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Abstract—This study has been undertaken to investigate and 

resolve the ”Blocking I/O” bottleneck in multimodal Human-

Computer Interaction (HCI) systems. In an era where computing 
is becoming omnipresent, relying solely on physical peripherals 

like mice and keyboards presents real challenges, particularly 

regarding hygiene in public spaces and accessibility for users with 
physical impairments. This paper introduces a contactless HCI 

system designed to overcome these barriers by merging computer 
vision with voice automation in a unified, efficient framework. 

Although several existing solutions rely on heavy deep learning 
classifiers such as CNNs or YOLO, our work demonstrates that 

a lightweight, geometric approach based on MediaPipe’s hand 
landmarks can achieve comparable accuracy without the high 

computational cost. A key contribution of this research is the 

engineering of a concurrent, multi-threaded architecture that 
isolates the cursor control mechanism from the voice assistant. 

This ensures that the mouse cursor remains responsive even while 
the system is processing complex speech commands. Tests on 

standard hardware confirmed the system’s viability, achieving 
a stable frame rate of over 30 FPS and a gesture recognition 

accuracy of 94%, making it a practical solution for sterile or 
accessibility-focused environments. 

Index Terms—Human-Computer Interaction, MediaPipe, 

OpenCV, Multithreading, Geometric Heuristics, Voice Automa-
tion, Contactless Interface, Python GIL. 

 

I. INTRODUCTION 

The primary goal of User Interface (UI) design has always 

been to narrow the gap between what a user wants to do 

and how the machine executes it. For over half a century, 

the physical mouse—introduced by Douglas Engelbart in the 

1960s—has been the standard for spatial input. While it is re-

liable, the traditional mouse is not without its flaws. It requires 

a flat, clutter-free surface and necessitates constant physical 

contact. This physical dependency becomes a significant issue 

in sterile environments, such as operating theaters, and creates 

barriers for users with motor impairments or those who cannot 

easily grasp a physical device [1]. 

To solve these issues, researchers started developing ”virtual 

mice” that utilize standard webcams. However, a review of 

existing literature reveals a divide in the current approaches. 

On one hand, early systems relied on simple techniques like 

color thresholding (e.g., tracking a colored marker on a finger). 

While these are computationally fast, they are brittle and fail 

easily if the lighting changes [2]. On the other hand, modern 

solutions often deploy heavy deep learning models, such as 

Convolutional Neural Networks (CNNs). While these models 

are accurate, they are often too heavy for standard CPUs, 

resulting in input lag that makes the cursor feel sluggish and 

unresponsive [3]. 

Beyond the choice of model, there is a practical engineering 

hurdle that is often overlooked in Python-based implemen-

tations: the Global Interpreter Lock (GIL). Because the GIL 

prevents Python from running multiple native threads at once, 

a naive implementation of a voice assistant can cripple a gesture 

system. If the system stops to ”listen” for a voice command, the 

video feed freezes, rendering the mouse unusable for several 

seconds. 

In this work, we propose a hybrid system designed to 

solve these specific latency and usability issues. Rather than 

relying on computationally expensive classifiers, we utilize the 

MediaPipe framework [4] to extract hand landmarks efficiently. 

We then pair this with a custom threading architecture designed 

to bypass the limitations of the GIL. 

Our work focuses on three main contributions: 

1) Deterministic Geometric Logic: Instead of using a 

”black box” neural network for every click, we use simple 

Euclidean distance calculations. This makes the click and 

drag actions stable and predictable. 

2) Asynchronous Threading Model: We engineered the 

system so that the voice assistant runs on a separate 

daemon thread. This ensures that the heavy lifting of 

speech recognition never blocks the video processing 

loop, keeping the cursor smooth. 

3) Dynamic Screen Mapping: To prevent arm fatigue, we 

implemented a mapping algorithm that allows the user 

to reach the entire screen with small, comfortable hand 

movements, rather than reaching across the entire camera 

frame. 

 
II. LITERATURE SURVEY 

 

Research into contactless interfaces has gone through sev-

eral distinct phases, with each new approach attempting to solve 

the limitations of its predecessor. 
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A. The Evolution of Vision-Based Input 

The earliest iterations of virtual mice were primarily based 

on Color Segmentation techniques. Ideally, tracking a specific 

color (like a marker on a finger) is computationally inexpensive. 

However, in practice, these systems proved fragile. As demon-

strated by Shibly et al. [2], color-based tracking suffers heavily 

from ”jitter” and environmental interference; if the background 

lighting changes or if the user’s skin tone blends with the wall 

behind them, the tracking breaks down. 

To improve robustness, the research community shifted 

toward Deep Learning classifiers. Approaches using models like 

YOLOv8, as explored by Karthick et al. [3], offered signifi-

cantly better detection accuracy. However, this accuracy came 

at a cost. We found that running a full object detection inference 

on every single video frame creates a massive computational 

load. On standard consumer CPUs, this results in high latency, 

leaving the user with a cursor that feels heavy and unresponsive. 

B. The Shift to MediaPipe 

A significant turning point in this domain was Google’s 

release of the MediaPipe framework. Unlike full-image clas-

sifiers, MediaPipe uses a specialized two-stage pipeline—first 

detecting the palm and then regressing landmarks—which is 

highly optimized for CPUs. Recent studies, such as those by 

Singh et al. [1], have successfully used MediaPipe to control 

basic cursor movements. 

However, while the tracking technology has improved, the 

interaction design has largely remained stagnant. We identify 

”unimodal rigidity” as a critical bottleneck in existing systems. 

They force the user to perform every single action—typing, 

scrolling, and clicking—using only arm movements. This 

quickly leads to physical exhaustion, commonly known in the 

HCI community as ”Gorilla Arm” syndrome. 

C. The Multimodal Bottleneck 

Perhaps the most overlooked engineering challenge in cur-

rent literature is the software architecture itself. Most mul-

timodal systems described in recent papers process inputs 

sequentially. This means that if a user issues a voice command, 

the system pauses the video feed to process the audio. This 

creates a jarring experience where the mouse ”freezes” for a 

second or two every time the user speaks. Our work distin-

guishes itself by specifically targeting this architectural flaw, 

utilizing concurrency to ensure that voice and gesture inputs 

can truly happen at the same time without blocking one another. 

III. SYSTEM ARCHITECTURE 

To ensure a smooth and responsive user experience, we 

architected the application as a modular system comprising 

two distinct execution pipelines. We recognized early in the 

design phase that processing video frames and listening for 

voice commands have fundamentally different performance 

characteristics. Video processing requires consistency (a steady 

30 FPS), while voice recognition is bursty and often involves 

network latency. 

To manage these conflicting requirements, we utilized 

Python’s ‘threading‘ module to run these processes in parallel. 

Specifically, we designated the audio listener as a ‘daemon‘ 

thread. This configuration is crucial because it allows the oper-

ating system to kill the background voice process automatically 

when the main video application is closed, preventing ”zombie” 

processes from lingering in memory. 

 

 

Fig. 1. High-level dual-pipeline architecture. By separating the 

visual and audio streams, we prevent the heavy processing of 

one from blocking the other. 

 

As illustrated in Figure 1, the architecture effectively de-

couples the two streams. The Visual Pipeline operates on the 

main thread to prioritize high-frequency updates for cursor 

smoothness. Meanwhile, the Audio Pipeline runs silently in the 

background, handling the slower, high-latency task of sending 

audio data to the cloud and waiting for a response. This 

partition keeps the cursor fluid, even if the voice API hits a 

two seconds delay. 

IV. METHODOLOGY 

Our core methodology relies on a dual-pipeline architecture 

that treats visual processing and audio command parsing as sep-

arate, asynchronous tasks. We adopted this design specifically 

to decouple the high-speed requirements of cursor movement 

from the slower, bursty nature of speech recognition. 

A. Visual Processing Pipeline (Gesture Engine) 

For the visual component, we leverage ‘MediaPipe Hands‘ 

to extract a skeletal model of the hand consisting of 21 3D 

landmarks (L0 to L20). 

1) Logic Flow and Decision Making: Translating raw co- 

ordinates into meaningful OS events requires a robust decision 

process. As shown in the flowchart in Fig. 2, the system follows 

a hierarchical logic: it first confirms that a hand is actually 

present in the frame. Once detected, it doesn’t just look for 

”gestures” generally; it specifically calculates the Euclidean 

distance between key fingertips to distinguish between a user 

simply moving the cursor and a user intending to click. 

Webcam Input 

MediaPipe Landmarks 

Visual Pipeline (Main) 

Geometric Logic ”Hey Sai” Parser 

OS Automation (PyAutoGUI) 

Mic Input 

Google STT API 

Audio Pipeline (Daemon) 
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Fig. 2. Gesture logic flowchart: The decision hierarchy we use to 

distinguish between simple Navigation and intentional Action 

states. 

 

2) Centroid-Based Cursor Tracking: Early tests showed 

that tracking a single fingertip (like the index finger) resulted in 

significant cursor ”jitter” due to natural hand tremors. To solve 

this, we track the geometric centroid Pcursor between the Index 

Finger (L8) and the Middle Finger (L12). This averages out the 
noise and produces a much smoother cursor trajectory. 

3) Coordinate Mapping and Smoothing: A common issue 

with gesture interfaces is ”Gorilla Arm” fatigue, caused by 

users having to extend their arms fully to reach the corners of 

the screen. To prevent this, we implemented a Frame Reduction 

margin (R ≈ 100px). This creates a smaller ”active window” 

in the center of the camera view. We then map this smaller 

window to the full screen resolution (Wscr, Hscr) using linear 

interpolation, allowing the user to reach the entire screen with 

small, comfortable wrist movements. 

4) Gesture Vocabulary: We developed a vocabulary of 

10 distinct gestures. Instead of training a neural network to 

recognize these, which is computationally heavy, we use simple 

geometric heuristics (distances between specific landmarks) to 

trigger them. 

B. Audio Processing Pipeline (”Hey Sai”) 

The voice assistant component was engineered to bypass 

the limitations of the Python Global Interpreter Lock (GIL). 

1) Concurrent Architecture: In a standard Python script, 

the command ‘mic.listen()‘ blocks the main thread, meaning 

the video freezes while the computer listens. We solved this 

by wrapping the listening loop in a daemon thread (Algorithm 

1). This allows the ‘SaiAssistant‘ to wait for commands in the 

background without interrupting the 30 FPS video stream. 

 

Algorithm 1 Concurrent Multimodal Execution  

threading, speech recognition SaiAssistant listen loop() 

1: while True do 

2: audio ← mic.listen() {Blocking I/O} 

3: text ← google api.recognize(audio) 

4: if ”Hey Sai” in text then 

5: execute macro(text) 

6: end if 

7: end while 

8: assistant ← SaiAssistant() 

9: thread ← Thread(target=assistant.listen loop) 

10: thread.daemon ← True {Run in background} 

11: thread.start() 

12: while True do 

{Main Video Thread} 

13: frame ← webcam.read() 

14: landmarks ← mediapipe.process(frame) 

15: execute gesture logic(landmarks) 

 16: end while  

 

2) Voice Command Taxonomy: The ”Hey Sai” assistant 

currently supports 8 core commands, which we categorized by 

their function in Table II. 

 
TABLE II 

”HEY SAI” VOICE COMMAND REGISTRY 

 

TABLE I 

THE 10-GESTURE VOCABULARY 
 

Gesture Heuristic Logic & Action 

1. Neutral Halt: Open palm. Stops cursor movement. 

2. Move Cursor Navigate: Index (L8) & Middle (L12) up. Tracks 

centroid. 

3. Left Click Selection: Pinch (d(L8, L12) < 40px) with Index 

finger. 

4. Right Click Context: Tap Middle finger (L12) down. 

5. Double Click Execute: Two quick Left Clicks (< 0.5s). 

6. Scrolling Dynamic: Vertical pinch motion. 

7. Drag & Drop Hold: Pinch and hold (> 1s) locks ”Mouse Down”. 

8. Multi-Select Batch: Thumb & Little finger extended (Box Se-
lect). 

9. Volume Control System: Distance d(L4, L8) controls slider. 

10. Brightness System: Distance d(L4, L12) controls slider. 

 

 

 

 

 

 

 

 

 

 

V. RESULTS AND DISCUSSION 

A. Experimental Setup 

The system was evaluated on a commodity laptop (Intel 

Core i5-1135G7 @ 2.40GHz, 8GB RAM) running Windows 

10. The development environment utilized Python 3.8.5 with 

‘MediaPipe 0.8.9‘ and ‘PyAutoGUI‘. No dedicated GPU accel-

eration was enabled to verify the system’s efficiency on low-end 

hardware. 

Webcam Frame 

Hand 

Detected? 

No 
Idle (Neutral) 

Yes 

Calc Distance 

 

Click/Drag 
(Action) 

 

Yes 

No Move Cursor 

(Centroid) 

Category Voice Trigger System Action 

System 
”Launch Gesture Recog” Init Webcam 

”Stop Gesture Recog” Release Webcam 

Web 
”Search [Query]” Browser Search 

”Find a location” Open Google Maps 

 

File Nav 

”List files” List dir contents 

”Open [File ID]” Open file/folder 

”Back” Parent directory 

Utility 
”What is the time/date” Get System Time 

”Copy” / ”Paste” Keyboard Macro 

State 
”Bye” / ”Sleep” Pause Listener 

”Wake Up” Resume Listener 
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B. Performance Metrics: Latency Analysis 

A critical requirement for HCI systems is low latency. We 

compared the ”Response Time” (time from user action to cursor 

movement) of our Concurrent Architecture against a traditional 

Sequential approach. 

CPU Usage (%) 

100 

80 

 

60 
TABLE III 

SYSTEM LATENCY COMPARISON (AVERAGE OF 50 TRIALS) 
 

40 

 

20 

 
CNN/YOLO 

 

 

 

 

 
Ours (MediaPipe) 

 

 

 

As detailed in Table III, the concurrent design eliminates 

the 1.5-second freeze caused by the Speech-to-Text API, main-

taining a stable 30+ FPS visual stream. 

 
C. Gesture Recognition Accuracy 

We conducted a confusion matrix analysis on 300 discrete 

gesture attempts (100 Move, 100 Click, 100 Scroll) under 

standard indoor lighting (300 lux). 

Comparison of Average CPU Load 

on Intel i5 (No GPU) 

 

Fig. 3. Resource consumption analysis: Our geometric approach 

consumes ≈ 50% less CPU than CNN-based alternatives, 

leaving resources free for user applications. 

 
F. Environmental Robustness 

The system relies on visible light. Testing revealed that 

performance degrades in low-light conditions (< 50 lux) due 

to webcam ISO noise introducing ”jitter” in the landmark 

CONFUSION MATRIX: 
TABLE IV 

VISUAL GESTURE RECOGNITION 
coordinates. However, the implemented Exponential Moving 

Average (EMA) smoothing filter successfully mitigated this 

jitter in moderate lighting conditions (150-500 lux), maintaining 

precise cursor control. 

VI. CONCLUSION 

In conclusion, this study challenges the prevailing assump-

tion that robust Human-Computer Interaction requires high-end 

The system achieved an aggregate accuracy of 94%. False 

negatives (No Action) in scrolling were primarily due to the 

user’s hand moving too fast for the camera shutter, causing 

motion blur that degraded landmark precision. 

 

D. ”Hey Sai” Voice Command Analysis 

The voice assistant was tested with 50 commands in a quiet 

environment. 

 
TABLE V 

VOICE COMMAND SUCCESS RATES 
 

Command Category Success Rate Avg Processing Time 

System (Launch/Stop) 100% 0.4s 

File Navigation 96% 0.8s 

Web Search 92% 1.2s 

 

 

The slight drop in Web Search accuracy (92%) is attributed 

to Google STT misinterpreting proper nouns (e.g., specific 

website names) in Indian accents. 

 
E. Computational Efficiency 

A key advantage of our Geometric Heuristic approach over 

Deep Learning classifiers (like YOLO or ResNet) is resource 

efficiency. Fig. 3 illustrates the CPU consumption profile. 

hardware or computationally expensive Deep Learning models. 

Our results indicate that by shifting the processing burden 

from heavy classifiers (like CNNs) to streamlined geometric 

heuristics, standard consumer laptops can deliver precise, low-

latency control. 

Perhaps most significantly, this work validates that the 

”Blocking I/O” limitations inherent to Python-based systems 

are not insurmountable. By implementing a concurrent daemon-

threaded architecture, we successfully decoupled the heavy 

lifting of speech recognition from the real-time requirements 

of cursor tracking. This proves that a seamless multimodal 

experience is achievable without sacrificing frame rates. While 

the current system’s reliance on cloud-based speech APIs is 

a limitation for offline environments, the modular architecture 

lays a solid foundation for future work, which will focus 

on integrating edge-based recognition models like Vosk and 

developing adaptive calibration for varying hand sizes. 
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