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Abstract—The health inequities across Indian districts have
roots in Social Determinants of Health inclusive of maternal care,
child nutrition, sanitation, education, and access to healthcare[4].
While datasets like NFHS-5 [1] are rich in information on these
indicators, the high dimensionality coupled with inconsistent
administrative formats causes serious challenge in systematic
vulnerability assessment[14]. This paper presents HealthScape,
a data-driven unified analytics framework that integrates PCA-
based dimensionality reduction[14], [15], machine learning-based
classification[6], [8], and geospatial visualization[7], [10] for
generating district-level SDOH vulnerability maps. Standardized
data cleaning and feature engineering, dimensionality reduc-
tion based on PCA, vulnerability scoring, and classification by
XGBoost form the pipeline. District boundaries are spatially
joined using GeoJSON files; hence, interactive choropleth maps
can be generated to highlight high-risk clusters and regional
disparities[15]. Experimental results confirm strong predictive
performance and accurate spatial representation by identifying
the top vulnerable districts and subsequently yielding inter-
pretable insights for policymakers. Complex survey data will
now be transformed into actionable intelligence, and the model
proposed is scalable for population-health monitoring across
India.

Index Terms—SDOH, NFHS-5, PCA, Machine Learning, GIS,
Vulnerability Index, Spatial Analysis

. INTRODUCTION

Health inequality persists in the country, and it is caused not
only by medical factors but also by a wide spectrum of social,
economic, and environmental conditions commonly referred
to as the Social Determinants of Health[4].. These different
determinants, ranging from access to maternal healthcare and
sanitation to education levels and nutritional status, affect how
various population groups experience health risks differently.
While national programs have improved several indicators, sig-
nificant variation still exists at the district level. Understanding
these variations requires analytical tools that can move beyond
isolated statistics and reveal the underlying patterns embedded
within large-scale public health datasets.
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The NFHS-5[1] is one of India’s most comprehensive
sources of district-level health and demographic information.
However, this depth also poses a challenge because interpret-
ing hundreds of indicators, inconsistent naming of districts,
missing values, and multidimensional patterns directly from
the raw data is difficult. Traditional reporting formats sum-
marize indicators separately, offering limited insight into how
multiple SDOH factors interact to influence overall wulnera-
bility. Consequently, policymakers. often lack a consolidated,
comparative picture of district-level disparities and are thus
limited in their ability to design targeted interventions.

Recentadvances in data science and machine learning[6],
combined with geospatial analytics [7], [15], have provided
powerful tools for tackling these challenges. Methods like
PCA, clustering, and machine learning models are able to ex-
tract meaningful relationships from high-dimensional datasets.
In turn, GIS visualizes complex analytical results on intuitive
maps, allowing hotspots, regional trends, and structural in-
equalities to be more easily comprehended.Combining these
provides a means of converting complex survey data sets into
actionable insight.

HealthScape was designed with this objective in mind.
It integrates statistical modeling, machine learning, and GIS
visualization into a single end-to-end analytic framework for
evaluating district-level health wulnerability throughout India.
From cleaning and standardizing NFHS-5 data, extracting core
vulnerability dimensions through PCA, predicting high-risk
districts using machine learning, and then translating those
outputs into spatial maps, the system produces a unified,
interpretable representation of SDOH patterns. Such a system
enables researchers, policymakers, and health administrators
to understand where vulnerabilities are concentrated and to
understand better the factors that create vulnerability.
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Il. PROBLEM STATEMENT

Health outcomes across districts in India vary significantly
due to a wide range of disparities in maternal health care, nu-
trition, sanitation, education, and access to healthcare services,
which also go by the name of Social Determinants of Health
[4]. While datasets like NFHS-5[1] include extensive district-
level information, their high dimensionality, inconsistency in
district naming, and lack of an integrated analytical framework
render objective assessment of wulnerability quite challenging
for policymakers. Existing systems provide only fragmented
or state-level insights and do not offer a unified data-driven
vulnerability index. As such, decision-makers do not have
a clear method to identify high-risk districts and prioritize
interventions

IlIl. LITERATURE REVIEW

SDOH-based analytics using NFHS-5 [1] and administrative
health data [2] have become central to identifying district-level
disparities in India’s health outcomes. Prior work highlights
persistent inequalities[6] in maternal health, spatial clustering
[7]of service gaps, child malnutrition hotspots[8] , and digital-
health access [13], emphasizing the need for integrated, multi-
dimensional wulnerability assessment frameworks. Studies ap-
plying explainable ML to public-health datasets and GIS-based
spatial epidemiology further demonstrate that combining sta-
tistical modelling, machine learning, and geospatial tools[6],
[15] improves precision and interpretability in population-
level risk assessment. These findings motivate unified systems
such as HealthScape, which leverage ML and GIS to convert
complex SDOH indicators into actionable district-level vulner-
ability insights.

A. Explainable Machine Learning for Maternal Mortality
Analysis

Saragadam et al. (2025)[6] applied explainable machine
learning techniques to district-level Health Management Infor-
mation System (HMIS)[2] data to identify the determinants of
Maternal Mortality Ratio (MMR) [5]in India. Using gradient
boosting models combined with SHAP-based interpretability,
the study demonstrated that antenatal care coverage, institu-
tional deliveries, female literacy, and referral system strength
were major contributors to MMR variation across districts.
The work highlights the usefulness of administrative datasets
for SDG monitoring and emphasizes the need for transparent
analytical methods that support targeted decision-making.

B. Spatial Clustering of Maternal Health Indicators

Sharma, Kumar, and Singh (2024)[7] studied geographic
clustering of maternal health outcomes by applying NFHS-
5[1] district-level indicators. Using global Moran’s | and local
spatial autocorrelation LISA, high-risk clusters were identified
with statistical significance, in the EAG states and parts of
Northeast India. Subsequently, using spatial regression, the
study found that female literacy, socio-economic status, and
accessibility to maternal health services are the significant
predictors. The findings identify the role played by spatial

epidemiology in guiding region-specific maternal health in-
terventions.

C. Machine Learning and Geospatial Modelling for Child
Malnutrition

Agarwal et al. (2023)[8] combined NFHS-5 microdata
with environmental and socio-economic covariates to pre-
dict district- and cluster-level malnutrition hotspots in India.
Using ensemble machine learning models and spatial cross-
validation, the study produced high-resolution predictive maps
of stunting, wasting, and underweight prevalence. This work
presents the potential benefits of combining ML and GIS tools
for precision nutrition planning.

D. Intra-Urban Health Inequalities in Megacities

Singh et al. (2023)[9] investigated the intra-urban differ-
entials in maternal and child health in Indian megacities by
integrating NFHS-5 cluster data with municipal administrative
boundaries. The study showed significant inequalities in health
between slum and non-slum settlements; poorer urban neigh-
borhoods consistently recorded lower utilization of maternal
care services and higher malnutrition rates. Using spatial statis-
tics and multilevel models, the study established that urban
health outcomes are significantly affected by neighborhood-
level deprivation and service availability.

E. Climate—Health Vulnerability Assessment Using NFHS-5

Rao et al. (2023)[10]constructed a composite climate-health
vulnerability index by integrating NFHS-5[1] indicators with
high-resolution climatic exposure datasets. The study mapped
climatic health wulnerability for the entire nation using stan-
dardized sensitivity, exposure, and adaptive-capacity metrics.
High-risk zones were identified within the Indo-Gangetic
plains and the drought-prone central regions. Spatial autocor-
relation techniques were used to validate these clusters.

F. Geographic Determinants of COVID-19 Vaccination Cov-
erage

Patel et al. (2024)[11] examined district-level vaccination
patterns for COVID-19 in relation to measures of social
determinants captured in NFHS-5[1]. Spatial clustering anal-
yses highlighted significant geographic inequities, with low-
coverage districts concentrated in socioeconomically disad-
vantaged regions. Using spatial regression, it was possible to
identify digital access, female literacy, media exposure, and
wealth as the key predictors of vaccination uptake, highlighting
the impact of digital and social inequity on the vaccination
rollout across India.

G. Digital Health Equity and Telemedicine Adoption

Verma, Jain, and Srivastava (2024) [13]investigated the
uptake of telemedicine services across districts in India, us-
ing NFHS-5[1] socio-demographic indicators coupled with
administrative utilization data. Strong spatial patterns of digital
health access were found, with low adoption in areas with poor
mobile ownership, limited internet connectivity, and overall
socio-economic wulnerability. Moran’s | and LISA analyses
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confirmed that digital exclusion exhibited significant cluster-
ing, underlining structural barriers to the equitable deployment
of digital health.

H. Comparison of existing approaches

approaches features strengths challenges

Explainable Uses HMIS Provides Data quality

ML on indicators, transparent issues, under-

Administrative | gradient insights into reporting, eco-

Health Data boosting health-system logical bias

models, SHAP drivers;

interpretability supports
SDG
monitoring

Spatial Moran’s |, Identifies Cross-sectional

Epidemiology | LISA hotspot geographic data limits

Using NFHS- | detection,spatial | clusters; high- causal infer-

5 regression lights regional ence; unstable
disparities; estimates in
effective for low-sample
targeted plann- districts
ing

ML-GIS ML prediction Captures Model

Hybrid (RF, XGBoost), | complex interpretability

Models for geospatial interactions; varies; tempo-

Nutrition layers, produces high- ral mismatchin

Nulnerability | environmental resolution risk datasets; spatial

Mapping covariates maps; supports autocorrelation
precision issues
intervention

I. Open research directions and gaps

Despite progress in applying machine learning and geospa-
tial methods to SDOH-driven vulnerability[10] assessment,
several gaps remain. First, most studies rely on cross-sectional
datasets such as NFHS-5[1], limiting the ability to capture
temporal changes or emerging vulnerabilities. Developing
longitudinal or real-time SDOH monitoring systems remains
an open research need. Second, existing models often treat
environmental, digital, and socio-economic determinants sep-
arately; integrating these multi-layered exposures into uni-
fied, causal frameworks is still understudied. Third, current
ML-based wulnerability tools face interpretability challenges,
particularly when incorporating complex, high-dimensional
features or ensemble models.
Another critical gap is the limited availability of fine-grained
spatial data. District-level aggregation masks within-district
heterogeneity[7], especially in urban slums, tribal areas, and
remote regions. Future research must explore small-area esti-
mation and satellite-derived proxies to overcome data scarcity.
Finally, while many studies generate spatial risk maps, there
is limited evidence of their operational uptake in govern-
ment planning processes. Designing deployable, user-centric
decision-support systems that integrate ML models with health
management platforms represents a key translational opportu-
nity.

IV. SYSTEM ARCHITECTURE

The propoosed HealthScape system architecture and its
principal components design emphasizes modularity, repro-
ducibility, and scalability so that NFHS-5[1] and related

datasets can be transformed into robust, interpretable vulnera-
bility measures and spatial outputs. Subsections A-G present
the overall design followed by detailed descriptions of each
architectural layer.

A. Overall Design

The architecture follows a structured flow consisting of
data ingestion, cleaning, feature engineering, modeling, and
GIS-based visualization. Each layer is independent, enabling
flexible updates when new datasets or indicators become
available.

1. Data Acquisition Layer

2. Data Cleaning and Harmonization

3. Feature Engineering and Feature Store

4. PCA and Machine Learning Modeling

5. Spatial Visualization and Deployment

The design prioritizes Reproducibility, Interpretability, Scal-
ability, Actionability.

B. Data Acquisition Layer

This layer collects all input data required for the framework,
including

1. NFHS-5 indicators (district-level).

2. Optional HMIS administrative metrics.

3. GeoJSON files containing district boundaries.

The system validates schemas, checks completeness, and
stores raw inputs with metadata for future traceability.

C. Data Cleaning and Harmonization

To ensure consistency across sources, this layer performs

1. Standardization of district names and formats.

2. Fuzzy-matching for mismatched district entries.

3. Missing-value imputation using rule-based methods.

4. Conversion of numeric, categorical, and percentage fields
into consistent formats.

The output is a clean, unified dataset ready for analytical
processing.

D. Feature Engineering and Feature Store

This layer transforms raw indicators into structured SDOH
features

1. Grouping variables into key domains (maternal health,
nutrition, WASH, socio-economic, digital access).

2. Applying normalization and scaling.

3. Creating composite indicators where relevant.

A versioned feature store preserves engineered features for
reproducible modeling and comparisons over time.

E. PCA and Machine Learning Modeling

The analytical engine combines dimensionality-reduction
and predictive modeling.

1. PCA - extracts underlying vulnerability patterns across
SDOH domains. PC1 is converted into the Vulnerability Index.

2. ML Classification - Logistic Regression classify districts
into high- or low-wulnerability categories.

3. Evaluation - accuracy, ROC-AUC, calibration curves, and
Brier scores ensure reliable predictions.

4. Explainability:feature-importance and SHAP-based in-
sights support transparency in decision-making.

IJCRT2512890 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

[ heal


http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

F. Spatial Visualization and Deployment

This final layer links analytical results with spatial bound-
aries to generate actionable outputs. 1. Interactive GIS dash-
boards using GeoJSON and Plotly/Leaflet.

2. Static choropleth maps for reporting and presentations

3. District-level summaries highlighting top-risk and low-
risk regions

4. Deployment options include notebook-based analysis,
containerized execution, or cloud-hosted map services.

V. METHODOLOGY AND IMPLEMENTATION

HealthScape represents an integrated analytical workflow
developed through the integration of statistical transforma-
tion, machine learning, and geospatial intelligence to assess
health wulnerability at district levels. This section describes
the end-to-end pipeline from raw data acquisition, processing,
and generation of wulnerability scores and spatial maps. The
methodological choices aim at transparency, reproducibility,
interpretability, and operational suitability for public-health
planning..

A. Data Preparation

NFHS-5 indicators and auxiliary data are harmonized into
a uniform analytical structure in a rigorous process of data
preparation 1. Source consolidation: different NFHS-5 district-
level tables have been combined into one dataset on maternal
health, nutrition, sanitation, demographics, and use of digital
channels, using the district names as keys

2. Standardization of data: Districts are normalized by low-
ercasing, punctuation removal, and fuzzy matching to ensure
cross-dataset alignment with GeoJSON boundaries.

3. Missing-value handling: Median imputation of the numer-
ical variables and mode-based filling for categorical indicators;
missingness patterns also record for sensitivity checks.

4. Range validation: Indicators that include measures of
percentages are validated against the 0-100 limit, extreme or
implausible values are identified and corrected.

5. Consistency enforcement: Units of measurement, data
type, and column format standardization ensure a coherent and
analysis-ready dataset.

This structured preprocessing improves the reliability of
downstream modeling and ensures compatibility of the data
with spatial datasets.

B. Feature Engineering

Feature engineering transforms this cleaned dataset into
analytically expressive variables, capturing multi-dimensional
SDOH characteristics.

1. Domain classification: Indicators are grouped into coher-
ent SDOH domains, including maternal care utilization, child
nutritional status, WASH conditions, socio-economic context,
and digital access.

2. Scaling and normalization: Application of the Z-score
standardization for the variables that feed PCA in ML models,
Min—Max normalization is preferred for interpretability.

3. Composite indicators: Summary measures for domains
(such as the Maternal Care Index, Sanitation Index) are
obtained by weighted or unweighted aggregation.

4. Correlation filtering: Highly collinear features are filtered
out to reduce redundancy and stabilize PCA and ML output.

5. Feature documentation: A structured “data dictionary” is
developed that traces data transformations, variable definitions,
and domain assignments. Here is a list of indicators that were
used for analysis

TABLE |
LIST OF INDICATORS USED FOR ANALYSIS
Indicator Category Description Source
Name
ANC 4+ Vis- | Maternal Percentage of mothers who | NFHS-5
its Health received atleast four antena-
tal care visits

Institutional Maternal Births delivered in health fa- | NFHS-5
Delivery Health cilities
Immunization | Health Ser- | Facility-reported vaccination | HMIS
Coverage vices completion
Stunting Child Nutri- | Children under 5 whose | NFHS-5

tion height-for-age  is  below

WHO standard

Wasting Child Nutri- | Children whose weight-for- | NFHS-5

tion height is below WHO stan-

dard

Full Child Children (12-23 months) re- | NFHS-5
Immunization Health ceiving all basic vaccinations
Anaemia in | Maternal Prevalence  of  anaemia | NFHS-5
Women Health among women aged 15-49

This step enhances not only the performance of the model
but also interpretability, organizing a complex indicator space
into meaningful analytical components.

C. Dimensionality Reduction (PCA)

Using PCA to develop a compact representation of the
district vulnerabilities across different SDOH dimensions.

1. Input Formation: The PCA input is a matrix comprising
standardized SDOH indicators (districts x features).

2. Component Extraction: PCA identifies orthogonal com-
ponents capturing the maximum variance in the dataset. PC1
is the most interpretable dimension, reflecting broad structural
disadvantage.

3. Index Construction: PC1 is min—-max scaled to yield
the Vulnerability Index ranging from 0 (least wulnerable) to 1
(most wulnerable).

4. Loading Interpretation: Through PCA loadings, one
can ascertain which social determinants, such as sanitation
deficits, nutritional weaknesses, or poor matern‘al health, are
more contributing factors to vulnerability.

5. Dimesionality Justification: PCA eliminates multi-
collinearity and removes noise, helping ML models focus
on dominant patterns rather than redundant indicators. The
resulting index is a strong, data-driven indicator of district-
level disadvantage.

D. Machine Learning Modeling

To complement the wulnerability index with predictive
capability, multiple classification models—including Logistic
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HEALTHSCAPE — Block diagram
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(District Indicators)
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Feature Store
Processed Data
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Validation Metrics
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- Outputs
_| \Validation & Eval High-risk districts

Cortzalipration Reports / CSV / HTML

Fig. 1. Block diagram of the HealthScape analytical pipeline after adjusting box sizes to fit page width.

Regression, Random Forest, and SVM—are tested. XGBoost
is selected due to its superior performance, robustness with
tabular health data, and ability to model nonlinear interactions.
The modelling pipeline includes stratified train-test splitting,
applying SMOTE to balance high-risk vs non-high-risk dis-
tricts, and performing calibration to ensure reliable probability
outputs. Evaluation uses metrics such as Accuracy, Precision,
Recall, F1-Score, and ROC-AUC. Below is a Performance
comparison of ML models

TABLE I
PERFORMANCE COMPARISON OF ML MODELS
Model Accuracy F1 ROC-AUC
XGBoost 0.880282 0.849558 0.942414
Random Forest 0.866197 0.837607 0.927711
Naive Bayes 0.830986 0.800000 0.888503
Logistic Regression 0.823944 0.800000 0.929140
SVM (RBF) 0.823944 0.778761 0.905861
KNN 0.802817 0.777778 0.897999

E. Spatial Integration and GIS Mapping

Geospatial visualization turns the results of analytics into
interpretable maps that support regional planning.

1. Spatial Joins : The dataset is combined with district-level
GeoJSON boundaries based on harmonized district identifiers.

2. Map generation: Vulnerability Index, probability scores,
and PCA components are visualized as Choropleth layers to
enable comparison of patterns across regions.

3. Cluster identification: Regional clusters of high wulner-
ability visually emerge, reflecting the previously documented
disparities in maternal health and socio-economic outcomes.

4. Interactive dashboards: HTML-based maps include hover
tooltips, legend controls, and district-level summaries that
facilitate real-time exploration.

5. Reporting outputs: High-resolution PNG maps are pro-
duced for printed reports, presentations, and-government brief-
ings.

This step links statistical complexity with intuitive insights
such that immediate comprehension of spatial inequity is
possible.

F. Implementation Environment

The complete pipeline was implemented using modern data-
science tools in a reproducible analytical environment.

1. Software stack in use: Python (Pandas, NumPy), Scikit-
learn, GeoPandas, Plotly, and SHAP.

2. Versioning: All intermediate artifacts are wversioned-
cleaned datasets, feature matrices, PCA loadings, ML models-
for reproducibility.

3. Deployment configurations:

+ Notebook workflows for exploration and prototyping

« Containerized environments for reproducible execution

« Optional deployment on cloud for scalable data processing
and map hosting

4. Documentation: The pipeline is completely logged to
provide traceability for all transformations, updates of the
models, and visual outputs.
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This systematic environment supports long-term maintain-
ability and adaptability to new data sources.

VI. RESULTS

The HealthScape framework produces an integrated set of
analytical and visual outputs that collectively capture district-
level health wulnerability across India by combining PCA-
based dimensionality reduction, supervised machine learning,
and geospatial visualization. Figure 1 shows the HealthScape
dashboard highlighting the district-level vulnerability[10] map
derived from the PCA-based composite index. The Vulnera-
bility Index, scaled between 0 and 1, consolidates over one
hundred correlated NFHS-5[1] indicators related to maternal
health, child nutrition, sanitation, education, and healthcare
access into a single interpretable measure. The resulting spatial
distribution reveals strong geographic clustering of vulnera-
bility, with consistently higher scores observed across dis-
tricts in eastern, north-central, and north-eastern India, while
southern and western regions exhibit comparatively lower
vulnerability levels. The same HealthScape dashboard also
integrates complementary analytical views, including feature-
importance plots, state-level wulnerability comparisons, and
model performance metrics, enabling multi-level interpretation
of results within a single interface.

Figure 2 presents the chatbot component embedded within
the HealthScape dashboard, which enables interactive querying
of model outputs and vulnerability rankings. Using the PCA-
derived index, the chatbot identifies the most wulnerable dis-
tricts, with several districts from Nagaland—such as Tuensang,
Mon, Kiphire, Zunheboto, and Longleng—appearing among
the highest-ranked. This result is consistent with the spatial
patterns observed in the wulnerability map and reflects struc-
tural challenges in healthcare accessibility, terrain, and service
coverage in the region. The chatbot enhances interpretability
by translating complex analytical results into natural-language
responses, allowing users to explore district-level vulnerability,
understand contributing factors, and validate findings without
requiring direct interaction with raw data or code. This human-
centric layer bridges the gap between advanced analytics and
policy-oriented decision-making.

Figure 3 further examines the relationship between the
model-generated probability of high wulnerability and a key
maternal health indicator—the percentage of mothers receiving
at least four antenatal care visits. The scatter plot demonstrates
a clear inverse relationship, with districts exhibiting higher
ProbHigh values generally showing lower ANC coverage. This
negative association confirms that the machine learning model
effectively captures meaningful public-health signals rather
than statistical artifacts. While some dispersion is observed
at higher probability levels, indicating heterogeneity among
vulnerable districts, the overall trend validates the model’s
sensitivity to critical maternal health determinants and supports
the use of ProbHigh as a reliable risk indicator.

These patterns were intuitive in GIS-based visualizations,
where one can visualize district-wise vulnerability gradients
and thematic variations across maternal health, sanitation, and

socio-economic factors. Altogether, the results strengthen the
case for HealthScape as a scalable and interpretable framework
for wlnerability assessment at the district level.

Heatsicape — Explorer

__.“;h,'fi l

Fig. 2. District-level PCA-based vulnerability map

HealthScape — Explorer

Fig. 3. HealthScape chatbot

These patterns were intuitive in GIS-based visualizations,
where one can visualize district-wise vulnerability gradients
and thematic variations across maternal health, sanitation, and
socio-economic factors. Altogether, the results strengthen the
case for HealthScape as a scalable and interpretable framework
for wulnerability assessment at the district level. These results
highlight the system’s potential to support evidence-based
prioritization of districts, guide targeted interventions, and
assist policymakers in addressing health inequities driven by
social determinants.

Fig. 4. relationship between predicted high-risk probability and ANC
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