www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

OPTIMIZING HUMAN-COMPUTER
INTERACTION VIA CONCURRENT
MULTIMODAL PIPELINES: A GEOMETRIC
HEURISTIC APPROACH TO GESTURE AND
VOICE CONTROL

1Sangamesh Karadagi, 2Virendra Lohar, *Sadhvi Bagade, “Nagaraj Picheli, *Prof. Shivanand Patil

12:34stydent, Department of Computer Science and Business Systems
SAssistant Professor, Department of Computer Science and Business Systems
S. G. Balekundri Institute of Technology, Belagavi, Karnataka, India

Abstract—This study has been undertaken to investigate and
resolve the ”Blocking I/0” bottleneck in multimodal Human-
Computer Interaction (HCI) systems. In an era where computing
is becoming omnipresent, relying solely on physical peripherals
like mice and keyboards presents real challenges, particularly
regarding hygiene in public spaces and accessibility for users with
physical impairments. This paper introduces a contactless HCI
system designed to overcome these barriers by merging computer
vision with voice automation in a unified, efficient framework.
Although several existing solutions rely on heavy deep learning
classifiers such as CNNs or YOLO, our work demonstrates that
a lightweight, geometric approach based on MediaPipe’s hand
landmarks can achieve comparable accuracy without the high
computational cost. A key contribution of this research is the
engineering of a concurrent, multi-threaded architecture that
isolates the cursor control mechanism from the voice assistant.
This ensures that the mouse cursor remains responsive even while
the system is processing complex speech commands. Tests on
standard hardware confirmed the system’s viability, achieving
a stable frame rate of over 30 FPS and a gesture recognition
accuracy of 94%, making it a practical solution for sterile or
accessibility-focused environments.

Index Terms—Human-Computer Interaction, MediaPipe,
OpenCV, Multithreading, Geometric Heuristics, Voice Automa-
tion, Contactless Interface, Python GIL.

|. INTRODUCTION

The primary goal of User Interface (Ul) design has always
been to narrow the gap between what a user wants to do
and how the machine executes it. For over half a century,
the physical mouse—introduced by Douglas Engelbart in the
1960s—has been the standard for spatial input. While it is re-
liable, the traditional mouse is not without its flaws. It requires
a flat, clutter-free surface and necessitates constant physical
contact. This physical dependency becomes a significant issue
in sterile environments, such as operating theaters, and creates
barriers for users with motor impairments or those who cannot
easily grasp a physical device [1].

To solve these issues, researchers started developing virtual
mice” that utilize standard webcams. However, a review of
existing literature reveals a divide in the current approaches.
On one hand, early systems relied on simple techniques like
color thresholding (e.g., tracking a colored marker on a finger).
While these are computationally fast, they are brittle and fail
easily if the lighting changes [2]. On the other hand, modern

solutions often deploy heavy deep learning models, such as
Convolutional Neural Networks (CNNs). While these models
are accurate, they are often too heavy for standard CPUs,
resulting in input lag that makes the cursor feel sluggish and
unresponsive [3].

Beyond the choice of model, there is a practical engineering
hurdle that is often overlooked in Python-based implemen-
tations: the Global Interpreter Lock (GIL). Because the GIL
prevents Python from running multiple native threads at once,
a naive implementation of a voice assistant can cripple a gesture
system. If the system stops to "listen” for a voice command, the
video feed freezes, rendering the mouse unusable for several
seconds.

In this work, we propose a hybrid system designed to
solve these specific latency and usability issues. Rather than
relying on computationally expensive classifiers, we utilize the
MediaPipe framework [4] to extract hand landmarks efficiently.
We then pair this with a custom threading architecture designed
to bypass the limitations of the GIL.

Our work focuses on three main contributions:

1) Deterministic Geometric Logic: Instead of using a
”black box” neural network for every click, we use simple
Euclidean distance calculations. This makes the click and
drag actions stable and predictable.

2) Asynchronous Threading Model: We engineered the
system so that the voice assistant runs on a separate
daemon thread. This ensures that the heavy lifting of
speech recognition never blocks the video processing
loop, keeping the cursor smooth.

3) Dynamic Screen Mapping: To prevent arm fatigue, we
implemented a mapping algorithm that allows the user
to reach the entire screen with small, comfortable hand
movements, rather than reaching across the entire camera
frame.

Il. LITERATURE SURVEY

Research into contactless interfaces has gone through sev-
eral distinct phases, with each new approach attempting to solve
the limitations of its predecessor.

IJCRT2512930 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

1159

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

A. The Evolution of Vision-Based Input

The earliest iterations of virtual mice were primarily based
on Color Segmentation techniques. Ideally, tracking a specific
color (like a marker on a finger) is computationally inexpensive.
However, in practice, these systems proved fragile. As demon-
strated by Shibly et al. [2], color-based tracking suffers heavily
from 7jitter” and environmental interference; if the background
lighting changes or if the user’s skin tone blends with the wall
behind them, the tracking breaks down.

To improve robustness, the research community shifted
toward Deep Learning classifiers. Approaches using models like
YOLOVS, as explored by Karthick et al. [3], offered signifi-
cantly better detection accuracy. However, this accuracy came
at a cost. We found that running a full object detection inference
on every single video frame creates a massive computational
load. On standard consumer CPUSs, this results in high latency,
leaving the user with a cursor that feels heavy and unresponsive.

B. The Shift to MediaPipe

A significant turning point in this domain was Google’s
release of the MediaPipe framework. Unlike full-image clas-
sifiers, MediaPipe uses a specialized two-stage pipeline—first
detecting the palm and then regressing landmarks—which is
highly optimized for CPUs. Recent studies, such as those by
Singh et al. [1], have successfully used MediaPipe to control
basic cursor movements.

However, while the tracking technology has improved, the
interaction design has largely remained stagnant. We identify
“unimodal rigidity” as a critical bottleneck in existing systems.
They force the user to perform every single action—typing,
scrolling, and clicking—using only arm movements. This
quickly leads to physical exhaustion, commonly known in the
HCI community as ”Gorilla Arm” syndrome.

C. The Multimodal Bottleneck

Perhaps the most overlooked engineering challenge in cur-
rent literature is the software architecture itself. Most mul-
timodal systems described in recent papers process inputs
sequentially. This means that if a user issues a voice command,
the system pauses the video feed to process the audio. This
creates a jarring experience where the mouse “freezes” for a
second or two every time the user speaks. Our work distin-
guishes itself by specifically targeting this architectural flaw,
utilizing concurrency to ensure that voice and gesture inputs
can truly happen at the same time without blocking one another.

IIl. SYSTEM ARCHITECTURE

To ensure a smooth and responsive user experience, we
architected the application as a modular system comprising
two distinct execution pipelines. We recognized early in the
design phase that processing video frames and listening for
voice commands have fundamentally different performance
characteristics. Video processing requires consistency (a steady
30 FPS), while voice recognition is bursty and often involves
network latency.

To manage these conflicting requirements, we utilized
Python’s ‘threading® module to run these processes in parallel.
Specifically, we designated the audio listener as a ‘daemon’
thread. This configuration is crucial because it allows the oper-
ating system to kill the background voice process automatically
when the main video application is closed, preventing ”zombie”
processes from lingering in memory.

Webcam Input Mic Input

Visual Pipeline (Main) Audio Pipeline (Daemon)

MediaPipe Landmarks Google STT API

Geometric Logic “Hey Sai” Parser

N ¥

OS Automation (PyAutoGUI)

Fig. 1. High-level dual-pipeline architecture. By separating the
visual and audio streams, we prevent the heavy processing of
one from blocking the other.

As illustrated in Figure 1, the architecture effectively de-
couples the two streams. The Visual Pipeline operates on the
main thread to prioritize high-frequency-updates for cursor
smoothness. Meanwhile, the Audio Pipeline runs silently in the
background, handling the slower, high-latency task of sending
audio data to the cloud and waiting for a response. This
partition keeps the cursor fluid, even if the voice API hits a
two seconds delay.

IV. METHODOLOGY

Our core methodology relies on a dual-pipeline architecture
that treats visual processing and audio command parsing as sep-
arate, asynchronous tasks. We adopted this design specifically
to decouple the high-speed requirements of cursor movement
from the slower, bursty nature of speech recognition.

A. Visual Processing Pipeline (Gesture Engine)

For the visual component, we leverage ‘MediaPipe Hands*
to extract a skeletal model of the hand consisting of 21 3D
landmarks (Lo to Lzo).

1) Logic Flow and Decision Making: Translating raw co-
ordinates into meaningful OS events requires a robust decision
process. As shown in the flowchart in Fig. 2, the system follows
a hierarchical logic: it first confirms that a hand is actually
present in the frame. Once detected, it doesn’t just look for
“gestures” generally; it specifically calculates the Euclidean
distance between key fingertips to distinguish between a user
simply moving the cursor and a user intending to click.

IJCRT2512930 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

1160

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

!

Hand
Detected?

Idle (Neutral)

l Yes

Calc Distance

D(Ls, L12)

Click/Drag »NO [Move cursor

Fig. 2. Gesture logic flowchart: The decision hierarchy we use to
distinguish between simple Navigation and intentional Action
states.

2) Centroid-Based Cursor Tracking: Early tests showed
that tracking a single fingertip (like the index finger) resulted in
significant cursor “jitter” due to natural hand tremors. To solve
this, we track the geometric centroid Peursor between the Index
Finger (Ls) and the Middle Finger (L12). This averages out the
noise and produces a much smoother cursor trajectory.

3) Coordinate Mapping and Smoothing: A common issue
with gesture interfaces is “Gorilla Arm” fatigue, caused by
users having to extend their arms fully to reach the corners of
the screen. To prevent this, we implemented a Frame Reduction
margin (R = 100px). This creates a smaller “active window”
in the center of the camera view. We then map this smaller
window to the full screen resolution (Wser, Hser) using linear
interpolation, allowing the user to reach the entire screen with
small, comfortable wrist movements.

4) Gesture Vocabulary: We developed a vocabulary of
10 distinct gestures. Instead of training a neural network to
recognize these, which is computationally heavy, we use simple
geometric heuristics (distances between specific landmarks) to
trigger them.

TABLE |
THE 10-GESTURE VOCABULARY

Gesture Heuristic Logic & Action

1. Neutral Halt: Open palm. Stops cursor movement.

2. Move Cursor Navigate: Index (Lg) & Middle (Li2) up. Tracks
centroid.

3. Left Click Selection: Pinch (d(Ls, L12) < 40px) with Index
finger.

4. Right Click Context: Tap Middle finger (L12) down.

5. Double Click Execute: Two quick Left Clicks (< 0.5s).

6. Scrolling Dynamic: Vertical pinch motion.

7. Drag & Drop Hold: Pinch and hold (> 1s) locks ”Mouse Down”.

8. Multi-Select Batch: Thumb & Little finger extended (Box Se-

lect).
System: Distance d(Las, Ls) controls slider.
System: Distance d(L4, L12) controls slider.

9. Volume Control
10. Brightness

B. Audio Processing Pipeline (”Hey Sai”)

The voice assistant component was engineered to bypass
the limitations of the Python Global Interpreter Lock (GIL).

1) Concurrent Architecture: In a standard Python script,
the command ‘mic.listen() blocks the main thread, meaning
the video freezes while the computer listens. We solved this
by wrapping the listening loop in a daemon thread (Algorithm
1). This allows the ‘SaiAssistant® to wait for commands in the
background without interrupting the 30 FPS video stream.

Algorithm 1 Concurrent Multimodal Execution
threading, speech_recognition SaiAssistant listen_loop()
1: while True do
2. audio < mic.listen() {Blocking I/O}
3 text « google_api.recognize(audio)
4. if ”Hey Sai” in text then
5
6

execute_macro(text)

end if
7. end while
8: assistant «— SaiAssistant()
9: thread « Thread(target=assistant.listen_loop)
10: thread.daemon « True {Run in background}
11: thread.start()
12: while True do

{Main Video Thread}
13: frame < webcam.read()
14: landmarks « mediapipe.process(frame)
15 execute_gesture_logic(landmarks)
16:_end while

2) Voice Command Taxonomy: The “Hey Sai” assistant
currently supports 8 core commands, which we categorized by
their function in Table II.

TABLE I
”HEY SAI” VOICE COMMAND REGISTRY

Category | Voice Trigger System Action
”Launch Gesture Recog” Init Webcam
System
”Stop Gesture Recog” Release Webcam
Web ”Search [Query]” Browser Search
”Find a location” Open Google Maps
”List files” List dir contents
File Nav | “Open [File ID]” Open file/folder
”Back” Parent directory
Utility What is the time/date’ Get System Time
”Copy” / "Paste” Keyboard Macro
State Bye” / ”Sleep Pause Llst_ener
”Wake Up” Resume Listener

V. RESULTS AND DISCUSSION

A. Experimental Setup

The system was evaluated on a commodity laptop (Intel
Core i5-1135G7 @ 2.40GHz, 8GB RAM) running Windows
10. The development environment utilized Python 3.8.5 with
‘MediaPipe 0.8.9¢ and ‘PyAutoGUI‘. No dedicated GPU accel-
eration was enabled to verify the system’s efficiency on low-end
hardware.

IJCRT2512930 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

7161

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

B. Performance Metrics: Latency Analysis

A critical requirement for HCI systems is low latency. We
compared the "Response Time” (time from user action to cursor
movement) of our Concurrent Architecture against a traditional

Sequential approach.

TABLE Il

SYSTEM LATENCY COMPARISON (AVERAGE OF 50 TRIALS)

Metric Sequential (Baseline) Concurrent (Ours)
Visual FPS 28 FPS 32 FPS
Cursor Latency 35 ms 33 ms
Voice Blocking Delay = 1500 ms 0 ms (Non-blocking)

Effective Interaction

Laggy / Intermittent

Real-Time / Smooth

As detailed in Table Ill, the concurrent design eliminates
the 1.5-second freeze caused by the Speech-to-Text API, main-
taining a stable 30+ FPS visual stream.

C. Gesture Recognition Accuracy

We conducted a confusion matrix analysis on 300 discrete
gesture attempts (100 Move, 100 Click, 100 Scroll) under
standard indoor lighting (300 lux).

TABLE IV
CONFUSION MATRIX: VISUAL GESTURE RECOGNITION

Actual \Pred. Move Click Scroll No Action
Move Cursor 98% 1% 0% 1%
Left Click 2% 94% 1% 3%
Scrolling 0% 3% 90% %

The system achieved an aggregate accuracy of 94%. False
negatives (No Action) in scrolling were primarily due to the
user’s hand moving too fast for the camera shutter, causing
motion blur that degraded landmark precision.

D. ”Hey Sai” Voice Command Analysis

The voice assistant was tested with 50 commands in a quiet
environment.

TABLE V
VOICE COMMAND SUCCESS RATES

Command Category Success Rate | Avg Processing Time
System (Launch/Stop) 100% 0.4s
File Navigation 96% 0.8s
Web Search 92% 12s

The slight drop in Web Search accuracy (92%) is attributed
to Google STT misinterpreting proper nouns (e.g., specific
website names) in Indian accents.

E. Computational Efficiency

A key advantage of our Geometric Heuristic approach over
Deep Learning classifiers (like YOLO or ResNet) is resource
efficiency. Fig. 3 illustrates the CPU consumption profile.

CPU Usage (%)

100
85%
80
60
40 35%
20
CNN/YOLO Ours (MediaPipe)

Comparison of Average CPU Load
on Intel i5 (No GPU)

Fig. 3. Resource consumption analysis: Our geometric approach
consumes ~ 50% less CPU than CNN-based alternatives,
leaving resources free for user applications.

F. Environmental Robustness

The system relies on visible light. Testing revealed that
performance degrades in low-light conditions (< 50 lux) due
to webcam ISO noise introducing “jitter” in the landmark

coordinates. However, the implemented Exponential Moving
Average (EMA) smoothing filter successfully mitigated this
jitter in moderate lighting conditions (150-500 lux), maintaining
precise cursor control.

VI. CONCLUSION

In conclusion, this study challenges the prevailing assump-
tion that robust Human-Computer Interaction requires high-end
hardware or computationally expensive Deep Learning models.
Our results indicate that by shifting the processing burden
from heavy classifiers (like"CNNs) to streamlined geometric
heuristics, standard consumer laptops can deliver precise, low-
latency control.

Perhaps most significantly, this work validates that the
”Blocking I/O” limitations inherent to Python-based systems
are not insurmountable. By implementing a concurrent daemon-
threaded architecture, we successfully decoupled the heavy
lifting of speech recognition from the real-time requirements
of cursor tracking. This proves that a seamless multimodal
experience is achievable without sacrificing frame rates. While
the current system’s reliance on cloud-based speech APIs is
a limitation for offline environments, the modular architecture
lays a solid foundation for future work, which will focus
on integrating edge-based recognition models like Vosk and
developing adaptive calibration for varying hand sizes.

REFERENCES

[1] H. K. Singh, M. Ehtesham, P. S., S. N., and R. H., “Gesture Controlled
Virtual Mouse: Hands-Free Interaction for Enhanced User Experience,”
Int. J. Creative Res. Thoughts, vol. 12, no. 9, pp. 156-165, 2024.

[2] K. H. Shibly, et al., “Design and Development of Hand Gesture Based
Virtual Mouse,” in Proc. 2019 Int. Conf. Advances in Science, Eng. and
Robotics Tech (ICASERT), 2019.

[3] T. Karthick, P. Kumar and S. N. Reddy, “Al-Based Enhanced Virtual
Mouse Using YOLO Algorithm,” in Proc. Int. Conf. Smart Systems and
Advanced Computing (SSAC), 2023.

IJCRT2512930 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

1162

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

[4] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkacenko, and C. Sung,
“MediaPipe Hands: On-Device Real-Time Hand Tracking,” arXiv preprint
arXiv:2006.10214, 2020.

[5] E. Sankar, B. N. Bharadwaj, and A. V. Vignesh, “Virtual Mouse Using
Hand Gesture,” Int. J. Sci. Res. Eng. Manage., vol. 7, no. 5, pp. 1-8,
2023.

[6] J. Prithvi, S. S. Lakshmi, S. Nair, S. R. Kumar, and S. Sunayana, “Gesture
Controlled Virtual Mouse with Voice Automation,” Int. J. Eng. Res.
Technol., vol. 12, no. 4, pp. 557-560, 2023.

[7] N. R. S. Kumar, A. V. Reddy, B. A. Kumar, B. P. K. Reddy, and A. S.
K. Reddy, “Hand Gesture-Based Virtual Mouse with Advanced Controls
Using OpenCV and Mediapipe,” in Proc. 2024 International Conference
on Advances in Computing, Communication and Applied Informatics
(ACCAI), pp. 123-130, 2024.

[8] K. Sathish, G. B. Renuka, M. Balachandra, and B. N. Lakshmi, “Gesture-
Controlled Virtual Mouse using Media Pipe,” in Proc. 1st International
Conference on Optimization Techniques for Learning (ICOTL), pp. 45—
52, 2023.

[9] E. R. Djuwitaningrum and D. R. Pangestu, “Implementation of a Vir-
tual Mouse Based on Hand Gesture Recognition Using MediaPipe and
OpenCV,” Jurnal llmu Pengetahuan dan Teknologi Komputer, vol. 5, no.
1, pp. 67-74, 2019.

[10] Q.Wangand Z. Xie, “Replace Your Mouse with Your Hand! HandMouse:
A Gesture-Based Virtual Mouse System,” Int. J. Adv. Comput. Sci. Appl.,
vol. 15, no. 11, 2024.

IJCRT2512930 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | i163

http://www.ijcrt.org/

