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Abstract -- Distributed Denial of Service (DDoS) attacks 

continue to pose a significant threat to service availability 

by overwhelming network and host resources with 

malicious traffic [1][7]. While machine learning based 

intrusion detection systems have demonstrated high 

classification accuracy on benchmark datasets, their direct 

deployment in operational environments is often limited 

by false positives, delayed reaction times, and the lack of 

explainable enforcement mechanisms [4][5]. 

This paper presents a hybrid DDoS detection and 

mitigation system that integrates machine learning based 

flow classification with active Linux firewall enforcement, 

supported by independent detection signals from an 

FPGA-based monitoring module. Network traffic is 

captured and aggregated into flows, from which 

engineered features are extracted and classified using a 

Random Forest model trained on CIC-DDoS2019 data. 

Instead of relying on a fixed decision threshold, confidence 
calibration is performed using precision recall analysis to 

optimize detection reliability under class imbalance [4]. 

To enhance robustness, ML outputs are combined with 

heuristic overrides based on packet volume and burst 

behavior, enabling rapid mitigation through dynamic 

iptables rule insertion. An FPGA-based SYN flood 

detector operates in parallel to provide deterministic, low-

latency alerts that corroborate software-based detections 

and motivate hardware-assisted scalability [9][10]. The 

system further integrates Suricata as an IDS/IPS layer and 

Splunk for centralized logging and visualization, enabling 

cross-layer validation of attack events. Experimental 

results demonstrate consistent detection behavior across 

software and hardware signals, reduced false alarms, and 

timely mitigation, highlighting the effectiveness of hybrid, 

multi-layer DDoS defenses. 

I. INTRODUCTION 

Distributed Denial of Service (DDoS) attacks remain among 

the most disruptive threats to modern networked systems, 

targeting availability by saturating bandwidth, exhausting 

connection tables, or overwhelming processing resources 

[1][7]. The increasing prevalence of large-scale botnets, 

particularly those composed of compromised IoT devices, has 

amplified the scale and diversity of such attacks, making 

traditional signature-based defenses insufficient [3][8]. 
Recent research has explored machine learning based 

intrusion detection systems to identify anomalous traffic 

patterns by learning statistical characteristics of benign and 

malicious flows [1][4]. While these approaches often report 

high accuracy in controlled evaluations, their operational 

deployment presents challenges. In real networks, traffic is 
highly imbalanced, attack patterns evolve rapidly, and false 

positives can lead to unnecessary service disruption [4][5]. 

Consequently, relying solely on ML-based classification 

without calibrated decision logic or enforcement context can 

reduce practical effectiveness. 

In parallel, host-based firewalls such as Linux iptables provide 

a lightweight and readily deployable mechanism for traffic 

filtering and rate control [2][9]. Firewalls are effective at 

mitigating small-scale floods and restoring service stability; 

however, they lack adaptive intelligence and struggle to scale 

under high-rate or highly distributed attacks. Hardware-based 

solutions, particularly FPGA-assisted packet processing, have 

been proposed to address these scalability limitations by 

enabling parallel, line-rate inspection and filtering [9][10]. 

Motivated by these observations, this work proposes a hybrid 

DDoS defense architecture that combines the adaptability of 

machine learning with the determinism of rule-based firewalls 
and hardware-assisted detection. Unlike purely analytical 

studies, the system is implemented and evaluated as an 

integrated pipeline, incorporating ML-driven classification, 

heuristic decision logic, active firewall enforcement, FPGA-

based signal generation, and IDS/IPS correlation. By 

grounding detection decisions in multiple, independent 

signals, the proposed approach aims to improve reliability, 

reduce false alarms, and provide a clear pathway from 

software-based defenses toward scalable hardware-assisted 

mitigation. 

II. THREAT MODEL & DESIGN GOALS 

This work focuses on volumetric and protocol-level denial-of-

service attacks, with particular emphasis on TCP SYN floods, 

which exploit the asymmetric nature of the TCP three-way 

handshake to exhaust server-side resources [7]. In a SYN 

flood, attackers generate a large number of SYN packets often 

with spoofed source addresses, without completing the 

handshake, leading to a buildup of half-open connections on 

the victim system. 

The threat model assumes an attacker capable of generating 

high-rate traffic from one or more sources, including 

randomized or spoofed IP addresses, targeting a publicly 

reachable service port. The attacker does not require access to 

the victim host and operates entirely at the network level. 

Application-layer attacks and encrypted payload inspection 
are considered out of scope for the present study. 
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Based on this model, the system is designed with the following 

goals: 

1. Early and reliable detection: Identify malicious 
traffic patterns within short observation windows 

while minimizing false positives under benign traffic 

bursts [4]. 

2. Adaptive mitigation: Translate detection outcomes 

into concrete enforcement actions using inbuilt 

firewall mechanisms, enabling rapid response 

without external dependencies [2][9]. 

3. Hybrid decision-making: Combine ML confidence 

scores with heuristic rules based on packet volume 

and burst behavior to improve robustness against 

evasion and dataset bias [5]. 

4. Hardware compatibility: Incorporate FPGA-based 

detection signals as an independent and deterministic 

reference, enabling validation of software decisions 

and motivating future hardware offloading for 

scalability [9][10]. 

5. Operational visibility: Maintain comprehensive 
logging and monitoring through IDS/IPS alerts and 

centralized dashboards to support analysis, 

debugging, and trust in automated mitigation [6]. 

These goals collectively guide the design of a practical, multi-

layer DDoS defense that balances adaptability, determinism, 

and deployability. 

III. SYSTEM ARCHITECTURE 

 

Figure 1: System architecture block diagram 

The proposed system follows a modular architecture in which 
detection, decision making, enforcement, and monitoring are 

decoupled but tightly coordinated. Each component is 
designed to contribute a specific signal to the overall 

mitigation pipeline. 

A. Traffic Observation and Flow Aggregation 

Incoming packets are captured at the host network interface 

and grouped into flows over a fixed time window. Flow keys 

are defined as a tuple of source IP, destination IP, destination 

port, and protocol. 

flow_key = (src_ip, dst_ip, dst_port, protocol) 

This flow-based abstraction reduces per packet overhead 

while preserving temporal and protocol-level characteristics 

relevant to DDoS attacks, as supported by prior flow 

monitoring studies [1][2]. 

B. Machine Learning Detection Engine 

For each completed flow window, a feature vector is 

constructed and passed to the ML classifier. The classifier 

outputs a probabilistic score rather than a binary label, 

enabling downstream decision logic. 

attack_score = RF.predict_proba(flow_features)[1] 

Random Forest models are used due to their robustness under 

noisy and correlated feature sets, a property validated in 

several ML-based DDoS detection studies [1][4]. 

C. Firewall Enforcement Subsystem 

The Linux Netfilter framework is used as the enforcement 

layer. Rather than statically configured rules, firewall entries 

are inserted dynamically in response to detection decisions. 

Key properties of this subsystem include: 

 Immediate packet drop after rule insertion 

 Stateless enforcement behavior 

 Minimal dependency on external controllers 

Host-based firewalls have been shown to provide effective 

mitigation for short-lived or moderate-scale floods, though 

they require intelligent triggers under large-scale attacks 

[2][9]. 

D. FPGA Assisted Detection Module 

An FPGA-based detection module operates independently of 

the software stack. The module performs packet-level 

inspection and maintains counters for SYN packets and per 

source rates. 

Detection logic follows a simple threshold comparison: 

 
if syn_count > T_syn: 

    raise_alert() 

 

As discussed in FPGA mitigation literature, such deterministic 

logic enables low latency detection and consistent behavior 

under high packet rates [9][10]. In this work, FPGA outputs 

are used for validation and correlation, not direct enforcement. 

E. Monitoring and Correlation Layer 

Suricata is deployed as an IDS/IPS to generate alerts and flow 

logs, while Splunk aggregates logs from the ML detector, 

firewall, and IDS. 

Correlation across these layers allows verification of detection 

consistency, as recommended in operational monitoring 

studies [6]. This design improves trust in automated 
mitigation decisions. 

IV. HYBRID DETECTION & MITIGATION LOGIC 

The hybrid logic module is responsible for translating 

detection signals into mitigation actions. Decisions are made 

using both probabilistic and rule-based inputs. 

A. Decision Inputs 

The following inputs are considered for each flow: 

 ML attack confidence score 

 Packet count per flow 

 Number of concurrent flows in the observation 

window 

 Source IP whitelist status 
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This multi-input design reflects recommendations from hybrid 

detection frameworks in prior work [5]. 

B. Confidence Based Classification 

Each flow is first evaluated against the calibrated ML 

threshold τ. 

 
if attack_score ≥ τ: 

    candidate = malicious 

 

Threshold calibration using precision–recall analysis ensures 

reliability under class imbalance, as emphasized in [4]. 

C. Heuristic Overrides 

Two overrides are applied to capture extreme attack behavior: 

Volume override 

 
if packet_count > P_max: 

    candidate = malicious 

 

Storm override 

 
if total_flows > F_max and packet_count ≤ 

2: 

    candidate = malicious 

 

These heuristics capture volumetric and distributed attack 
patterns reported in DDoS literature [1][7]. 

D. Whitelisting and Safety Controls 

Before enforcement, the source IP is checked against a trusted 

whitelist. 

 
if src_ip in WHITELIST: 

    ignore_flow() 

 

Whitelisting is essential to prevent self-induced denial-of-

service and is widely recommended in firewall-based 

mitigation systems [2][5]. 

E. Enforcement Workflow 

Confirmed malicious sources are blocked using dynamic 

firewall rule insertion. 

iptables -A INPUT -s <src_ip> -j DROP 

This approach enables rapid mitigation with minimal system 

overhead and aligns with enforcement strategies used in prior 

host-based and SDN mitigation systems [1][9]. 

V. MACHINE LEARNING DETECTION PIPELINE 

The machine learning component of the proposed system is 

responsible for estimating the likelihood that an observed 

network flow corresponds to a DDoS attack. The design of this 

pipeline follows established practices in flow-based intrusion 

detection, while incorporating calibration steps required for 

operational deployment under highly imbalanced traffic 

conditions. 

A. Dataset Selection and Feature Engineering 

Traffic data for training and evaluation was drawn from the 

CIC-DDoS2019 dataset, which contains labeled benign and 

attack flows generated under controlled yet realistic scenarios. 

This dataset has been widely used in prior DDoS detection 

studies due to its diversity of attack types and rich flow-level 

statistics [1][4]. 

From the dataset, only BENIGN and SYN flood traffic were 
selected to align with the threat model described in Section II. 

Each flow is represented using 21 engineered features that 

capture temporal, volumetric, and protocol-specific behavior. 

These include flow duration, forward and backward packet 

counts, packet length statistics, inter-arrival times, and TCP 

flag counts. 

A simplified representation of the feature vector for each flow 

is shown below: 
F = [ 

  src_port, dst_port, protocol, 

  flow_duration, 

  total_fwd_packets, total_bwd_packets, 

  fwd_pkt_len_mean, fwd_pkt_len_std, 

  flow_packets_per_sec, 

  flow_iat_mean, flow_iat_min, 

  fwd_iat_mean, 

  min_pkt_len, max_pkt_len, 

  avg_fwd_segment_size, 

  syn_count, ack_count, 

  psh_count, rst_count, fin_count 

] 

These features are consistent with those employed in earlier 

ML-based DDoS detection works, where flow aggregation 

was shown to be effective in distinguishing attack behavior 

from normal traffic bursts [1][4]. 

B. Data Preprocessing and Class Imbalance Handling 

Raw flow records often contain undefined or extreme values 

caused by short-lived connections or capture artifacts. All 

infinite and NaN values were removed prior to training to 

ensure numerical stability. 

A key challenge in DDoS detection is extreme class 

imbalance. In real deployments, benign traffic vastly 

outnumbers attack traffic, yet misclassifying benign flows has 

a high operational cost. As discussed in [4], relying on 

accuracy alone in such conditions leads to misleading 

performance estimates. 

To address this, the training set was balanced using random 

undersampling of the majority class, while the test set was 

intentionally kept imbalanced to reflect real-world traffic 
distributions. This approach has been adopted in several prior 

studies to prevent the classifier from becoming biased toward 

the majority class during training [1][5]. 

Feature scaling was applied using standard normalization to 

ensure that attributes with larger numeric ranges did not 

dominate the learning process. The transformation is defined 

as: 

x_scaled = (x - μ) / σ 

where μ and σ denote the mean and standard deviation 

computed from the training data. 

C. Model Selection and Training 

A Random Forest classifier was selected for flow 

classification due to its robustness to feature correlation, 

resistance to overfitting, and strong empirical performance in 

DDoS detection tasks [1][4]. The ensemble nature of Random 

Forests allows multiple decision trees to vote on the 

classification outcome, improving generalization under noisy 

traffic patterns. 
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Model training follows the procedure: 

 
rf_model = RandomForestClassifier( 

    n_estimators=50, 

    random_state=42, 

    n_jobs=-1 

) 

rf_model.fit(X_train_scaled, 

y_train_balanced) 

 

Rather than producing a hard class label, the trained model 

outputs class probabilities using the predict_proba function. 

This probabilistic output is essential for threshold calibration 

and hybrid decision-making. 

D. Threshold Calibration Using Precision–Recall Analysis 

In operational DDoS detection, the cost of false positives and 

false negatives is inherently asymmetric. Blocking benign 

traffic degrades service availability, while delayed or missed 

detection increases the impact of an ongoing attack. As 

emphasized in prior classifier evaluation studies, decision 

thresholds must therefore be tuned explicitly rather than fixed 

at the default value of 0.50, particularly under severe class 

imbalance [4]. 

To address imbalance during training, Random Under-

Sampling was applied to the training set, forcing the classifier 

to learn discriminative characteristics of benign and attack 
traffic with equal representation. The test set was intentionally 

kept imbalanced to reflect realistic deployment conditions, 

consistent with evaluation practices reported in earlier ML-

based DDoS studies [1][5]. 

Threshold calibration was performed using precision–recall 

analysis on the imbalanced test set. The F1 score was 

computed across all candidate thresholds, and the threshold 

that maximized F1 was selected for deployment: 

 
precision, recall, thresholds = 

precision_recall_curve(y_test, y_probs) 

f1_scores = 2 * (precision * recall) / 

(precision + recall + 1e-9) 

best_threshold = 

thresholds[np.argmax(f1_scores)] 

 

Across repeated experiments, the optimal threshold was 

consistently observed in the range τ ≈ 0.08 to 0.09. This 

relatively low threshold prioritizes sensitivity to attack 

patterns, enabling early detection of malicious flows. While 

such a threshold may increase the risk of false positives, the 

proposed system mitigates this risk through hybrid decision 

logic and independent FPGA-based validation. As a result, 

only alerts corroborated by heuristic conditions or hardware 

signals lead to persistent firewall enforcement, balancing 

detection sensitivity with operational stability. 

E. Integration with Online Detection 

During live traffic monitoring, extracted flow features are 

scaled using the same parameters learned during training. The 

classifier outputs an attack confidence score for each flow, 

which is then forwarded to the hybrid decision logic described 
in Section IV. 

By separating probabilistic detection from enforcement 

decisions, the system avoids brittle behavior and enables 

informed mitigation based on both statistical learning and 

rule-based reasoning. This separation aligns with hybrid 

mitigation architectures proposed in prior work, where ML 

serves as an advisory component rather than a sole authority 

[5]. 

VI. FPGA-ASSISTED DETECTION MODULE 

The FPGA-assisted detection module is incorporated as a 

parallel and independent component within the overall 

defense architecture. Its purpose is not to replace machine 

learning or firewall-based mitigation, but to provide a 

deterministic and low-latency detection signal that can 

corroborate software-based decisions and motivate hardware-
assisted scalability. This design choice aligns with prior 

studies that emphasize hardware offloading for simple, high-

frequency detection tasks rather than complex classification 

logic [9][10]. 

A. Role of FPGA in the Detection Pipeline 

As discussed in FPGA-based DDoS mitigation literature, 

hardware logic is particularly effective for identifying 

primitive attack indicators such as excessive SYN rates or 
abnormal packet bursts [9]. In the proposed system, the FPGA 

operates as a lightweight monitoring module that observes 

incoming TCP traffic and extracts protocol-level signals that 

are computationally expensive to track in software at high 

packet rates. 

The FPGA does not perform flow classification or mitigation. 

Instead, it performs three core functions: 

1. Parsing incoming Ethernet and IP packets. 

2. Identifying TCP SYN packets using flag inspection. 

3. Maintaining counters over short observation 

windows. 

By restricting the FPGA role to deterministic operations, the 

design avoids complexity while ensuring predictable timing 

behavior. 

B. Hardware Detection Logic 

At the hardware level, incoming packets are parsed to extract 

TCP header fields. SYN packets are identified using a simple 

condition on the TCP flags field. 

 
if TCP.SYN == 1 and TCP.ACK == 0: 

    syn_counter = syn_counter + 1 

 

Counters are maintained over a fixed time interval. At the end 

of each interval, the observed SYN count is compared against 

a predefined threshold. 

 
if syn_counter > T_syn: 

    alert = 1 

else: 

    alert = 0 

 

This threshold-based detection mechanism is consistent with 

FPGA designs reported in [9], where simplicity and 

determinism are favored over adaptive logic to guarantee 

reliable operation under high traffic volumes. 
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C. Integration with the Host System 

The FPGA detection module operates alongside the host 

system and communicates detection events through software-

visible interfaces. During experimental evaluation, detection 
alerts generated by the FPGA were observed in real time and 

correlated with traffic generation parameters. 

The host system does not automatically enforce mitigation 

based on FPGA alerts alone. Instead, FPGA outputs are treated 

as an independent validation signal that can be compared 

against: 

 ML confidence scores 

 Firewall-triggered logs 

 IDS alerts generated by Suricata 

This separation of detection and enforcement follows the 

design philosophy advocated in hybrid defense frameworks, 

where multiple weak signals are combined to increase overall 

reliability [5]. 

D. Experimental Validation of FPGA Detection 

To validate the FPGA module, controlled SYN flood traffic 

was generated targeting the FPGA-equipped system. The 

packet generation rate was varied systematically, and the 

observed SYN counts were recorded at both the traffic 

generator and the FPGA output. 

Detection accuracy was evaluated using the following metric: 

Detection Accuracy (%) = (Detected SYN / Sent SYN) × 100 

Across all tested scenarios, the FPGA counters accurately 

reflected the number of injected SYN packets, and alerts were 

triggered consistently once the configured threshold was 
exceeded. These results confirm that the FPGA module 

provides reliable, low-latency detection of protocol-level 

attack behavior, consistent with observations reported in prior 

hardware-based DDoS studies [9][10]. 

E. Design Implications 

While the FPGA module in this work is limited to basic SYN 

flood detection, its integration demonstrates a clear pathway 

toward scalable hardware-assisted defenses. By offloading 
repetitive packet-level operations to hardware, the system 

reduces reliance on CPU-bound processing and improves 

resilience under increasing traffic rates. 

As highlighted in recent hardware offloading research, such 

modular designs enable future extensions, including flow 

aggregation, rate limiting, or policy enforcement in hardware, 

without disrupting existing software pipelines [10]. 

VII. IDS, IPS, AND MONITORING SYSTEM 

The proposed system integrates intrusion detection, 
prevention, and monitoring components to ensure that 

detection decisions are observable, verifiable, and auditable. 

Rather than treating mitigation as a black-box action, the 

architecture explicitly exposes detection and enforcement 

events through an IDS/IPS layer and a centralized monitoring 

framework. This design choice follows recommendations 

from operational security studies, which emphasize visibility 

and correlation as essential requirements for trustworthy 

automated defenses [6]. 

A. Role of Suricata as IDS and IPS 

Suricata is deployed as both an intrusion detection system and 

an intrusion prevention system within the monitoring plane. It 

inspects network traffic independently of the ML pipeline and 

generates alerts based on protocol violations, abnormal flow 

behavior, and predefined detection rules. While Suricata does 

not directly control mitigation in this design, it provides an 

important secondary signal that reflects traffic anomalies from 

a signature and rule-based perspective. 

Suricata generates structured JSON logs containing flow 

records, alerts, and protocol metadata. These logs include 

fields such as source and destination IPs, ports, protocol 

identifiers, timestamps, and alert classifications. The presence 

of these structured logs allows precise alignment between IDS 

alerts and events observed by the ML detector and FPGA 

module. 
Conceptually, Suricata operates as follows: 

packet_in → protocol_decode → rule_match → alert/log 

By maintaining this separation, the system avoids coupling 

ML decisions to signature-based logic, a limitation noted in 

earlier IDS-centric mitigation frameworks [1][5]. 

B. Log Generation and Semantics 

Detection and mitigation events across the system generate 
logs at multiple layers: 

1. The ML-based detector logs flow-level decisions and 

confidence scores. 

2. The firewall logs rule insertions and blocked source 

addresses. 

Figure 2: Centralized monitoring dashboard summary 
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3. Suricata logs alerts and flow summaries. 

4. The FPGA module produces threshold-based 

detection events. 
Each log entry includes a timestamp and source identifier, 

enabling cross-layer correlation. For example, a firewall block 

event is logged using a structured message format: 

action=block src_ip=<IP> confidence=<score> 

reason=<trigger> 

Such explicit logging semantics are critical for post-event 

analysis and debugging, as emphasized in monitoring-

oriented studies [6]. 

C. Centralized Monitoring Using Splunk 

Splunk is used to aggregate and visualize logs generated by 

the detection and mitigation pipeline. Logs from Suricata, the 

ML detector, and the firewall are ingested into a centralized 

index, enabling real-time queries and dashboards. 

Typical queries used during evaluation include: 

 Counting blocked IP addresses over time 

 Visualizing active flows and alert frequency 

 Identifying top destination ports and protocols during 

attack windows 

An example query used to monitor mitigation activity is 

shown below: 

source="/var/log/ddos_guard.log" "action=block" 

Similarly, Suricata flow logs are used to visualize traffic 

dynamics: 

source="/var/log/suricata/eve.json" event_type="flow" 

Such dashboards provide operational insight into attack 

progression and mitigation effectiveness, supporting the role 

of monitoring frameworks highlighted in [6]. 

D. Cross-Layer Correlation of Detection Signals 

A key strength of the proposed system lies in its ability to 

correlate detection signals across independent components. 

During attack scenarios, the following pattern is typically 

observed: 

 A spike in SYN packets detected by the FPGA 

counters 

 Elevated ML confidence scores for short-lived flows 

 Suricata alerts indicating abnormal TCP behavior 

 Firewall rule insertion events targeting malicious 

sources 

By aligning these events temporally, the system verifies that 
mitigation decisions are not based on a single noisy signal. 

This cross-validation approach reflects best practices 

recommended in hybrid detection and mitigation 

architectures, where corroboration across layers improves 

reliability and reduces false positives [5][9]. 

E. Operational Benefits 

The integration of IDS, IPS, and monitoring components 

ensures that automated mitigation remains transparent and 

controllable. Administrators can inspect detection decisions, 

verify their causes, and assess their impact through centralized 

dashboards. This visibility is particularly important in DDoS 

defense systems, where overly aggressive blocking can 

disrupt legitimate traffic. 

By combining ML-based inference, deterministic hardware 

signals, and rule-based IDS alerts within a monitored 
environment, the proposed system balances automation with 

observability. This balance addresses a key limitation 

identified in prior ML-centric approaches, where lack of 

explainability hindered real-world adoption [4][6]. 

VIII. EXPERIMENTAL EVALUATION & RESULTS 

This section evaluates the proposed hybrid DDoS detection 

and mitigation system under controlled attack scenarios. The 

objective of the evaluation is not to benchmark raw 
throughput, but to assess detection consistency, mitigation 

behavior, and cross-layer agreement between software and 

hardware signals. This aligns with the experimental scope 

adopted in prior practical DDoS studies that emphasize system 

behavior and reliability over synthetic performance metrics 

[1][5]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3: Protocol distribution during attack window, showing TCP-dominant traffic consistent with SYN flood behavior. 
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A. Experimental Setup 

 

Figure 4: controlled SYN flood generation and corresponding real-
time SYN packet detection 

The evaluation environment consists of a Linux-based host 

system running the ML detector, firewall, IDS, and monitoring 

stack, along with traffic generators used to simulate SYN 

flood attacks.  

Traffic generation parameters were configured to vary packet 

rates and source behavior while remaining within a controlled 

private network. Attack traffic was generated using standard 

packet generation tools capable of producing TCP SYN 

packets at configurable rates. Packets targeted a known 

service port on the victim system. Source addresses were 

randomized in selected experiments to emulate distributed and 

spoofed attack behavior, consistent with the threat model 
described earlier. 

All components operated simultaneously during evaluation: 

 The ML detector processed flow windows and 

generated confidence scores. 

 The firewall dynamically inserted blocking rules 

based on hybrid decisions. 

 The FPGA module monitored SYN packet rates 

independently. 

 Suricata generated IDS alerts and flow logs. 

 Splunk aggregated logs across all subsystems. 

B. Detection Consistency Across Components 

One of the primary evaluation criteria was consistency across 

detection signals. During SYN flood scenarios, the FPGA 

module reliably detected threshold violations corresponding 

to elevated SYN packet rates. These hardware alerts were 

observed to coincide with increased ML confidence scores for 

short-lived flows characterized by high SYN counts and 

minimal handshake completion. 

Suricata alerts indicating abnormal TCP behavior appeared 

within the same time windows, providing an additional 

independent confirmation. Firewall block events followed 

shortly thereafter, triggered by the hybrid decision logic once 

confidence and heuristic conditions were satisfied. 

This convergence of signals demonstrates that the system does 

not rely on a single detection mechanism. Instead, mitigation 
decisions emerge from agreement across probabilistic, 

heuristic, and deterministic indicators, a design principle 

advocated in hybrid defense frameworks [5][9]. 

C. Mitigation Behavior and Response Characteristics 

 

Figure 5: Dynamic firewall rule insertion 

Once a source address was classified as malicious, firewall 

rules were inserted dynamically to drop subsequent packets 

from that source (Fig 5.). The use of iptables enabled 

immediate enforcement without requiring service restarts or 

external controllers. 

In volumetric attack scenarios, the volume-based override 

ensured that extremely high packet counts triggered 

mitigation even when ML confidence had not yet crossed the 

calibrated threshold. In distributed attack simulations 
involving many low-packet flows, the storm detection 

heuristic effectively elevated suspicious flows for mitigation, 

preventing evasion through traffic fragmentation. These 

behaviors reflect known attack patterns described in DDoS 

literature [7]. 

Importantly, the whitelist mechanism prevented blocking of 

trusted infrastructure addresses and internal services. This 

safety control was essential in maintaining system availability 

during evaluation, reinforcing recommendations from 

firewall-based mitigation studies [2][5]. 

D. False Positives and Stability Observations 

False positives were evaluated qualitatively by observing 

system behavior under benign traffic bursts. Short-term spikes 

in legitimate traffic did not result in persistent firewall blocks 

when ML confidence remained below the calibrated threshold 

and heuristic conditions were not satisfied. 

The use of precision–recall based threshold tuning played a 

critical role in this behavior. As discussed in prior ML 

evaluation studies, lowering the decision threshold 

indiscriminately can significantly increase false positives 

under realistic traffic distributions [4]. By selecting a 

threshold optimized for F1 score on an imbalanced test set, the 

system achieved a stable trade-off between sensitivity and 

specificity. 

No self-blocking events were observed during evaluation, 
validating the effectiveness of the whitelist and safety checks 

embedded in the hybrid logic. 

E. Correlation and Observability 

Centralized monitoring via Splunk enabled real-time 

visualization of attack progression and mitigation actions. 

Dashboards displaying blocked IP counts, flow statistics, and 

IDS alerts provided a coherent view of system state during 

attack and recovery phases. 
Temporal alignment of logs revealed a clear sequence: traffic 

surge, detection signals, mitigation, and stabilization. This 

observability is essential for operational trust, as emphasized 

in monitoring-focused studies [6]. Administrators can trace 

each enforcement action back to its triggering conditions, 

reducing ambiguity and supporting post-event analysis. 

F. Summary of Observations 

The experimental evaluation demonstrates that: 

http://www.ijcrt.org/


www.ijcrt.org                                               © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882 

IJCRT2512981 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i584 
 

1. ML-based detection, FPGA counters, and IDS alerts 

exhibit strong temporal agreement during attack 

scenarios. 
2. Hybrid decision logic enables timely mitigation 

without excessive false positives. 

3. Firewall-based enforcement is effective when guided 

by calibrated and corroborated detection signals. 

4. Monitoring and logging provide transparency and 

confidence in automated mitigation decisions. 

These results support the feasibility of the proposed hybrid 

architecture as a practical DDoS defense framework, 

consistent with findings reported in prior hybrid and 

hardware-assisted mitigation studies [1][5][9]. 

IX. DISCUSSIONS & LIMITATIONS 

The proposed system demonstrates that combining machine 

learning, heuristic logic, and hardware-assisted detection can 

improve reliability in DDoS mitigation. However, several 

limitations remain and are discussed here to contextualize the 

results. 

First, the evaluation focuses primarily on TCP SYN flood 

attacks. While SYN floods are representative of protocol-level 

denial-of-service behavior, the current feature set and 

heuristics are not designed to detect application-layer or 

reflection-based attacks. Extending the detection pipeline to 

additional attack classes would require both feature 

augmentation and retraining, as noted in prior DDoS surveys 

[3][7]. 

Second, the machine learning model is trained on CIC-
DDoS2019 traffic, which, although widely used, cannot fully 

capture the diversity of real-world network behavior. As 

reported in earlier ML-based detection studies, supervised 

models remain sensitive to dataset bias and concept drift, 

necessitating periodic retraining and threshold reassessment in 

deployment environments [4][5]. 

Third, the hybrid decision logic relies on empirically selected 

thresholds for volume-based and storm-based detection. 

While these heuristics improve robustness under extreme 

attack conditions, static thresholds may be susceptible to 

evasion by adaptive attackers. This limitation is inherent to 

hybrid systems that combine learned and rule-based 

components [1][5]. 

Finally, the FPGA-assisted module is intentionally limited to 

basic protocol-level detection. Although this design ensures 

deterministic behavior and low latency, it does not exploit the 

full potential of hardware acceleration. Throughput analysis 
and deeper hardware integration remain outside the scope of 

this study but are essential for evaluating scalability, as 

emphasized in prior FPGA offloading work [9][10]. 

X. CONCLUSION & FUTURE WORK 

This paper presented a hybrid DDoS detection and mitigation 

framework that integrates machine learning–based flow 

classification, heuristic decision logic, dynamic Linux firewall 

enforcement, FPGA-assisted detection, and IDS/IPS 
monitoring. The system demonstrates that mitigation 

decisions grounded in multiple independent signals are more 

reliable than ML-only or rule-only approaches [1][4][9]. 

Experimental evaluation under controlled SYN flood 

scenarios showed consistent detection behavior across 

software and hardware components, effective mitigation 

through dynamic firewall rule insertion, and strong 

observability through centralized monitoring. These results 

indicate that hybrid architectures provide a practical pathway 

toward deployable DDoS defenses. 

Future work includes extending detection to additional attack 

types, introducing adaptive thresholding mechanisms, and 

deepening FPGA integration for flow aggregation or inline 

enforcement. Deployment in higher-throughput 

environments, such as cloud or edge networks, would further 

validate scalability and operational feasibility [5][10]. 
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