
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512930 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i159

OPTIMIZING HUMAN-COMPUTER

INTERACTION VIA CONCURRENT

MULTIMODAL PIPELINES: A GEOMETRIC

HEURISTIC APPROACH TO GESTURE AND

VOICE CONTROL

1Sangamesh Karadagi, 2Virendra Lohar, 3Sadhvi Bagade, 4Nagaraj Picheli, 5Prof. Shivanand Patil

1,2,3,4Student, Department of Computer Science and Business Systems
5Assistant Professor, Department of Computer Science and Business Systems

S. G. Balekundri Institute of Technology, Belagavi, Karnataka, India

Abstract—This study has been undertaken to investigate and

resolve the ”Blocking I/O” bottleneck in multimodal Human-

Computer Interaction (HCI) systems. In an era where computing
is becoming omnipresent, relying solely on physical peripherals

like mice and keyboards presents real challenges, particularly

regarding hygiene in public spaces and accessibility for users with
physical impairments. This paper introduces a contactless HCI

system designed to overcome these barriers by merging computer
vision with voice automation in a unified, efficient framework.

Although several existing solutions rely on heavy deep learning
classifiers such as CNNs or YOLO, our work demonstrates that

a lightweight, geometric approach based on MediaPipe’s hand
landmarks can achieve comparable accuracy without the high

computational cost. A key contribution of this research is the

engineering of a concurrent, multi-threaded architecture that
isolates the cursor control mechanism from the voice assistant.

This ensures that the mouse cursor remains responsive even while
the system is processing complex speech commands. Tests on

standard hardware confirmed the system’s viability, achieving
a stable frame rate of over 30 FPS and a gesture recognition

accuracy of 94%, making it a practical solution for sterile or
accessibility-focused environments.

Index Terms—Human-Computer Interaction, MediaPipe,

OpenCV, Multithreading, Geometric Heuristics, Voice Automa-
tion, Contactless Interface, Python GIL.

I. INTRODUCTION

The primary goal of User Interface (UI) design has always

been to narrow the gap between what a user wants to do

and how the machine executes it. For over half a century,

the physical mouse—introduced by Douglas Engelbart in the

1960s—has been the standard for spatial input. While it is re-

liable, the traditional mouse is not without its flaws. It requires

a flat, clutter-free surface and necessitates constant physical

contact. This physical dependency becomes a significant issue

in sterile environments, such as operating theaters, and creates

barriers for users with motor impairments or those who cannot

easily grasp a physical device [1].

To solve these issues, researchers started developing ”virtual

mice” that utilize standard webcams. However, a review of

existing literature reveals a divide in the current approaches.

On one hand, early systems relied on simple techniques like

color thresholding (e.g., tracking a colored marker on a finger).

While these are computationally fast, they are brittle and fail

easily if the lighting changes [2]. On the other hand, modern

solutions often deploy heavy deep learning models, such as

Convolutional Neural Networks (CNNs). While these models

are accurate, they are often too heavy for standard CPUs,

resulting in input lag that makes the cursor feel sluggish and

unresponsive [3].

Beyond the choice of model, there is a practical engineering

hurdle that is often overlooked in Python-based implemen-

tations: the Global Interpreter Lock (GIL). Because the GIL

prevents Python from running multiple native threads at once,

a naive implementation of a voice assistant can cripple a gesture

system. If the system stops to ”listen” for a voice command, the

video feed freezes, rendering the mouse unusable for several

seconds.

In this work, we propose a hybrid system designed to

solve these specific latency and usability issues. Rather than

relying on computationally expensive classifiers, we utilize the

MediaPipe framework [4] to extract hand landmarks efficiently.

We then pair this with a custom threading architecture designed

to bypass the limitations of the GIL.

Our work focuses on three main contributions:

1) Deterministic Geometric Logic: Instead of using a

”black box” neural network for every click, we use simple

Euclidean distance calculations. This makes the click and

drag actions stable and predictable.

2) Asynchronous Threading Model: We engineered the

system so that the voice assistant runs on a separate

daemon thread. This ensures that the heavy lifting of

speech recognition never blocks the video processing

loop, keeping the cursor smooth.

3) Dynamic Screen Mapping: To prevent arm fatigue, we

implemented a mapping algorithm that allows the user

to reach the entire screen with small, comfortable hand

movements, rather than reaching across the entire camera

frame.

II. LITERATURE SURVEY

Research into contactless interfaces has gone through sev-

eral distinct phases, with each new approach attempting to solve

the limitations of its predecessor.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512930 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i160

A. The Evolution of Vision-Based Input

The earliest iterations of virtual mice were primarily based

on Color Segmentation techniques. Ideally, tracking a specific

color (like a marker on a finger) is computationally inexpensive.

However, in practice, these systems proved fragile. As demon-

strated by Shibly et al. [2], color-based tracking suffers heavily

from ”jitter” and environmental interference; if the background

lighting changes or if the user’s skin tone blends with the wall

behind them, the tracking breaks down.

To improve robustness, the research community shifted

toward Deep Learning classifiers. Approaches using models like

YOLOv8, as explored by Karthick et al. [3], offered signifi-

cantly better detection accuracy. However, this accuracy came

at a cost. We found that running a full object detection inference

on every single video frame creates a massive computational

load. On standard consumer CPUs, this results in high latency,

leaving the user with a cursor that feels heavy and unresponsive.

B. The Shift to MediaPipe

A significant turning point in this domain was Google’s

release of the MediaPipe framework. Unlike full-image clas-

sifiers, MediaPipe uses a specialized two-stage pipeline—first

detecting the palm and then regressing landmarks—which is

highly optimized for CPUs. Recent studies, such as those by

Singh et al. [1], have successfully used MediaPipe to control

basic cursor movements.

However, while the tracking technology has improved, the

interaction design has largely remained stagnant. We identify

”unimodal rigidity” as a critical bottleneck in existing systems.

They force the user to perform every single action—typing,

scrolling, and clicking—using only arm movements. This

quickly leads to physical exhaustion, commonly known in the

HCI community as ”Gorilla Arm” syndrome.

C. The Multimodal Bottleneck

Perhaps the most overlooked engineering challenge in cur-

rent literature is the software architecture itself. Most mul-

timodal systems described in recent papers process inputs

sequentially. This means that if a user issues a voice command,

the system pauses the video feed to process the audio. This

creates a jarring experience where the mouse ”freezes” for a

second or two every time the user speaks. Our work distin-

guishes itself by specifically targeting this architectural flaw,

utilizing concurrency to ensure that voice and gesture inputs

can truly happen at the same time without blocking one another.

III. SYSTEM ARCHITECTURE

To ensure a smooth and responsive user experience, we

architected the application as a modular system comprising

two distinct execution pipelines. We recognized early in the

design phase that processing video frames and listening for

voice commands have fundamentally different performance

characteristics. Video processing requires consistency (a steady

30 FPS), while voice recognition is bursty and often involves

network latency.

To manage these conflicting requirements, we utilized

Python’s ‘threading‘ module to run these processes in parallel.

Specifically, we designated the audio listener as a ‘daemon‘

thread. This configuration is crucial because it allows the oper-

ating system to kill the background voice process automatically

when the main video application is closed, preventing ”zombie”

processes from lingering in memory.

Fig. 1. High-level dual-pipeline architecture. By separating the

visual and audio streams, we prevent the heavy processing of

one from blocking the other.

As illustrated in Figure 1, the architecture effectively de-

couples the two streams. The Visual Pipeline operates on the

main thread to prioritize high-frequency updates for cursor

smoothness. Meanwhile, the Audio Pipeline runs silently in the

background, handling the slower, high-latency task of sending

audio data to the cloud and waiting for a response. This

partition keeps the cursor fluid, even if the voice API hits a

two seconds delay.

IV. METHODOLOGY

Our core methodology relies on a dual-pipeline architecture

that treats visual processing and audio command parsing as sep-

arate, asynchronous tasks. We adopted this design specifically

to decouple the high-speed requirements of cursor movement

from the slower, bursty nature of speech recognition.

A. Visual Processing Pipeline (Gesture Engine)

For the visual component, we leverage ‘MediaPipe Hands‘

to extract a skeletal model of the hand consisting of 21 3D

landmarks (L0 to L20).

1) Logic Flow and Decision Making: Translating raw co-

ordinates into meaningful OS events requires a robust decision

process. As shown in the flowchart in Fig. 2, the system follows

a hierarchical logic: it first confirms that a hand is actually

present in the frame. Once detected, it doesn’t just look for

”gestures” generally; it specifically calculates the Euclidean

distance between key fingertips to distinguish between a user

simply moving the cursor and a user intending to click.

Webcam Input

MediaPipe Landmarks

Visual Pipeline (Main)

Geometric Logic ”Hey Sai” Parser

OS Automation (PyAutoGUI)

Mic Input

Google STT API

Audio Pipeline (Daemon)

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512930 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i161

Fig. 2. Gesture logic flowchart: The decision hierarchy we use to

distinguish between simple Navigation and intentional Action

states.

2) Centroid-Based Cursor Tracking: Early tests showed

that tracking a single fingertip (like the index finger) resulted in

significant cursor ”jitter” due to natural hand tremors. To solve

this, we track the geometric centroid Pcursor between the Index

Finger (L8) and the Middle Finger (L12). This averages out the
noise and produces a much smoother cursor trajectory.

3) Coordinate Mapping and Smoothing: A common issue

with gesture interfaces is ”Gorilla Arm” fatigue, caused by

users having to extend their arms fully to reach the corners of

the screen. To prevent this, we implemented a Frame Reduction

margin (R ≈ 100px). This creates a smaller ”active window”

in the center of the camera view. We then map this smaller

window to the full screen resolution (Wscr, Hscr) using linear

interpolation, allowing the user to reach the entire screen with

small, comfortable wrist movements.

4) Gesture Vocabulary: We developed a vocabulary of

10 distinct gestures. Instead of training a neural network to

recognize these, which is computationally heavy, we use simple

geometric heuristics (distances between specific landmarks) to

trigger them.

B. Audio Processing Pipeline (”Hey Sai”)

The voice assistant component was engineered to bypass

the limitations of the Python Global Interpreter Lock (GIL).

1) Concurrent Architecture: In a standard Python script,

the command ‘mic.listen()‘ blocks the main thread, meaning

the video freezes while the computer listens. We solved this

by wrapping the listening loop in a daemon thread (Algorithm

1). This allows the ‘SaiAssistant‘ to wait for commands in the

background without interrupting the 30 FPS video stream.

Algorithm 1 Concurrent Multimodal Execution

threading, speech recognition SaiAssistant listen loop()

1: while True do

2: audio ← mic.listen() {Blocking I/O}

3: text ← google api.recognize(audio)

4: if ”Hey Sai” in text then

5: execute macro(text)

6: end if

7: end while

8: assistant ← SaiAssistant()

9: thread ← Thread(target=assistant.listen loop)

10: thread.daemon ← True {Run in background}

11: thread.start()

12: while True do

{Main Video Thread}

13: frame ← webcam.read()

14: landmarks ← mediapipe.process(frame)

15: execute gesture logic(landmarks)

 16: end while

2) Voice Command Taxonomy: The ”Hey Sai” assistant

currently supports 8 core commands, which we categorized by

their function in Table II.

TABLE II

”HEY SAI” VOICE COMMAND REGISTRY

TABLE I

THE 10-GESTURE VOCABULARY

Gesture Heuristic Logic & Action

1. Neutral Halt: Open palm. Stops cursor movement.

2. Move Cursor Navigate: Index (L8) & Middle (L12) up. Tracks

centroid.

3. Left Click Selection: Pinch (d(L8, L12) < 40px) with Index

finger.

4. Right Click Context: Tap Middle finger (L12) down.

5. Double Click Execute: Two quick Left Clicks (< 0.5s).

6. Scrolling Dynamic: Vertical pinch motion.

7. Drag & Drop Hold: Pinch and hold (> 1s) locks ”Mouse Down”.

8. Multi-Select Batch: Thumb & Little finger extended (Box Se-
lect).

9. Volume Control System: Distance d(L4, L8) controls slider.

10. Brightness System: Distance d(L4, L12) controls slider.

V. RESULTS AND DISCUSSION

A. Experimental Setup

The system was evaluated on a commodity laptop (Intel

Core i5-1135G7 @ 2.40GHz, 8GB RAM) running Windows

10. The development environment utilized Python 3.8.5 with

‘MediaPipe 0.8.9‘ and ‘PyAutoGUI‘. No dedicated GPU accel-

eration was enabled to verify the system’s efficiency on low-end

hardware.

Webcam Frame

Hand

Detected?

No
Idle (Neutral)

Yes

Calc Distance

Click/Drag
(Action)

Yes

No Move Cursor

(Centroid)

Category Voice Trigger System Action

System
”Launch Gesture Recog” Init Webcam

”Stop Gesture Recog” Release Webcam

Web
”Search [Query]” Browser Search

”Find a location” Open Google Maps

File Nav

”List files” List dir contents

”Open [File ID]” Open file/folder

”Back” Parent directory

Utility
”What is the time/date” Get System Time

”Copy” / ”Paste” Keyboard Macro

State
”Bye” / ”Sleep” Pause Listener

”Wake Up” Resume Listener

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512930 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i162

B. Performance Metrics: Latency Analysis

A critical requirement for HCI systems is low latency. We

compared the ”Response Time” (time from user action to cursor

movement) of our Concurrent Architecture against a traditional

Sequential approach.

CPU Usage (%)

100

80

60
TABLE III

SYSTEM LATENCY COMPARISON (AVERAGE OF 50 TRIALS)

40

20

CNN/YOLO

Ours (MediaPipe)

As detailed in Table III, the concurrent design eliminates

the 1.5-second freeze caused by the Speech-to-Text API, main-

taining a stable 30+ FPS visual stream.

C. Gesture Recognition Accuracy

We conducted a confusion matrix analysis on 300 discrete

gesture attempts (100 Move, 100 Click, 100 Scroll) under

standard indoor lighting (300 lux).

Comparison of Average CPU Load

on Intel i5 (No GPU)

Fig. 3. Resource consumption analysis: Our geometric approach

consumes ≈ 50% less CPU than CNN-based alternatives,

leaving resources free for user applications.

F. Environmental Robustness

The system relies on visible light. Testing revealed that

performance degrades in low-light conditions (< 50 lux) due

to webcam ISO noise introducing ”jitter” in the landmark

CONFUSION MATRIX:
TABLE IV

VISUAL GESTURE RECOGNITION
coordinates. However, the implemented Exponential Moving

Average (EMA) smoothing filter successfully mitigated this

jitter in moderate lighting conditions (150-500 lux), maintaining

precise cursor control.

VI. CONCLUSION

In conclusion, this study challenges the prevailing assump-

tion that robust Human-Computer Interaction requires high-end

The system achieved an aggregate accuracy of 94%. False

negatives (No Action) in scrolling were primarily due to the

user’s hand moving too fast for the camera shutter, causing

motion blur that degraded landmark precision.

D. ”Hey Sai” Voice Command Analysis

The voice assistant was tested with 50 commands in a quiet

environment.

TABLE V

VOICE COMMAND SUCCESS RATES

Command Category Success Rate Avg Processing Time

System (Launch/Stop) 100% 0.4s

File Navigation 96% 0.8s

Web Search 92% 1.2s

The slight drop in Web Search accuracy (92%) is attributed

to Google STT misinterpreting proper nouns (e.g., specific

website names) in Indian accents.

E. Computational Efficiency

A key advantage of our Geometric Heuristic approach over

Deep Learning classifiers (like YOLO or ResNet) is resource

efficiency. Fig. 3 illustrates the CPU consumption profile.

hardware or computationally expensive Deep Learning models.

Our results indicate that by shifting the processing burden

from heavy classifiers (like CNNs) to streamlined geometric

heuristics, standard consumer laptops can deliver precise, low-

latency control.

Perhaps most significantly, this work validates that the

”Blocking I/O” limitations inherent to Python-based systems

are not insurmountable. By implementing a concurrent daemon-

threaded architecture, we successfully decoupled the heavy

lifting of speech recognition from the real-time requirements

of cursor tracking. This proves that a seamless multimodal

experience is achievable without sacrificing frame rates. While

the current system’s reliance on cloud-based speech APIs is

a limitation for offline environments, the modular architecture

lays a solid foundation for future work, which will focus

on integrating edge-based recognition models like Vosk and

developing adaptive calibration for varying hand sizes.

REFERENCES

[1] H. K. Singh, M. Ehtesham, P. S., S. N., and R. H., “Gesture Controlled

Virtual Mouse: Hands-Free Interaction for Enhanced User Experience,”

Int. J. Creative Res. Thoughts, vol. 12, no. 9, pp. 156–165, 2024.

[2] K. H. Shibly, et al., “Design and Development of Hand Gesture Based

Virtual Mouse,” in Proc. 2019 Int. Conf. Advances in Science, Eng. and
Robotics Tech (ICASERT), 2019.

[3] T. Karthick, P. Kumar and S. N. Reddy, “AI-Based Enhanced Virtual

Mouse Using YOLO Algorithm,” in Proc. Int. Conf. Smart Systems and
Advanced Computing (SSAC), 2023.

85%

35%

Metric Sequential (Baseline) Concurrent (Ours)

Visual FPS 28 FPS 32 FPS

Cursor Latency 35 ms 33 ms

Voice Blocking Delay ≈ 1500 ms 0 ms (Non-blocking)

Effective Interaction Laggy / Intermittent Real-Time / Smooth

Actual \Pred. Move Click Scroll No Action

Move Cursor 98% 1% 0% 1%

Left Click 2% 94% 1% 3%

Scrolling 0% 3% 90% 7%

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512930 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i163

[4] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkacenko, and C. Sung,
“MediaPipe Hands: On-Device Real-Time Hand Tracking,” arXiv preprint
arXiv:2006.10214, 2020.

[5] E. Sankar, B. N. Bharadwaj, and A. V. Vignesh, “Virtual Mouse Using
Hand Gesture,” Int. J. Sci. Res. Eng. Manage., vol. 7, no. 5, pp. 1–8,

2023.

[6] J. Prithvi, S. S. Lakshmi, S. Nair, S. R. Kumar, and S. Sunayana, “Gesture

Controlled Virtual Mouse with Voice Automation,” Int. J. Eng. Res.
Technol., vol. 12, no. 4, pp. 557–560, 2023.

[7] N. R. S. Kumar, A. V. Reddy, B. A. Kumar, B. P. K. Reddy, and A. S.
K. Reddy, “Hand Gesture-Based Virtual Mouse with Advanced Controls

Using OpenCV and Mediapipe,” in Proc. 2024 International Conference
on Advances in Computing, Communication and Applied Informatics

(ACCAI), pp. 123–130, 2024.

[8] K. Sathish, G. B. Renuka, M. Balachandra, and B. N. Lakshmi, “Gesture-

Controlled Virtual Mouse using Media Pipe,” in Proc. 1st International
Conference on Optimization Techniques for Learning (ICOTL), pp. 45–

52, 2023.

[9] E. R. Djuwitaningrum and D. R. Pangestu, “Implementation of a Vir-
tual Mouse Based on Hand Gesture Recognition Using MediaPipe and
OpenCV,” Jurnal Ilmu Pengetahuan dan Teknologi Komputer, vol. 5, no.

1, pp. 67–74, 2019.

[10] Q. Wang and Z. Xie, “Replace Your Mouse with Your Hand! HandMouse:
A Gesture-Based Virtual Mouse System,” Int. J. Adv. Comput. Sci. Appl.,
vol. 15, no. 11, 2024.

http://www.ijcrt.org/

