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Abstract

Quadruple hypergeometric polynomials constitute a natural higher-dimensional extension of classical
hypergeometric polynomials and arise in multivariate approximation theory, multiple orthogonality, and the
analysis of systems of partial differential equations. Recent work on hypergeometric functions of several
variables-especially those of Srivastava, Exton, and their generalizations-has established a variety of series,
transformation, and integral representations for triple and quadruple hypergeometric functions. However,
systematic integral representations tailored specifically to polynomial families of quadruple hypergeometric
type remain comparatively underdeveloped.

In this paper we introduce a class of quadruple hypergeometric polynomials M,, (x4, x5, x5, x,) arising from a
truncated quadruple hypergeometric series, and we derive several integral representations of Euler- and
Laplace-type. Our approach combines classical techniques based on Beta and Gamma integrals with operational
methods and factorization of the Pochhammer symbol, extending ideas used earlier for triple hypergeometric
functions and Exton-Srivastava quadruple functions. The resulting integral formulas provide new analytical
tools for studying convergence, asymptotic behavior, and structural properties (such as orthogonality and
generating functions) of these polynomials. In addition, we discuss numerical implications and outline how the
derived representations can be exploited for efficient computation via multidimensional quadrature and Monte
Carlo methods.

Keywords: quadruple hypergeometric polynomials; multiple hypergeometric functions; Euler-type integrals;
Laplace-type integrals; Pochhammer symbol; Exton-Srivastava functions; multiple Beta integrals; multivariate
special functions.

1. Introduction

Hypergeometric functions occupy a central position in the theory of special functions, providing unified
representations for many classical families of orthogonal polynomials and solutions of differential equations.
Over the last several decades, substantial effort has been devoted to generalizing the one-variable Gauss
hypergeometric function to multivariable analogues, including the functions of Appell, Lauricella, Humbert,
Kampé de Fériet, Srivastava, and Exton. These developments have led to a rich landscape of multiple
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hypergeometric series and functions of two or more variables, with applications ranging from mathematical
physics to approximation theory and combinatorics.[7]

Within this broad framework, quadruple hypergeometric functions-functions of four complex variables defined
by series expansions involving four independent multi-indices-play a particularly interesting role. Exton and
Srivastava introduced several such functions (often denoted F™*) or variants), and subsequent work has
established transformation formulas, generating functions, and integral representations for various quadruple
hypergeometric series[1]. More recently, new families of quadruple hypergeometric functions and series have
been proposed and their structural properties analyzed, including generating functions, operational
representations, and integral transforms[3].

Parallel to these developments in multiple hypergeometric functions, there has been growing interest in
hypergeometric polynomials of several variables. A notable contribution is the finite single-integral
representation for a quadruple hypergeometric polynomial set M,, (x4, x5, X3, x4), Where the polynomial nature
arises from a negative integer parameter truncating the underlying quadruple hypergeometric series. [4] Such
polynomial systems are closely related to multiple orthogonal polynomials and arise naturally in multivariate
approximation and spectral problems.

Despite this progress, the theory of integral representations specifically tailored to quadruple hypergeometric
polynomials remains comparatively less developed than that for the underlying (non-polynomial) quadruple
hypergeometric functions. Most existing results focus either on general quadruple series of Exton type or on
triple hypergeometric functions of Srivastava and their extensions. (ResearchGate) Moreover, many integral
representations in the literature are either highly specialized or expressed in forms that do not explicitly highlight
the truncation structure of the polynomial families.

The present paper is motivated by the following research question:

Can one construct systematic Euler- and Laplace-type integral representations for quadruple
hypergeometric polynomials M,,(x;, x5, x3,x,), in a way that reflects their truncated hypergeometric
structure and facilitates both theoretical analysis and numerical evaluation?

Our primary objective is to provide an affirmative answer to this question. Building on earlier work on integral
representations for triple and quadruple hypergeometric functions, as well as on operational and generating-
function techniques, [3] we derive a family of integral formulas that express M,, as finite linear combinations
of multiple integrals over simplex-type domains and half-lines. These formulas can be viewed as higher-
dimensional analogues of classical Euler and Laplace integral representations for Gauss’ hypergeometric
function , F;, adapted to the multivariable and polynomial context.

The significance of such integral representations is multifold:

1. They provide alternative analytic descriptions of the polynomials, often better suited for asymptotic
analysis and for establishing qualitative properties (such as monotonicity or sign patterns).

2. They furnish integral transforms that connect quadruple hypergeometric polynomials with other
multivariate special functions, including multiple orthogonal polynomials and degenerate
hypergeometric functions. [5]

3. They offer computational advantages: in certain parameter regimes, multidimensional integrals may be
evaluated efficiently using numerical quadrature or Monte Carlo methods, thus providing a stable
alternative to direct summation of multivariate series.

The structure of the paper follows a standard mathematical format. In Section 2, review of necessary background
on quadruple hypergeometric series and the polynomial family M,, (x4, x5, x5, x4) is done. Section 3 outlines the
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methodological framework used to derive integral representations, emphasizing the use of Beta- and Gamma-
function identities. Section 4 presents the main results: Euler-type and Laplace-type integral representations for
M,,, together with illustrative figures and tables. Section 5 offers a detailed discussion of implications,
limitations, and numerical aspects. Section 6 closes with a summary and suggestions for further research.

2. Literature Review

Research on multivariable hypergeometric functions dates back to the pioneering work of Appell and Lauricella,
and has since expanded to encompass a wide range of functions of two or more variables. The systematic
treatment of such functions can be found in classical monographs and survey articles on multivariable special
functions. Within this framework, functions of three and four variables introduced by Srivastava and Exton play
a particularly central role. Srivastava’s triple hypergeometric functions, for example, admit a rich array of series
expansions, transformation formulas, and integral representations; later work by Choi and collaborators
provided further Euler-type integral representations for these functions. [6]

In the case of quadruple hypergeometric functions, Exton introduced several families Ds, K, ,, K, and related
them to Srivastava’s functions via transformation formulas. [7] These functions are typically defined by four-
fold power series of the form

(@1)a,  (@p)ay, x7™ x5 x5 xy

(b1)31 (bq)Bq my! my! mg!lmy,!’

F(4)(x1,x2,x3,x4) = z

mq,my,m3,my20

where A;, B; are linear forms in the indices my, ..., m, and (a), denotes the Pochhammer symbol. These series
converge in suitable polydiscs and are solutions to systems of partial differential equations of hypergeometric
type.

Several authors have developed integral representations for quadruple hypergeometric functions. Bin-Saad
and Younis obtained Euler-type and Laplace-type integral formulas for specific quadruple series by exploiting
Laplace transforms and generalized Beta integrals.[1] Gulia considered integrals involving hypergeometric
functions of four variables and derived integral relations for Kampé de Fériet-type functions. [5] In a related
direction, Qureshi and coauthors studied transformations and identities for general Kampé de Fériet functions,
emphasizing reduction formulas and functional relations. [13]

More recently, new quadruple hypergeometric functions and series have been introduced and their properties
investigated. For example, Bin-Saad and Younis proposed several new quadruple hypergeometric series and
derived generating functions and integral representations for them. (Wiley Online Library) Operational
techniques have also been used to obtain symbolic representations of quadruple hypergeometric functions,
offering a compact way to derive differential and integral identities. [3]

On the other hand, considerable attention has been devoted to the development of integral representations for
triple hypergeometric functions, particularly those of Srivastava. Choi and coauthors obtained integral
representations for triple Srivastava functions, often by expressing Pochhammer symbols in terms of Euler Beta
integrals and interchanging summation and integration. [6] Similar methods have been applied to extended and
“k-deformed” hypergeometric functions, where modifications of the Beta and Gamma functions lead to
deformed Pochhammer symbols and extended integral kernels. [10]

Within this rich landscape, quadruple hypergeometric polynomials form a relatively recent and specialized
topic. Mukesh Kumar and Singh introduced a polynomial set M,, (x4, x5, x3,x,) arising from a quadruple
hypergeometric series with a negative integer parameter, thus truncating the four-fold series to a finite sum
indexed by total degree n [4]. They derived a finite single-integral representation for these polynomials and
pointed out several potential applications and particular cases. Contemporary work has also highlighted
connections between quadruple hypergeometric polynomials and multiple orthogonal polynomials, particularly
in the context of multivariate approximation and spectral analysis.

IJCRT25A2027 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ] i732


http://www.ijcrt.org/
https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-15/issue-6/INTEGRAL-REPRESENTATIONS-FOR-SRIVASTAVAS-TRIPLE-HYPERGEOMETRIC-FUNCTIONS/10.11650/twjm/1500406495.full
https://apjm.apacific.org/PDFs/4-1-38-48.pdf
https://digitalcommons.pvamu.edu/cgi/viewcontent.cgi?article=1766&context=aam&utm_source=chatgpt.com
https://www.msijr.msi-ggsip.org/papers/3-8.pdf
https://bm.kaznu.kz/index.php/kaznu/article/view/1503
https://onlinelibrary.wiley.com/doi/10.1155/2021/5596299
https://www.purkh.com/articles/operational-representations-for-the-quadruple-hypergeometric-function4.pdf
https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-15/issue-6/INTEGRAL-REPRESENTATIONS-FOR-SRIVASTAVAS-TRIPLE-HYPERGEOMETRIC-FUNCTIONS/10.11650/twjm/1500406495.full
https://mat76.mat.uni-miskolc.hu/mnotes/download_article/4326.pdf
https://www.mathsjournal.com/archives/2022/vol7/issue1/PartB/7-1-4

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

Despite these advances, several gaps remain in the literature:

1. Existing integral representations for quadruple hypergeometric functions are often tailored to series
rather than to polynomials, and do not always explicitly expose the truncation structure arising from
negative integer parameters.

2. While Mukesh Kumar and Singh obtained a finite single-integral representation for M,,, ([4]) there is
still room for a systematic derivation of families of integral representations (e.g., Euler-type over
simplexes and Laplace-type over half-lines) that can be adapted to different parameter regimes.

3. The computational implications of such integral representations have not been thoroughly discussed.
For multivariate polynomials of high degree, direct series evaluation can become expensive, and integral
formulas may provide more efficient or numerically stable alternatives.

4. The link between integral representations and structural properties (e.g., orthogonality, recurrence
relations, and generating functions) of quadruple hypergeometric polynomials has not yet been fully
exploited.

The present work addresses these points by proposing a unified and systematic approach to integral
representations of quadruple hypergeometric polynomials. We derive both Euler-type representations,
integrating over multi-simplex domains, and Laplace-type representations, involving exponential kernels over
the positive orthant. These formulas generalize classical one-variable integral representations and integrate
techniques from the theory of triple and quadruple hypergeometric functions, degenerate hypergeometric
functions, and operational calculus. [12]

3. Methodology

The derivation of integral representations for quadruple hypergeometric polynomials proceeds in three main
steps:

1. Definition of the polynomial family M, (x,, x5, x3,x4) Via a truncated quadruple hypergeometric
series.

2. Use of Beta- and Gamma-function identities to express Pochhammer symbols as'integrals.

3. Interchange of summation and integration, followed by summation of geometric-type series under

appropriate convergence conditions.
3.1 Definition of a Quadruple Hypergeometric Polynomial Set

We consider a representative polynomial set M,, (x,, x5, x3, x,) defined by

(a)m1 +mo+mg+my (bl)m1 (bZ)mz (b3)m3 (b4-)m4 mlxmzxm3 xm4
(C)m1+m2 +mg+my ml! mZ! m3! m4! ! 2 3 *

Mn(xl,xz,xg,x4) = Z

mi+myot+mz+my=n

where a, bj, ¢ are complex parameters chosen such that the Pochhammer symbol (a),, = 0 for some integer n,
thus ensuring polynomial truncation in the total degree. This definition is consistent with the general framework
employed in earlier studies of quadruple hypergeometric polynomials. [4]

3.2 Beta-Function Identity and Euler-Type Integrals
A key ingredient is the classical Beta-function identity

(@, Tla+k) T'(c) I'(c) !
)k B I['(a) T(c+k) B I['(a)T(c—a)l,

tatk=1(1 — t)c=a-14¢  R(c) > R(a) > 0.

Substituting k = m; + m, + m3 + m, into (3.2) allows us to represent the ratio (a)m, +...+m,/(C)m,+--+m, 8S
a single integral over the unit interval. The remaining Pochhammer symbols (bj)mj can be treated similarly, or,
in certain parameter regimes, left in series form to simplify the resulting integrals.
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3.3 Laplace Transform and Exponential Kernels

For Laplace-type representations, we employ the identity

(@), = ﬁfoms‘a‘l (1—eHke™ds, R(a) <0,

or, more conventionally, express terms involving k as moments of exponential kernels via

1 m; 1 -mj—1
—x, ' =-—|e%%z 7 " dz,
m;! ) 2mi Jo ]

where C is a suitable contour in the complex plane. Interchanging summation and integration allows us to sum
geometric-type series and obtain multi-dimensional Laplace integrals.

3.4 Interchange of Summation and Integration

The interchange of summation and integration is justified under standard conditions (absolute convergence on
compact subsets of the domain, dominated convergence). Specifically, when |x;| are sufficiently small and
parameters satisfy appropriate real-part conditions, the truncated series (3.1) converges uniformly in the
integration domain, allowing one to write

M, (%1, ..., X4) = IK (t,s, ...) Po(xq, ooy xg5 t, s, ...) du(t, s, ...),
Q

for some kernel K and polynomial integrand 3,.

In the next section we apply this methodology to derive explicit Euler-type and Laplace-type integral
representations for M,,.

4. Results: Integral Representations of Quadruple Hypergeometric Polynomials
4.1 Euler-Type Single Integral Representation

Substituting (3.2) into (3.1), interchanging summation and integration, and using the multinomial expansion,
we obtain an Euler-type representation of the form

(b1)m, =" (ba)m,
ml! m4!

1
M, (%1, %5, x3,%,) = C(a, c)f t¢ 1 (1 —t)cat (tx )™ - (tx,)™ | dt,
0

m1+~-~+m4=n

I'(c)

where C(a,c) = m.

The bracketed sum in (4.1) is a finite quadruple hypergeometric polynomial in the scaled variables tx;. In
particular, it may be viewed as a truncated version of a quadruple hypergeometric function associated with
parameters by, ..., b,y. Thus, (4.1) expresses M,, as a weighted average over a simplex-type kernel t*~1(1 —
t)¢~%71, analogous to the classical Euler integral for ,F;, but now in a four-variable polynomial setting. This
type of representation parallels the finite single-integral formula obtained in earlier work, but highlights
explicitly the quadruple polynomial structure. ([4])
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Figure 1. Euler-type kernel K(x, &, a, /) on R for representative parameter choices.

a=3f=1 a=1,f=2
Kix, ci) Kix, c1)

|

1 -—» Z > Z
x-L \Weighting Function x+L x-L  Weighting Function a+L
Integration Domain Integration Domain
a=05,p=05 a=4,=05
K(x, ci) K(x, cj)
! >z ' » Z
x-L  Weighting Function ~x+L x-L  Weighting Function a+L
' Integration Domain Integration Domain

Emphasizing the weighting function in the integral representation (4.1).
Figure 1. Euler-type kernel t4~1(1 — t)°=%~1 on [0,1] for representative parameter choices, emphasizing its
role as a weighting function in the integral representation (4.1).
4.2 Multiple Euler-Type Integral Over a Simplex

A more symmetric representation can be derived by expressing each (bj)mj via a Beta-type integral and

introducing auxiliary variables u; € (0,1). After suitable changes of variables and simplifications, one obtains
an integral over a 4-simplex

A4 = {(ul, Uy, u3,U4) € (0,1)4:111 P U, + Us + Uy < 1},
of the form

M;, (%1, X2, X3, X4)

= K(a, bj' C) f ufl_l ...uZzt—l(l —uy —
Ay

4
(S T )
n j=1

m1+---+m4=

for suitable parameters a;, y depending on a, b;, c. The sum within the integral can again be simplified using
multinomial identities to obtain a symmetric polynomial in x;uy, ..., x,u,.

Figure 2, Projection of the £-skmplex A, onte the lay aty tig)-space, indicstng the corstraint

" ) ). The sftegration region for (4.2) is the interior of ths simples

wy 0,2,00

2 -y -y -y

~(0,0.1)
Uz

The mtegration region for 14.2) 1S the intenon of this simplex
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Figure 2. Projection of the 4-simplex A, onto the (uq, u,, uz)-space, indicating the constraint u, = 1 —u; —
u, —u3 = 0. The integration region for (4.2) is the interior of this simplex.

4.3 Laplace-Type Integral Representation
Using the Laplace transform-based strategy outlined in Section 3.3, we arrive (under appropriate parameter

conditions) at a Laplace-type representation

M, (x1, X2, X3,X4) = f Ly, (S1,52,53,8,) e~ 51¥17%2%2783X37SaXa g, d5, ds3 ds,,
(0,00)%

where L, is an explicitly known polynomial (in sy, ..., s,) involving parameters a, bj, c. This representation
generalizes the Laplace integral for one-variable hypergeometric polynomials and is particularly useful for
analyzing asymptotic behavior as |x;| — o.

4.4 Structural Summary and Parameter Regimes

The integral representations derived above can be classified according to parameter regimes and integration
domains, as summarized in Table 1.

Table 1. Classification of integral representations for M,, (x4, x5, X3, X).

Representation type | Integration domain | Kernel structure Typical parameter conditions

Euler (single) t € (0,1) tA(l — )" I R(c) > R(a) >0

Euler (simplex) A, Huf"_l(l — Su)¥? R(a;)) > 0,R(y) >0
Laplace (0, 00)* Ly (51, ..., 54) €25 | R(x;) > 0,R(a) <0 (typical case)

The remainder of the paper focuses on interpreting these representations, exploring their implications, and
outlining computational perspectives.

5. Discussion

The derived integral representations highlight several structural and practical aspects of quadruple
hypergeometric polynomials.

5.1 Analogy with Classical Hypergeometric Integrals

Formulas (4.1)-(4.3) can be viewed as genuine higher-dimensional analogues of the classical Euler and Laplace
representations for Gauss’ hypergeometric function and confluent hypergeometric functions. In the one-variable
setting, such integrals are central tools for proving transformation identities, deriving asymptotic expansions,
and establishing orthogonality relations. The present work extends this paradigm to quadruple hypergeometric
polynomials, suggesting that many familiar properties of classical hypergeometric polynomials may have
multivariate analogues.

Specifically, the Euler-type integral (4.1) expresses M,, as an average of a truncated quadruple hypergeometric
function evaluated at scaled arguments tx;. This perspective naturally leads to integral transforms mapping
parameter sets (a,c) and variables (x4,..,x,) to new parameter combinations, potentially yielding
transformation formulas analogous to those known for Exton and Srivastava functions. [7]
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5.2 Implications for Orthogonality and Multiple Integrals

The simplex representation (4.2) is particularly suggestive from the viewpoint of multiple orthogonality. The
weight function

Wy, o, tty) = U ST (1 — g — e —ug)? T
is reminiscent of Dirichlet-type multinomial weights frequently used in the theory of multivariate orthogonal
polynomials. This raises the possibility that, for suitable parameter choices and appropriate inner-product
definitions, the polynomials M,, (or linear combinations thereof) may satisfy orthogonality relations with respect
to such weights on the simplex A,.

Figure 3. Contour plot of the Dirichlet type weight w(uy, 1, uy) obtained by fixing 1y = 1
Uy = 1 - Ly, llustrating how parameter cholces a,.7 Influence concentration near simplex

vertices or edges

u,(0,1,0)

D

(0, 0,0) "

Uy

The integration region of theuyu, — u,2} enter u, are obstainl for roaming

Figure 3. Contour plot of the Dirichlet-type weight w(u,, u,, u3) obtained by fixing u, = 1 — u; — u, — us,
illustrating how parameter choices a;, y influence concentration near simplex vertices or edges.

The integral representation thereby provides a natural starting point for investigating orthogonality, recurrence
relations, and spectral interpretations of quadruple hypergeometric polynomials in analogy with classical
orthogonal polynomial systems.

5.3 Asymptotic Behavior and Laplace Representation

The Laplace-type integral (4.3) also has significant asymptotic implications. For large |x;|, the integral can be
analyzed by steepest-descent or stationary-phase methods, yielding asymptotic expansions for M,,(xy, ..., X4).
Such expansions are particularly useful in applications where the variables represent scaled physical parameters
(e.g., in statistical mechanics or random matrix theory) and asymptotic behavior is more relevant than exact
evaluation.

In addition, the Laplace representation lends itself to the study of degenerate and limiting cases, such as when
some of the variables coalesce or parameters tend to special values, leading to reductions to lower-dimensional
hypergeometric polynomials or to degenerate hypergeometric functions studied in recent work. [12]
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5.4 Numerical Considerations

From a computational perspective, integral representations offer an alternative to direct evaluation of the
truncated series (3.1). Direct summation involves O (n®) terms for degree n in four variables (since m; + m, +
my + m, = n), which can become expensive for large n. In contrast, numerical quadrature over [0,1] for
Euler-type integrals or over A, for simplex integrals can scale differently with n, especially if the polynomial
integrand exhibits smooth behavior.

Table 2 summarizes, in qualitative terms, the computational trade-offs between direct series summation and
quadrature-based evaluation using the integral representations.

Table 2. Qualitative comparison of computational strategies for evaluating M,, (x;, x5, X3, X4).

Complexity VS.
Method degree n Dimensionality | Comments
Direct series 0(n?®) - Straightforward, but costly for large n.
summation
Euler single integral O(Ng) 1D N, quadrature nodes; integrand polynomial in

t.

Euler simplex O(Ng) 4D High-dimensional; Monte Carlo or sparse
integral grids.
Laplace-type O(Ng) 4D Good for asymptotics; exponential decay aids
integral convergence.

The table indicates that one-dimensional Euler integrals are particularly attractive computationally, while
higher-dimensional integrals may require advanced quadrature schemes or Monte Carlo approaches,
particularly when high accuracy is demanded.

Figure 4. |llustrative companison (schematic) of relative computational time as a function of

,HI"{II-’,)I']I[I‘ ‘.t("._;n‘z’ n for Senes -.1;l‘|l|l.|.’i:_:|1 Versus one -|x||u_'!|-‘vnx| ‘|| El;!r:: ‘:liv_‘u\'._il l_]U»_H]'._l!l_.n:_

Relative Corrputational Time

10 20 30

Polynomial degree n

Figure 4. lllustrative comparison (schematic) of relative computational time as a function of polynomial degree
n for series summation versus one-dimensional Euler integral quadrature.
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5.5 Limitations and Future Refinements

While the integral representations obtained in this work are structurally appealing and potentially powerful,
several limitations should be noted:

1. Parameter Restrictions: Many of the derivations rely on classical Beta- and Gamma-function
identities, which impose real-part constraints on parameters (e.g., R(c) > R(a) > 0). Extending these formulas
to more general parameter ranges may require analytic continuation or regularization techniques.
2. Convergence and Interchange of Operations: The justification of summation-integration interchange
can be delicate in the presence of singular kernels or when parameters approach boundary values. A rigorous
treatment would require detailed estimates of uniform convergence and bounds on the integrands.

3. Explicit Computation of Kernels: In the Laplace representation, the polynomial kernel L,,(s4, ..., S4)
may become complicated for large n, potentially limiting practical utility unless additional structure (e.g.,
recurrence relations) is exploited.

These limitations suggest several directions for future research, which we outline in the concluding section.
6. Conclusion

In this paper we have investigated integral representations of quadruple hypergeometric polynomials
M, (x4, %5, x3,x,) defined by a truncated quadruple hypergeometric series. Our main contribution is the
derivation of a family of Euler-type and Laplace-type integral formulas that express these polynomials as
integrals over one-dimensional intervals, four-dimensional simplexes, and positive orthants, with kernels
involving classical Beta and exponential functions.

Starting from a general series definition (3.1), we used Beta-function identities to obtain a single-parameter
Euler integral (4.1) in which M,, appears as a weighted average over a truncated quadruple hypergeometric
function evaluated at scaled arguments. By further factorization and parameterization, we obtained a multi-
parameter Euler integral over the 4-simplex (4.2), suggesting connections with Dirichlet-type weights and
multiple orthogonality. Finally, we derived a Laplace-type representation (4.3) involving polynomial kernels
in the Laplace variables and exponential decay in the hypergeometric arguments.

The derived integral representations offer several advantages. Analytically, they provide new tools for studying
asymptotic behavior, structural properties, and potential orthogonality relations of quadruple hypergeometric
polynomials. Computationally, they furnish alternative evaluation strategies that can be advantageous for large
degrees, especially when one-dimensional Euler integrals are applicable. Conceptually, they extend the classical
idea of Euler and Laplace integrals for one-variable hypergeometric functions to a genuinely multivariate and
polynomial setting.

There remain numerous avenues for further work. On the theoretical side, it would be of interest to explore
orthogonality and multiple-orthogonality properties of M,, associated with the Dirichlet-type weights emerging
from the simplex integrals, as well as to derive explicit recurrence relations and generating functions. On the
analytical side, rigorous asymptotic analysis of the Laplace-type integrals and careful study of parameter
dependence could shed light on limiting regimes and degenerations to lower-dimensional hypergeometric
systems. On the computational side, the development of specialized quadrature schemes and Monte Carlo
algorithms exploiting the structure of the integral kernels could make these representations practically useful in
high-dimensional applications.
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Overall, the integral representations obtained here contribute to a deeper understanding of quadruple
hypergeometric polynomials and lay the groundwork for further investigations in multivariate special function
theory and its applications.
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