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Abstract -- Distributed Denial of Service (DDoS) attacks
continue to pose a significant threat to service availability
by overwhelming network and host resources with
malicious traffic [1][7]. While machine learning based
intrusion detection systems have demonstrated high
classification accuracy on benchmark datasets, their direct
deployment in operational environments is often limited
by false positives, delayed reaction times, and the lack of
explainable enforcement mechanisms [4][S].

This paper presents a hybrid DDoS detection and
mitigation system that integrates machine learning based
flow classification with active Linux firewall enforcement,
supported by independent detection signals from an
FPGA-based monitoring module. Network traffic is
captured and aggregated into flows, from which
engineered features are extracted and classified using a
Random Forest model trained on CIC-DD0S2019 data.
Instead of relying on a fixed decision threshold, confidence
calibration is performed using precision recall analysis to
optimize detection reliability under class imbalance [4].
To enhance robustness, ML outputs are combined with
heuristic overrides based on packet volume and burst
behavior, enabling rapid mitigation through dynamic
iptables rule insertion. An FPGA-based SYN flood
detector operates in parallel to provide deterministic, low-
latency alerts that corroborate software-based detections
and motivate hardware-assisted scalability [9][10]. The
system further integrates Suricata as an IDS/IPS layer and
Splunk for centralized logging and visualization, enabling
cross-layer validation of attack events. Experimental
results demonstrate consistent detection behavior across
software and hardware signals, reduced false alarms, and
timely mitigation, highlighting the effectiveness of hybrid,
multi-layer DDoS defenses.

. INTRODUCTION

Distributed Denial of Service (DDoS) attacks remain among
the most disruptive threats to modern networked systems,
targeting availability by saturating bandwidth, exhausting
connection tables, or overwhelming processing resources
[1][7]. The increasing prevalence of large-scale botnets,
particularly those composed of compromised IoT devices, has
amplified the scale and diversity of such attacks, making
traditional signature-based defenses insufficient [3][8].

Recent research has explored machine learning based
intrusion detection systems to identify anomalous traffic
patterns by learning statistical characteristics of benign and
malicious flows [1][4]. While these approaches often report
high accuracy in controlled evaluations, their operational
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deployment presents challenges. In real networks, traffic is
highly imbalanced, attack patterns evolve rapidly, and false
positives can lead to unnecessary service disruption [4][5].
Consequently, relying solely on ML-based classification
without calibrated decision logic or enforcement context can
reduce practical effectiveness.

In parallel, host-based firewalls such as Linux iptables provide
a lightweight and readily deployable mechanism for traffic
filtering and rate control [2][9]. Firewalls are effective at
mitigating small-scale floods and restoring service stability;
however, they lack adaptive intelligence and struggle to scale
under high-rate or highly distributed attacks. Hardware-based
solutions, particularly FPGA-assisted packet processing, have
been proposed to address these scalability limitations by
enabling parallel, line-rate inspection and filtering [9][10].
Motivated by these observations, this work proposes a hybrid
DDoS defense architecture that combines the adaptability of
machine learning with the determinism of rule-based firewalls
and hardware-assisted detection. Unlike purely analytical
studies, the system is implemented and-evaluated as an
integrated pipeline, incorporating ML-driven classification,
heuristic decision logic, active firewall enforcement, FPGA-
based signal generation, -and IDS/IPS correlation. By
grounding detection decisions in multiple, independent
signals, the proposed approach aims to improve reliability,
reduce false alarms, and provide a clear pathway from
software-based defenses toward scalable hardware-assisted
mitigation.

1. THREAT MODEL & DESIGN GOALS

This work focuses on volumetric and protocol-level denial-of-
service attacks, with particular emphasis on TCP SYN floods,
which exploit the asymmetric nature of the TCP three-way
handshake to exhaust server-side resources [7]. In a SYN
flood, attackers generate a large number of SYN packets often
with spoofed source addresses, without completing the
handshake, leading to a buildup of half-open connections on
the victim system.

The threat model assumes an attacker capable of generating
high-rate traffic from one or more sources, including
randomized or spoofed IP addresses, targeting a publicly
reachable service port. The attacker does not require access to
the victim host and operates entirely at the network level.
Application-layer attacks and encrypted payload inspection
are considered out of scope for the present study.
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Based on this model, the system is designed with the following
goals:

1. Early and reliable detection: Identify malicious
traffic patterns within short observation windows
while minimizing false positives under benign traffic
bursts [4].

2. Adaptive mitigation: Translate detection outcomes
into concrete enforcement actions using inbuilt
firewall mechanisms, enabling rapid response
without external dependencies [2][9].

3. Hybrid decision-making: Combine ML confidence
scores with heuristic rules based on packet volume
and burst behavior to improve robustness against
evasion and dataset bias [5].

4. Hardware compatibility: Incorporate FPGA-based
detection signals as an independent and deterministic
reference, enabling validation of software decisions
and motivating future hardware offloading for
scalability [9][10].

5. Operational visibility: Maintain comprehensive
logging and monitoring through IDS/IPS alerts and
centralized dashboards to support analysis,
debugging, and trust in automated mitigation [6].

These goals collectively guide the design of a practical, multi-
layer DDoS defense that balances adaptability, determinism,
and deployability.

1. SYSTEM ARCHITECTURE
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Figure 1: System architecture block diagram

The proposed system follows a modular architecture in which
detection, decision making, enforcement, and monitoring are
decoupled but tightly coordinated. Each component is
designed to contribute a specific signal to the overall
mitigation pipeline.

A. Traffic Observation and Flow Aggregation

Incoming packets are captured at the host network interface
and grouped into flows over a fixed time window. Flow keys
are defined as a tuple of source IP, destination IP, destination
port, and protocol.

flow_key = (src_ip, dst_ip, dst_port, protocol)

This flow-based abstraction reduces per packet overhead
while preserving temporal and protocol-level characteristics
relevant to DDoS attacks, as supported by prior flow
monitoring studies [1][2].

B. Machine Learning Detection Engine

For each completed flow window, a feature vector is
constructed and passed to the ML classifier. The classifier
outputs a probabilistic score rather than a binary label,
enabling downstream decision logic.

attack_score = RF.predict_proba(flow_features)[1]

Random Forest models are used due to their robustness under
noisy and correlated feature sets, a property validated in
several ML-based DDoS detection studies [1][4].

C. Firewall Enforcement Subsystem

The Linux Netfilter framework is used as the enforcement
layer. Rather than statically configured rules, firewall entries
are inserted dynamically in response to detection decisions.
Key properties of this subsystem include:

e Immediate packet drop after rule insertion

e  Stateless enforcement behavior

e Minimal dependency on external controllers
Host-based firewalls have been shown to provide effective
mitigation for short-lived or moderate-scale floods, though
they require intelligent triggers under large-scale attacks

[2][°].
D. FPGA Assisted Detection Module

An FPGA-based detection module operates independently of
the software stack. The module performs packet-level
inspection and maintains counters for SYN packets and per
source rates.

Detection logic follows a simple threshold comparison:

if syn count > T syn:
raise alert ()

As discussed in FPGA mitigation literature, such deterministic
logic enables low latency detection and consistent behavior
under high packet rates [9][10]. In this work, FPGA outputs
are used for validation and correlation, not direct enforcement.

E. Monitoring and Correlation Layer

Suricata is deployed as an IDS/IPS to generate alerts and flow
logs, while Splunk aggregates logs from the ML detector,
firewall, and IDS.

Correlation across these layers allows verification of detection
consistency, as recommended in operational monitoring
studies [6]. This design improves trust in automated
mitigation decisions.

V. HYBRID DETECTION & MITIGATION LOGIC

The hybrid logic module is responsible for translating
detection signals into mitigation actions. Decisions are made
using both probabilistic and rule-based inputs.

A. Decision Inputs

The following inputs are considered for each flow:
e ML attack confidence score
e Packet count per flow
e Number of concurrent flows in the observation
window
e Source IP whitelist status
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This multi-input design reflects recommendations from hybrid
detection frameworks in prior work [5].

B. Confidence Based Classification

Each flow is first evaluated against the calibrated ML
threshold t.

if attack score 2 1:
candidate = malicious

Threshold calibration using precision—recall analysis ensures
reliability under class imbalance, as emphasized in [4].

C. Heuristic Overrides

Two overrides are applied to capture extreme attack behavior:
Volume override

if packet count > P max:
candidate = malicious

Storm override

if total flows > F max and packet count <
2:
candidate = malicious

These heuristics capture volumetric and distributed attack
patterns reported in DDoS literature [1][7].

D. Wihitelisting and Safety Controls

Before enforcement, the source IP is checked against a trusted
whitelist.

if src ip in WHITELIST:
ignore flow ()

Whitelisting is essential to prevent self-induced denial-of-
service and is widely recommended in firewall-based
mitigation systems [2][5].

E. Enforcement Workflow

Confirmed malicious sources are blocked using dynamic
firewall rule insertion.

iptables -A INPUT -s <src_ip> -j DROP

This approach enables rapid mitigation with minimal system
overhead and aligns with enforcement strategies used in prior
host-based and SDN mitigation systems [1][9].

V. MACHINE LEARNING DETECTION PIPELINE

The machine learning component of the proposed system is
responsible for estimating the likelihood that an observed
network flow corresponds to a DDoS attack. The design of this
pipeline follows established practices in flow-based intrusion
detection, while incorporating calibration steps required for
operational deployment under highly imbalanced traffic
conditions.

A. Dataset Selection and Feature Engineering

Traffic data for training and evaluation was drawn from the
CIC-DDo0S2019 dataset, which contains labeled benign and
attack flows generated under controlled yet realistic scenarios.
This dataset has been widely used in prior DDoS detection

studies due to its diversity of attack types and rich flow-level
statistics [1][4].
From the dataset, only BENIGN and SYN flood traffic were
selected to align with the threat model described in Section IL
Each flow is represented using 21 engineered features that
capture temporal, volumetric, and protocol-specific behavior.
These include flow duration, forward and backward packet
counts, packet length statistics, inter-arrival times, and TCP
flag counts.
A simplified representation of the feature vector for each flow
is shown below:
F =

src_port, dst port, protocol,

flow duration,

total fwd packets, total bwd packets,

fwd pkt len mean, fwd pkt len std,

flow packets per sec,

flow iat mean, flow iat min,

fwd iat mean,

min pkt len, max pkt len,

avg fwd segment size,

syn_count, ack_count,

psh count, rst count,
]
These features are consistent with those employed in earlier
ML-based DDoS detection works, where flow aggregation
was shown to be effective in distinguishing attack behavior
from normal traffic bursts [1][4].

fin count

B. Data Preprocessing and Class Imbalance Handling

Raw flow records often contain undefined or extreme values
caused by short-lived connections or capture artifacts. All
infinite and NaN values were removed prior to training to
ensure numerical stability.

A key challenge in DDoS detection is extreme -class
imbalance. In real deployments, benign traffic vastly
outnumbers attack traffic, yet misclassifying benign flows has
a high operational cost. As discussed in [4], relying on
accuracy alone in such conditions leads to misleading
performance estimates.

To address this, the training set was balanced using random
undersampling of the majority class, while the test set was
intentionally kept imbalanced to reflect real-world traffic
distributions. This approach has been adopted in several prior
studies to prevent the classifier from becoming biased toward
the majority class during training [1][5].

Feature scaling was applied using standard normalization to
ensure that attributes with larger numeric ranges did not
dominate the learning process. The transformation is defined
as:

x_scaled=(x-p)/o

where p and o denote the mean and standard deviation
computed from the training data.

C. Model Selection and Training

A Random Forest classifier was selected for flow
classification due to its robustness to feature correlation,
resistance to overfitting, and strong empirical performance in
DDoS detection tasks [1][4]. The ensemble nature of Random
Forests allows multiple decision trees to vote on the
classification outcome, improving generalization under noisy
traffic patterns.
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Model training follows the procedure:

rf model = RandomForestClassifier (
n_estimators=50,
random state=42,
n_jobs=-1
)
rf model.fit (X train scaled,
y_train balanced)

Rather than producing a hard class label, the trained model
outputs class probabilities using the predict proba function.
This probabilistic output is essential for threshold calibration
and hybrid decision-making.

D. Threshold Calibration Using Precision—Recall Analysis

In operational DDoS detection, the cost of false positives and
false negatives is inherently asymmetric. Blocking benign
traffic degrades service availability, while delayed or missed
detection increases the impact of an ongoing attack. As
emphasized in prior classifier evaluation studies, decision
thresholds must therefore be tuned explicitly rather than fixed
at the default value of 0.50, particularly under severe class
imbalance [4].

To address imbalance during training, Random Under-
Sampling was applied to the training set, forcing the classifier
to learn discriminative characteristics of benign and attack
traffic with equal representation. The test set was intentionally
kept imbalanced to reflect realistic deployment conditions,
consistent with evaluation practices reported in earlier ML-
based DDoS studies [1][5].

Threshold calibration was performed using precision—recall
analysis on the imbalanced test set. The F1 score was
computed across all candidate thresholds, and the threshold
that maximized F1 was selected for deployment:

precision, recall, thresholds =
precision recall curve(y test, y probs)
fl scores = 2 * (precision * recall) /
(precision + recall + le-9)

best threshold =2
thresholds[np.argmax (f1 scores) ]

Across repeated experiments, the optimal threshold was
consistently observed in the range T =~ 0.08 to 0.09. This
relatively low threshold prioritizes sensitivity to attack
patterns, enabling early detection of malicious flows. While
such a threshold may increase the risk of false positives, the
proposed system mitigates this risk through hybrid decision
logic and independent FPGA-based validation. As a result,
only alerts corroborated by heuristic conditions or hardware
signals lead to persistent firewall enforcement, balancing
detection sensitivity with operational stability.

E. Integration with Online Detection

During live traffic monitoring, extracted flow features are
scaled using the same parameters learned during training. The
classifier outputs an attack confidence score for each flow,
which is then forwarded to the hybrid decision logic described
in Section IV.

By separating probabilistic detection from enforcement
decisions, the system avoids brittle behavior and enables
informed mitigation based on both statistical learning and
rule-based reasoning. This separation aligns with hybrid
mitigation architectures proposed in prior work, where ML
serves as an advisory component rather than a sole authority

[5].

VI. FPGA-ASSISTED DETECTION MODULE

The FPGA-assisted detection module is incorporated as a
parallel and independent component within the overall
defense architecture. Its purpose is not to replace machine
learning or firewall-based mitigation, but to provide a
deterministic and low-latency detection signal that can
corroborate software-based decisions and motivate hardware-
assisted scalability. This design choice aligns with prior
studies that emphasize hardware offloading for simple, high-
frequency detection tasks rather than complex classification
logic [9][10].

A. Role of FPGA in the Detection Pipeline

As discussed in FPGA-based DDoS mitigation literature,
hardware logic is particularly effective for identifying
primitive attack indicators such as excessive SYN rates or
abnormal packet bursts [9]. In the proposed system, the FPGA
operates as a lightweight monitoring module that observes
incoming TCP traffic and extracts protocol-level signals that
are computationally expensive to track in software at high
packet rates.
The FPGA does not perform flow classification or mitigation.
Instead, it performs three core functions:

1. Parsing incoming Ethernet and IP packets.

2. Identifying TCP SYN packets using flag inspection.

3. Maintaining counters over short observation

windows.

By restricting the FPGA role to deterministic operations, the
design avoids complexity while ensuring predictable timing
behavior.

B. Hardware Detection Logic

At the hardware level, incoming packets are parsed to extract
TCP header fields. SYN packets are identified using a simple
condition on the TCP flags field.

if TCP.SYN == 1 and TCP.ACK ==
syn _counter = syn counter:+ 1

Counters are maintained over a fixed time interval. At the end
of each interval, the observed SYN count is compared against
a predefined threshold.

if syn counter > T syn:
alert =1

else:
alert = 0

This threshold-based detection mechanism is consistent with
FPGA designs reported in [9], where simplicity and
determinism are favored over adaptive logic to guarantee
reliable operation under high traffic volumes.
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C. Integration with the Host System

The FPGA detection module operates alongside the host
system and communicates detection events through software-
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aggregation, rate limiting, or policy enforcement in hardware,
without disrupting existing software pipelines [10].

VIL. IDS, IPS, AND MONITORING SYSTEM

Figure 2: Centralized monitoring dashboard summary

visible interfaces. During experimental evaluation, detection
alerts generated by the FPGA were observed in real time and
correlated with traffic generation parameters.
The host system does not automatically enforce mitigation
based on FPGA alerts alone. Instead, FPGA outputs are treated
as an independent validation signal that can be compared
against:

e ML confidence scores

e  Firewall-triggered logs

e IDS alerts generated by Suricata
This separation of detection and enforcement follows the
design philosophy advocated in hybrid defense frameworks,
where multiple weak signals are combined to increase overall
reliability [5].

D. Experimental Validation of FPGA Detection

To validate the FPGA module, controlled SYN flood traffic
was generated targeting the FPGA-equipped system. The
packet generation rate was varied systematically, and the
observed SYN counts were recorded at both the traffic
generator and the FPGA output.

Detection accuracy was evaluated using the following metric:
Detection Accuracy (%) = (Detected SYN / Sent SYN) x 100
Across all tested scenarios, the FPGA counters accurately
reflected the number of injected SYN packets, and alerts were
triggered consistently once the configured threshold was
exceeded. These results confirm that the FPGA module
provides reliable, low-latency detection of protocol-level
attack behavior, consistent with observations reported in prior
hardware-based DDoS studies [9][10].

E. Design Implications

While the FPGA module in this work is limited to basic SYN
flood detection, its integration demonstrates a clear pathway
toward scalable hardware-assisted defenses. By offloading
repetitive packet-level operations to hardware, the system
reduces reliance on CPU-bound processing and improves
resilience under increasing traffic rates.

As highlighted in recent hardware offloading research, such
modular designs enable future extensions, including flow

The proposed system integrates intrusion detection,
prevention, and monitoring components to ensure that
detection decisions are observable, verifiable, and auditable.
Rather than treating mitigation as a black-box action, the
architecture explicitly exposes detection and enforcement
events through an IDS/IPS layer and a centralized monitoring
framework. This design choice follows recommendations
from operational security studies, which emphasize visibility
and correlation as essential requirements for trustworthy
automated defenses [6].

A. Role of Suricata as IDS and IPS

Suricata is deployed as both an intrusion detection system and
an intrusion prevention system within the monitoring plane. It
inspects network traffic independently of the ML pipeline and
generates alerts based on protocol violations, abnormal flow
behavior, and predefined detection rules. While Suricata does
not directly control mitigation in this design, it provides an
important secondary signal that reflects traffic anomalies from
a signature and rule-based perspective.

Suricata generates structured JSON logs containing flow
records, alerts, and protocol metadata. These logs include
fields such as source and destination IPs, ports, protocol
identifiers, timestamps, and alert classifications. The presence
of these structured logs allows precise alignment between IDS
alerts and events observed by the ML detector and FPGA
module.

Conceptually, Suricata operates as follows:

packet_in — protocol_decode — rule match — alert/log

By maintaining this separation, the system avoids coupling
ML decisions to signature-based logic, a limitation noted in
earlier IDS-centric mitigation frameworks [1][5].

B. Log Generation and Semantics

Detection and mitigation events across the system generate
logs at multiple layers:
1. The ML-based detector logs flow-level decisions and
confidence scores.
2. The firewall logs rule insertions and blocked source
addresses.

IJCRT2512981 |

International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org

[ 1581


http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

3. Suricata logs alerts and flow summaries.

4. The FPGA module produces
detection events.

Each log entry includes a timestamp and source identifier,
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recommended in hybrid detection and mitigation
architectures, where corroboration across layers improves
reliability and reduces false positives [S][9].

Figure 3: Protocol distribution during attack window, showing TCP-dominant traffic consistent with SYN flood behavior.

enabling cross-layer correlation. For example, a firewall block
event is logged using a structured message format:
action=block src_ip=<IP> confidence=<score>
reason=<trigger>

Such explicit logging semantics are critical for post-event
analysis and debugging, as emphasized in monitoring-
oriented studies [6].

C. Centralized Monitoring Using Splunk

Splunk is used to aggregate and visualize logs generated by
the detection and mitigation pipeline. Logs from Suricata, the
ML detector, and the firewall are ingested into a centralized
index, enabling real-time queries and dashboards.
Typical queries used during evaluation include:

e  Counting blocked IP addresses over time

e  Visualizing active flows and alert frequency

e  Identifying top destination ports and protocols during

attack windows

An example query used to monitor mitigation activity is
shown below:
source="/var/log/ddos_guard.log" "action=block"
Similarly, Suricata flow logs are used to visualize traffic
dynamics:
source="/var/log/suricata/eve.json" event_type="flow"
Such dashboards provide operational insight into attack
progression and mitigation effectiveness, supporting the role
of monitoring frameworks highlighted in [6].

nn

D. Cross-Layer Correlation of Detection Signals

A key strength of the proposed system lies in its ability to
correlate detection signals across independent components.
During attack scenarios, the following pattern is typically
observed:
e A spike in SYN packets detected by the FPGA
counters
e Elevated ML confidence scores for short-lived flows
e  Suricata alerts indicating abnormal TCP behavior
e Firewall rule insertion events targeting malicious
sources
By aligning these events temporally, the system verifies that
mitigation decisions are not based on a single noisy signal.
This cross-validation approach reflects best practices

E. Operational Benefits

The integration of IDS, IPS, and monitoring components
ensures that automated mitigation remains transparent and
controllable. Administrators can inspect detection decisions,
verify their causes, and assess their impact through centralized
dashboards. This visibility is particularly important in DDoS
defense systems, where overly aggressive blocking can
disrupt legitimate traffic.

By combining ML-based inference, deterministic hardware
signals, and rule-based IDS alerts within a monitored
environment, the proposed system balances automation with
observability. This balance addresses a key limitation
identified in prior ML-centric approaches, where lack of
explainability hindered real-world adoption [4][6].

VIII. EXPERIMENTAL EVALUATION & RESULTS

This section evaluates the proposed hybrid DDoS detection
and mitigation system under controlled attack scenarios. The
objective of the evaluation is not to benchmark raw
throughput, but to assess detection consistency, mitigation
behavior, and cross-layer agreement between software and
hardware signals. This aligns with the experimental scope
adopted in prior practical DDoS studies that emphasize system
behavior and reliability over synthetic performance metrics

[11[5].
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A. Experimental Setup
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Figure 4: controlled SYN flood generation and corresponding real-
time SYN packet detection

The evaluation environment consists of a Linux-based host
system running the ML detector, firewall, IDS, and monitoring
stack, along with traffic generators used to simulate SYN
flood attacks.
Traffic generation parameters were configured to vary packet
rates and source behavior while remaining within a controlled
private network. Attack traffic was generated using standard
packet generation tools capable of producing TCP SYN
packets at configurable rates. Packets targeted a known
service port on the victim system. Source addresses were
randomized in selected experiments to emulate distributed and
spoofed attack behavior, consistent with the threat model
described earlier.
All components operated simultaneously during evaluation:
e The ML detector processed flow windows and
generated confidence scores.
e The firewall dynamically inserted blocking rules
based on hybrid decisions.
e The FPGA module monitored SYN packet rates
independently.
e  Suricata generated IDS alerts and flow logs.
e  Splunk aggregated logs across all subsystems.

B. Detection Consistency Across Components

One of the primary evaluation criteria was consistency across
detection signals. During SYN flood scenarios, the FPGA
module reliably detected threshold violations corresponding
to elevated SYN packet rates. These hardware alerts were
observed to coincide with increased ML confidence scores for
short-lived flows characterized by high SYN counts and
minimal handshake completion.

Suricata alerts indicating abnormal TCP behavior appeared
within the same time windows, providing an additional
independent confirmation. Firewall block events followed
shortly thereafter, triggered by the hybrid decision logic once
confidence and heuristic conditions were satisfied.

This convergence of signals demonstrates that the system does
not rely on a single detection mechanism. Instead, mitigation
decisions emerge from agreement across probabilistic,
heuristic, and deterministic indicators, a design principle
advocated in hybrid defense frameworks [5][9].

C. Mitigation Behavior and Response Characteristics

Figure 5: Dynamic firewall rule insertion

Once a source address was classified as malicious, firewall
rules were inserted dynamically to drop subsequent packets
from that source (Fig 5.). The use of iptables enabled
immediate enforcement without requiring service restarts or
external controllers.

In volumetric attack scenarios, the volume-based override
ensured that extremely high packet counts triggered
mitigation even when ML confidence had not yet crossed the
calibrated threshold. In distributed attack simulations
involving many low-packet flows, the storm detection
heuristic effectively elevated suspicious flows for mitigation,
preventing evasion through traffic fragmentation. These
behaviors reflect known attack patterns described in DDoS
literature [7].

Importantly, the whitelist mechanism prevented blocking of
trusted infrastructure addresses and internal services. This
safety control was essential in maintaining system availability
during evaluation, reinforcing recommendations from
firewall-based mitigation studies [2][5].

D. False Positives and Stability Observations

False positives were evaluated qualitatively by observing
system behavior under benign traffic bursts. Short-term spikes
in legitimate traffic did not result in persistent firewall blocks
when ML confidence remained below the calibrated threshold
and heuristic conditions were not satisfied.

The use of precision—recall based threshold tuning played a
critical role in this behavior.. As discussed in prior ML
evaluation studies, :lowering the decision threshold
indiscriminately can significantly increase false positives
under realistic traffic distributions [4]. By selecting a
threshold optimized for F1 score on an imbalanced test set, the
system achieved a stable trade-off between sensitivity and
specificity.

No self-blocking events were observed during evaluation,
validating the effectiveness of the whitelist and safety checks
embedded in the hybrid logic.

E. Correlation and Observability

Centralized monitoring via Splunk enabled real-time
visualization of attack progression and mitigation actions.
Dashboards displaying blocked IP counts, flow statistics, and
IDS alerts provided a coherent view of system state during
attack and recovery phases.

Temporal alignment of logs revealed a clear sequence: traffic
surge, detection signals, mitigation, and stabilization. This
observability is essential for operational trust, as emphasized
in monitoring-focused studies [6]. Administrators can trace
each enforcement action back to its triggering conditions,
reducing ambiguity and supporting post-event analysis.

F. Summary of Observations

The experimental evaluation demonstrates that:
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1. ML-based detection, FPGA counters, and IDS alerts
exhibit strong temporal agreement during attack
scenarios.

2. Hybrid decision logic enables timely mitigation
without excessive false positives.

3. Firewall-based enforcement is effective when guided
by calibrated and corroborated detection signals.

4. Monitoring and logging provide transparency and
confidence in automated mitigation decisions.

These results support the feasibility of the proposed hybrid
architecture as a practical DDoS defense framework,
consistent with findings reported in prior hybrid and
hardware-assisted mitigation studies [1][5][9].

IX. DISCUSSIONS & LIMITATIONS

The proposed system demonstrates that combining machine
learning, heuristic logic, and hardware-assisted detection can
improve reliability in DDoS mitigation. However, several
limitations remain and are discussed here to contextualize the
results.

First, the evaluation focuses primarily on TCP SYN flood
attacks. While SYN floods are representative of protocol-level
denial-of-service behavior, the current feature set and
heuristics are not designed to detect application-layer or
reflection-based attacks. Extending the detection pipeline to
additional attack - classes would require both feature
augmentation and retraining, as noted in prior DDoS surveys
[31[7]-

Second, the machine learning model is trained on CIC-
DDo0S2019 traffic, which, although widely used, cannot fully
capture the diversity of real-world network behavior. As
reported in earlier ML-based detection studies, supervised
models remain sensitive to dataset bias and concept drift,
necessitating periodic retraining and threshold reassessment in
deployment environments [4][5].

Third, the hybrid decision logic relies on empirically selected
thresholds for volume-based and storm-based detection.
While these heuristics improve robustness under extreme
attack conditions, static thresholds may be susceptible to
evasion by adaptive attackers. This limitation is inherent to
hybrid systems that combine learned and rule-based
components [1][5].

Finally, the FPGA-assisted module is intentionally limited to
basic protocol-level detection. Although this design ensures
deterministic behavior and low latency, it does not exploit the
full potential of hardware acceleration. Throughput analysis
and deeper hardware integration remain outside the scope of
this study but are essential for evaluating scalability, as
emphasized in prior FPGA offloading work [9][10].

X. CONCLUSION & FUTURE WORK

This paper presented a hybrid DDoS detection and mitigation
framework that integrates machine learning—based flow
classification, heuristic decision logic, dynamic Linux firewall
enforcement, FPGA-assisted detection, and IDS/IPS
monitoring. The system demonstrates that mitigation
decisions grounded in multiple independent signals are more
reliable than ML-only or rule-only approaches [1][4][9].
Experimental evaluation under controlled SYN flood
scenarios showed consistent detection behavior across
software and hardware components, effective mitigation
through dynamic firewall rule insertion, and strong
observability through centralized monitoring. These results
indicate that hybrid architectures provide a practical pathway
toward deployable DDoS defenses.

Future work includes extending detection to additional attack
types, introducing adaptive thresholding mechanisms, and
deepening FPGA integration for flow aggregation or inline

enforcement. Deployment in higher-throughput
environments, such as cloud or edge networks, would further
validate scalability and operational feasibility [S][10].
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