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Abstract—The health inequities across Indian districts have 

roots in Social Determinants of Health inclusive of maternal care, 

child nutrition, sanitation, education, and access to healthcare[4]. 
While datasets like NFHS-5 [1] are rich in information on these 

indicators, the high dimensionality coupled with inconsistent 
administrative formats causes serious challenge in systematic 

vulnerability assessment[14]. This paper presents HealthScape, 
a data-driven unified analytics framework that integrates PCA-

based dimensionality reduction[14], [15], machine learning-based 

classification[6], [8], and geospatial visualization[7], [10] for 
generating district-level SDOH vulnerability maps. Standardized 

data cleaning and feature engineering, dimensionality reduc-
tion based on PCA, vulnerability scoring, and classification by 

XGBoost form the pipeline. District boundaries are spatially 
joined using GeoJSON files; hence, interactive choropleth maps 

can be generated to highlight high-risk clusters and regional 
disparities[15]. Experimental results confirm strong predictive 

performance and accurate spatial representation by identifying 

the top vulnerable districts and subsequently yielding inter-
pretable insights for policymakers. Complex survey data will 

now be transformed into actionable intelligence, and the model 
proposed is scalable for population-health monitoring across 

India. 

Index Terms—SDOH, NFHS-5, PCA, Machine Learning, GIS, 

Vulnerability Index, Spatial Analysis 

 

I. INTRODUCTION 

Health inequality persists in the country, and it is caused not 

only by medical factors but also by a wide spectrum of social, 

economic, and environmental conditions commonly referred 

to as the Social Determinants of Health[4].. These different 

determinants, ranging from access to maternal healthcare and 

sanitation to education levels and nutritional status, affect how 

various population groups experience health risks differently. 

While national programs have improved several indicators, sig-

nificant variation still exists at the district level. Understanding 

these variations requires analytical tools that can move beyond 

isolated statistics and reveal the underlying patterns embedded 

within large-scale public health datasets. 

The NFHS-5[1] is one of India’s most comprehensive 

sources of district-level health and demographic information. 

However, this depth also poses a challenge because interpret-

ing hundreds of indicators, inconsistent naming of districts, 

missing values, and multidimensional patterns directly from 

the raw data is difficult. Traditional reporting formats sum-

marize indicators separately, offering limited insight into how 

multiple SDOH factors interact to influence overall vulnera-

bility. Consequently, policymakers often lack a consolidated, 

comparative picture of district-level disparities and are thus 

limited in their ability to design targeted interventions. 

 

Recent advances in data science and machine learning[6], 

combined with geospatial analytics [7], [15], have provided 

powerful tools for tackling these challenges. Methods like 

PCA, clustering, and machine learning models are able to ex-

tract meaningful relationships from high-dimensional datasets. 

In turn, GIS visualizes complex analytical results on intuitive 

maps, allowing hotspots, regional trends, and structural in-

equalities to be more easily comprehended.Combining these 

provides a means of converting complex survey data sets into 

actionable insight. 

 

HealthScape was designed with this objective in mind. 

It integrates statistical modeling, machine learning, and GIS 

visualization into a single end-to-end analytic framework for 

evaluating district-level health vulnerability throughout India. 

From cleaning and standardizing NFHS-5 data, extracting core 

vulnerability dimensions through PCA, predicting high-risk 

districts using machine learning, and then translating those 

outputs into spatial maps, the system produces a unified, 

interpretable representation of SDOH patterns. Such a system 

enables researchers, policymakers, and health administrators 

to understand where vulnerabilities are concentrated and to 

understand better the factors that create vulnerability. 
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II. PROBLEM STATEMENT 

Health outcomes across districts in India vary significantly 

due to a wide range of disparities in maternal health care, nu-

trition, sanitation, education, and access to healthcare services, 

which also go by the name of Social Determinants of Health 

[4]. While datasets like NFHS-5[1] include extensive district-

level information, their high dimensionality, inconsistency in 

district naming, and lack of an integrated analytical framework 

render objective assessment of vulnerability quite challenging 

for policymakers. Existing systems provide only fragmented 

or state-level insights and do not offer a unified data-driven 

vulnerability index. As such, decision-makers do not have 

a clear method to identify high-risk districts and prioritize 

interventions 

III. LITERATURE REVIEW 

SDOH-based analytics using NFHS-5 [1] and administrative 

health data [2] have become central to identifying district-level 

disparities in India’s health outcomes. Prior work highlights 

persistent inequalities[6] in maternal health, spatial clustering 

[7]of service gaps, child malnutrition hotspots[8] , and digital-

health access [13], emphasizing the need for integrated, multi-

dimensional vulnerability assessment frameworks. Studies ap-

plying explainable ML to public-health datasets and GIS-based 

spatial epidemiology further demonstrate that combining sta-

tistical modelling, machine learning, and geospatial tools[6], 

[15] improves precision and interpretability in population-

level risk assessment. These findings motivate unified systems 

such as HealthScape, which leverage ML and GIS to convert 

complex SDOH indicators into actionable district-level vulner-

ability insights. 

A. Explainable Machine Learning for Maternal Mortality 

Analysis 

Saragadam et al. (2025)[6] applied explainable machine 

learning techniques to district-level Health Management Infor-

mation System (HMIS)[2] data to identify the determinants of 

Maternal Mortality Ratio (MMR) [5]in India. Using gradient 

boosting models combined with SHAP-based interpretability, 

the study demonstrated that antenatal care coverage, institu-

tional deliveries, female literacy, and referral system strength 

were major contributors to MMR variation across districts. 

The work highlights the usefulness of administrative datasets 

for SDG monitoring and emphasizes the need for transparent 

analytical methods that support targeted decision-making. 

B. Spatial Clustering of Maternal Health Indicators 

Sharma, Kumar, and Singh (2024)[7] studied geographic 

clustering of maternal health outcomes by applying NFHS-

5[1] district-level indicators. Using global Moran’s I and local 

spatial autocorrelation LISA, high-risk clusters were identified 

with statistical significance, in the EAG states and parts of 

Northeast India. Subsequently, using spatial regression, the 

study found that female literacy, socio-economic status, and 

accessibility to maternal health services are the significant 

predictors. The findings identify the role played by spatial 

epidemiology in guiding region-specific maternal health in-

terventions. 

C. Machine Learning and Geospatial Modelling for Child 

Malnutrition 

Agarwal et al. (2023)[8] combined NFHS-5 microdata 

with environmental and socio-economic covariates to pre-

dict district- and cluster-level malnutrition hotspots in India. 

Using ensemble machine learning models and spatial cross-

validation, the study produced high-resolution predictive maps 

of stunting, wasting, and underweight prevalence. This work 

presents the potential benefits of combining ML and GIS tools 

for precision nutrition planning. 

D. Intra-Urban Health Inequalities in Megacities 

Singh et al. (2023)[9] investigated the intra-urban differ-

entials in maternal and child health in Indian megacities by 

integrating NFHS-5 cluster data with municipal administrative 

boundaries. The study showed significant inequalities in health 

between slum and non-slum settlements; poorer urban neigh-

borhoods consistently recorded lower utilization of maternal 

care services and higher malnutrition rates. Using spatial statis-

tics and multilevel models, the study established that urban 

health outcomes are significantly affected by neighborhood-

level deprivation and service availability. 

E. Climate–Health Vulnerability Assessment Using NFHS-5 

Rao et al. (2023)[10]constructed a composite climate-health 

vulnerability index by integrating NFHS-5[1] indicators with 

high-resolution climatic exposure datasets. The study mapped 

climatic health vulnerability for the entire nation using stan-

dardized sensitivity, exposure, and adaptive-capacity metrics. 

High-risk zones were identified within the Indo-Gangetic 

plains and the drought-prone central regions. Spatial autocor-

relation techniques were used to validate these clusters. 

F. Geographic Determinants of COVID-19 Vaccination Cov-

erage 

Patel et al. (2024)[11] examined district-level vaccination 

patterns for COVID-19 in relation to measures of social 

determinants captured in NFHS-5[1]. Spatial clustering anal-

yses highlighted significant geographic inequities, with low-

coverage districts concentrated in socioeconomically disad-

vantaged regions. Using spatial regression, it was possible to 

identify digital access, female literacy, media exposure, and 

wealth as the key predictors of vaccination uptake, highlighting 

the impact of digital and social inequity on the vaccination 

rollout across India. 

G. Digital Health Equity and Telemedicine Adoption 

Verma, Jain, and Srivastava (2024) [13]investigated the 

uptake of telemedicine services across districts in India, us-

ing NFHS-5[1] socio-demographic indicators coupled with 

administrative utilization data. Strong spatial patterns of digital 

health access were found, with low adoption in areas with poor 

mobile ownership, limited internet connectivity, and overall 

socio-economic vulnerability. Moran’s I and LISA analyses 
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confirmed that digital exclusion exhibited significant cluster-

ing, underlining structural barriers to the equitable deployment 

of digital health. 

H. Comparison of existing approaches 

 
approaches features strengths challenges 

Explainable 
ML on 

Administrative 

Health Data 

Uses HMIS 
indicators, 

gradient 

boosting 
models, SHAP 

interpretability 

Provides 
transparent 

insights into 

health-system 
drivers; 

supports 

SDG 

monitoring 

Data quality 
issues, under-

reporting, eco-

logical bias 

Spatial 
Epidemiology 

Using NFHS-

5 

Moran’s I, 
LISA hotspot 

detection,spatial 

regression 

Identifies 
geographic 

clusters; high-

lights regional 

disparities; 
effective for 

targeted plann-

ing 

Cross-sectional 
data limits 

causal infer-

ence; unstable 

estimates in 
low-sample 

districts 

ML–GIS 
Hybrid 

Models for 

Nutrition 

/Vulnerability 

Mapping 

ML prediction 
(RF, XGBoost), 

geospatial 

layers, 

environmental 

covariates 

Captures 
complex 

interactions; 

produces high-

resolution risk 

maps; supports 
precision 

intervention 

Model 
interpretability 

varies; tempo-

ral mismatch in 

datasets; spatial 

autocorrelation 
issues 

 
I. Open research directions and gaps 

Despite progress in applying machine learning and geospa-

tial methods to SDOH-driven vulnerability[10] assessment, 

several gaps remain. First, most studies rely on cross-sectional 

datasets such as NFHS-5[1], limiting the ability to capture 

temporal changes or emerging vulnerabilities. Developing 

longitudinal or real-time SDOH monitoring systems remains 

an open research need. Second, existing models often treat 

environmental, digital, and socio-economic determinants sep-

arately; integrating these multi-layered exposures into uni-

fied, causal frameworks is still understudied. Third, current 

ML-based vulnerability tools face interpretability challenges, 

particularly when incorporating complex, high-dimensional 

features or ensemble models. 

Another critical gap is the limited availability of fine-grained 

spatial data. District-level aggregation masks within-district 

heterogeneity[7], especially in urban slums, tribal areas, and 

remote regions. Future research must explore small-area esti-

mation and satellite-derived proxies to overcome data scarcity. 

Finally, while many studies generate spatial risk maps, there 

is limited evidence of their operational uptake in govern-

ment planning processes. Designing deployable, user-centric 

decision-support systems that integrate ML models with health 

management platforms represents a key translational opportu-

nity. 

IV. SYSTEM ARCHITECTURE 

The propoosed HealthScape system architecture and its 

principal components design emphasizes modularity, repro-

ducibility, and scalability so that NFHS-5[1] and related 

datasets can be transformed into robust, interpretable vulnera-

bility measures and spatial outputs. Subsections A–G present 

the overall design followed by detailed descriptions of each 

architectural layer. 

A. Overall Design 

The architecture follows a structured flow consisting of 

data ingestion, cleaning, feature engineering, modeling, and 

GIS-based visualization. Each layer is independent, enabling 

flexible updates when new datasets or indicators become 

available. 

1. Data Acquisition Layer 
2. Data Cleaning and Harmonization 

3. Feature Engineering and Feature Store 
4. PCA and Machine Learning Modeling 

5. Spatial Visualization and Deployment 

The design prioritizes Reproducibility, Interpretability, Scal-

ability, Actionability. 

B. Data Acquisition Layer 

This layer collects all input data required for the framework, 

including 

1. NFHS-5 indicators (district-level). 
2. Optional HMIS administrative metrics. 

3. GeoJSON files containing district boundaries. 

The system validates schemas, checks completeness, and 

stores raw inputs with metadata for future traceability. 

C. Data Cleaning and Harmonization 

To ensure consistency across sources, this layer performs 
1. Standardization of district names and formats. 

2. Fuzzy-matching for mismatched district entries. 

3. Missing-value imputation using rule-based methods. 

4. Conversion of numeric, categorical, and percentage fields 

into consistent formats. 

The output is a clean, unified dataset ready for analytical 

processing. 

D. Feature Engineering and Feature Store 

This layer transforms raw indicators into structured SDOH 

features 

1. Grouping variables into key domains (maternal health, 

nutrition, WASH, socio-economic, digital access). 

2. Applying normalization and scaling. 
3. Creating composite indicators where relevant. 

A versioned feature store preserves engineered features for 

reproducible modeling and comparisons over time. 

E. PCA and Machine Learning Modeling 

The analytical engine combines dimensionality-reduction 

and predictive modeling. 

1. PCA - extracts underlying vulnerability patterns across 

SDOH domains. PC1 is converted into the Vulnerability Index. 

2. ML Classification - Logistic Regression classify districts 

into high- or low-vulnerability categories. 

3. Evaluation - accuracy, ROC-AUC, calibration curves, and 

Brier scores ensure reliable predictions. 

4. Explainability:feature-importance and SHAP-based in-

sights support transparency in decision-making. 
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F. Spatial Visualization and Deployment 

This final layer links analytical results with spatial bound-

aries to generate actionable outputs. 1. Interactive GIS dash-

boards using GeoJSON and Plotly/Leaflet. 

2. Static choropleth maps for reporting and presentations 

3. District-level summaries highlighting top-risk and low-

risk regions 

4. Deployment options include notebook-based analysis, 

containerized execution, or cloud-hosted map services. 

V. METHODOLOGY AND IMPLEMENTATION 

HealthScape represents an integrated analytical workflow 

developed through the integration of statistical transforma-

tion, machine learning, and geospatial intelligence to assess 

health vulnerability at district levels. This section describes 

the end-to-end pipeline from raw data acquisition, processing, 

and generation of vulnerability scores and spatial maps. The 

methodological choices aim at transparency, reproducibility, 

interpretability, and operational suitability for public-health 

planning.. 

A. Data Preparation 

NFHS-5 indicators and auxiliary data are harmonized into 

a uniform analytical structure in a rigorous process of data 

preparation 1. Source consolidation: different NFHS-5 district-

level tables have been combined into one dataset on maternal 

health, nutrition, sanitation, demographics, and use of digital 

channels, using the district names as keys 

2. Standardization of data: Districts are normalized by low-

ercasing, punctuation removal, and fuzzy matching to ensure 

cross-dataset alignment with GeoJSON boundaries. 

3. Missing-value handling: Median imputation of the numer-

ical variables and mode-based filling for categorical indicators; 

missingness patterns also record for sensitivity checks. 

4. Range validation: Indicators that include measures of 

percentages are validated against the 0–100 limit, extreme or 

implausible values are identified and corrected. 

5. Consistency enforcement: Units of measurement, data 

type, and column format standardization ensure a coherent and 

analysis-ready dataset. 

This structured preprocessing improves the reliability of 

downstream modeling and ensures compatibility of the data 

with spatial datasets. 

B. Feature Engineering 

Feature engineering transforms this cleaned dataset into 

analytically expressive variables, capturing multi-dimensional 

SDOH characteristics. 

1. Domain classification: Indicators are grouped into coher-

ent SDOH domains, including maternal care utilization, child 

nutritional status, WASH conditions, socio-economic context, 

and digital access. 

2. Scaling and normalization: Application of the Z-score 

standardization for the variables that feed PCA in ML models, 

Min–Max normalization is preferred for interpretability. 

3. Composite indicators: Summary measures for domains 

(such as the Maternal Care Index, Sanitation Index) are 

obtained by weighted or unweighted aggregation. 

4. Correlation filtering: Highly collinear features are filtered 

out to reduce redundancy and stabilize PCA and ML output. 

5. Feature documentation: A structured ”data dictionary” is 

developed that traces data transformations, variable definitions, 

and domain assignments. Here is a list of indicators that were 

used for analysis 

 
TABLE I 

LIST OF INDICATORS USED FOR ANALYSIS 

 

Indicator 
Name 

Category Description Source 

ANC 4+ Vis- 

its 

Maternal 

Health 

Percentage of mothers who 
received atleast four antena-

tal care visits 

NFHS-5 

Institutional 

Delivery 

Maternal 

Health 

Births delivered in health fa- 

cilities 
NFHS-5 

Immunization 

Coverage 

Health Ser- 

vices 

Facility-reported vaccination 

completion 
HMIS 

Stunting Child Nutri- 

tion 

Children  under  5  whose 
height-for-age is below 

WHO standard 

NFHS-5 

Wasting Child Nutri- 

tion 

Children whose weight-for- 
height is below WHO stan-

dard 

NFHS-5 

Full 

Immunization 

Child 

Health 

Children (12–23 months) re- 

ceiving all basic vaccinations 
NFHS-5 

Anaemia in 

Women 

Maternal 

Health 

Prevalence of anaemia 

among women aged 15–49 
NFHS-5 

 

This step enhances not only the performance of the model 

but also interpretability, organizing a complex indicator space 

into meaningful analytical components. 

C. Dimensionality Reduction (PCA) 

Using PCA to develop a compact representation of the 

district vulnerabilities across different SDOH dimensions. 

1. Input Formation: The PCA input is a matrix comprising 

standardized SDOH indicators (districts × features). 

2. Component Extraction: PCA identifies orthogonal com-

ponents capturing the maximum variance in the dataset. PC1 

is the most interpretable dimension, reflecting broad structural 

disadvantage. 

3. Index Construction: PC1 is min–max scaled to yield 

the Vulnerability Index ranging from 0 (least vulnerable) to 1 

(most vulnerable). 

4. Loading Interpretation: Through PCA loadings, one 

can ascertain which social determinants, such as sanitation 

deficits, nutritional weaknesses, or poor matern‘al health, are 

more contributing factors to vulnerability. 

5. Dimesionality Justification: PCA eliminates multi-

collinearity and removes noise, helping ML models focus 

on dominant patterns rather than redundant indicators. The 

resulting index is a strong, data-driven indicator of district-

level disadvantage. 

D. Machine Learning Modeling 

To complement the vulnerability index with predictive 

capability, multiple classification models—including Logistic 
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HEALTHSCAPE — Block diagram 
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Fig. 1. Block diagram of the HealthScape analytical pipeline after adjusting box sizes to fit page width. 

 

Regression, Random Forest, and SVM—are tested. XGBoost 

is selected due to its superior performance, robustness with 

tabular health data, and ability to model nonlinear interactions. 

The modelling pipeline includes stratified train-test splitting, 

applying SMOTE to balance high-risk vs non-high-risk dis-

tricts, and performing calibration to ensure reliable probability 

outputs. Evaluation uses metrics such as Accuracy, Precision, 

Recall, F1-Score, and ROC-AUC. Below is a Performance 

comparison of ML models 

 
TABLE II 

PERFORMANCE COMPARISON OF ML MODELS 

 

Model Accuracy F1 ROC-AUC 

XGBoost 0.880282 0.849558 0.942414 

Random Forest 0.866197 0.837607 0.927711 

Naive Bayes 0.830986 0.800000 0.888503 

Logistic Regression 0.823944 0.800000 0.929140 

SVM (RBF) 0.823944 0.778761 0.905861 

KNN 0.802817 0.777778 0.897999 
 

 
 

 

E. Spatial Integration and GIS Mapping 

Geospatial visualization turns the results of analytics into 

interpretable maps that support regional planning. 

1. Spatial Joins : The dataset is combined with district-level 

GeoJSON boundaries based on harmonized district identifiers. 

2. Map generation: Vulnerability Index, probability scores, 

and PCA components are visualized as Choropleth layers to 

enable comparison of patterns across regions. 

3. Cluster identification: Regional clusters of high vulner-

ability visually emerge, reflecting the previously documented 

disparities in maternal health and socio-economic outcomes. 

4. Interactive dashboards: HTML-based maps include hover 

tooltips, legend controls, and district-level summaries that 

facilitate real-time exploration. 

5. Reporting outputs: High-resolution PNG maps are pro-

duced for printed reports, presentations, and government brief-

ings. 

This step links statistical complexity with intuitive insights 

such that immediate comprehension of spatial inequity is 

possible. 

F. Implementation Environment 

The complete pipeline was implemented using modern data-

science tools in a reproducible analytical environment. 

1. Software stack in use: Python (Pandas, NumPy), Scikit-

learn, GeoPandas, Plotly, and SHAP. 

2. Versioning: All intermediate artifacts are versioned-

cleaned datasets, feature matrices, PCA loadings, ML models-

for reproducibility. 

3. Deployment configurations: 

• Notebook workflows for exploration and prototyping 

• Containerized environments for reproducible execution 

• Optional deployment on cloud for scalable data processing 

and map hosting 

4. Documentation: The pipeline is completely logged to 

provide traceability for all transformations, updates of the 

models, and visual outputs. 

Data Ingestion & 

Harmonization 

Cleaned Dataset Analysis Engine Prob High / Pred High GIS Mapping & 
(PCA & ML) Visualization 

Retrain 

Processed Features Feature Feed Validation Metrics Export Maps & 

Feature Store 
Processed Data 

Validation & Eval 
Corr, Calibration 

Outputs 
High-risk districts 

Reports / CSV / HTML 

 

GeoJSON 

(District Boundaries) 

 

HMIS 

(Service Metrics) 

 

NFHS-5 

(District Indicators) 
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This systematic environment supports long-term maintain-

ability and adaptability to new data sources. 

VI. RESULTS 

The HealthScape framework produces an integrated set of 

analytical and visual outputs that collectively capture district-

level health vulnerability across India by combining PCA-

based dimensionality reduction, supervised machine learning, 

and geospatial visualization. Figure 1 shows the HealthScape 

dashboard highlighting the district-level vulnerability[10] map 

derived from the PCA-based composite index. The Vulnera-

bility Index, scaled between 0 and 1, consolidates over one 

hundred correlated NFHS-5[1] indicators related to maternal 

health, child nutrition, sanitation, education, and healthcare 

access into a single interpretable measure. The resulting spatial 

distribution reveals strong geographic clustering of vulnera-

bility, with consistently higher scores observed across dis-

tricts in eastern, north-central, and north-eastern India, while 

southern and western regions exhibit comparatively lower 

vulnerability levels. The same HealthScape dashboard also 

integrates complementary analytical views, including feature-

importance plots, state-level vulnerability comparisons, and 

model performance metrics, enabling multi-level interpretation 

of results within a single interface. 

Figure 2 presents the chatbot component embedded within 

the HealthScape dashboard, which enables interactive querying 

of model outputs and vulnerability rankings. Using the PCA-

derived index, the chatbot identifies the most vulnerable dis-

tricts, with several districts from Nagaland—such as Tuensang, 

Mon, Kiphire, Zunheboto, and Longleng—appearing among 

the highest-ranked. This result is consistent with the spatial 

patterns observed in the vulnerability map and reflects struc-

tural challenges in healthcare accessibility, terrain, and service 

coverage in the region. The chatbot enhances interpretability 

by translating complex analytical results into natural-language 

responses, allowing users to explore district-level vulnerability, 

understand contributing factors, and validate findings without 

requiring direct interaction with raw data or code. This human-

centric layer bridges the gap between advanced analytics and 

policy-oriented decision-making. 

Figure 3 further examines the relationship between the 

model-generated probability of high vulnerability and a key 

maternal health indicator—the percentage of mothers receiving 

at least four antenatal care visits. The scatter plot demonstrates 

a clear inverse relationship, with districts exhibiting higher 

ProbHigh values generally showing lower ANC coverage. This 

negative association confirms that the machine learning model 

effectively captures meaningful public-health signals rather 

than statistical artifacts. While some dispersion is observed 

at higher probability levels, indicating heterogeneity among 

vulnerable districts, the overall trend validates the model’s 

sensitivity to critical maternal health determinants and supports 

the use of ProbHigh as a reliable risk indicator. 

These patterns were intuitive in GIS-based visualizations, 

where one can visualize district-wise vulnerability gradients 

and thematic variations across maternal health, sanitation, and 

socio-economic factors. Altogether, the results strengthen the 

case for HealthScape as a scalable and interpretable framework 

for vulnerability assessment at the district level. 

 

 
Fig. 2. District-level PCA-based vulnerability map 

 

 

 

Fig. 3. HealthScape chatbot 

 

These patterns were intuitive in GIS-based visualizations, 

where one can visualize district-wise vulnerability gradients 

and thematic variations across maternal health, sanitation, and 

socio-economic factors. Altogether, the results strengthen the 

case for HealthScape as a scalable and interpretable framework 

for vulnerability assessment at the district level. These results 

highlight the system’s potential to support evidence-based 

prioritization of districts, guide targeted interventions, and 

assist policymakers in addressing health inequities driven by 

social determinants. 

 

 
Fig. 4. relationship between predicted high-risk probability and ANC 
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