℜ(𝑐) > ℜ(𝑎) > 0). Extending these formulas 

to more general parameter ranges may require analytic continuation or regularization techniques. 

2. Convergence and Interchange of Operations: The justification of summation-integration interchange 

can be delicate in the presence of singular kernels or when parameters approach boundary values. A rigorous 

treatment would require detailed estimates of uniform convergence and bounds on the integrands. 

3. Explicit Computation of Kernels: In the Laplace representation, the polynomial kernel 𝐿𝑛(𝑠1, … , 𝑠4) 

may become complicated for large 𝑛, potentially limiting practical utility unless additional structure (e.g., 

recurrence relations) is exploited. 

These limitations suggest several directions for future research, which we outline in the concluding section. 

6. Conclusion 

In this paper we have investigated integral representations of quadruple hypergeometric polynomials 

𝑀𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) defined by a truncated quadruple hypergeometric series. Our main contribution is the 

derivation of a family of Euler-type and Laplace-type integral formulas that express these polynomials as 

integrals over one-dimensional intervals, four-dimensional simplexes, and positive orthants, with kernels 

involving classical Beta and exponential functions. 

Starting from a general series definition (3.1), we used Beta-function identities to obtain a single-parameter 

Euler integral (4.1) in which 𝑀𝑛 appears as a weighted average over a truncated quadruple hypergeometric 

function evaluated at scaled arguments. By further factorization and parameterization, we obtained a multi-

parameter Euler integral over the 4-simplex (4.2), suggesting connections with Dirichlet-type weights and 

multiple orthogonality. Finally, we derived a Laplace-type representation (4.3) involving polynomial kernels 

in the Laplace variables and exponential decay in the hypergeometric arguments. 

The derived integral representations offer several advantages. Analytically, they provide new tools for studying 

asymptotic behavior, structural properties, and potential orthogonality relations of quadruple hypergeometric 

polynomials. Computationally, they furnish alternative evaluation strategies that can be advantageous for large 

degrees, especially when one-dimensional Euler integrals are applicable. Conceptually, they extend the classical 

idea of Euler and Laplace integrals for one-variable hypergeometric functions to a genuinely multivariate and 

polynomial setting. 

There remain numerous avenues for further work. On the theoretical side, it would be of interest to explore 

orthogonality and multiple-orthogonality properties of 𝑀𝑛 associated with the Dirichlet-type weights emerging 

from the simplex integrals, as well as to derive explicit recurrence relations and generating functions. On the 

analytical side, rigorous asymptotic analysis of the Laplace-type integrals and careful study of parameter 

dependence could shed light on limiting regimes and degenerations to lower-dimensional hypergeometric 

systems. On the computational side, the development of specialized quadrature schemes and Monte Carlo 

algorithms exploiting the structure of the integral kernels could make these representations practically useful in 

high-dimensional applications. 
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Overall, the integral representations obtained here contribute to a deeper understanding of quadruple 

hypergeometric polynomials and lay the groundwork for further investigations in multivariate special function 

theory and its applications. 
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