

Review On Thin Layer Chromatography Of Herbal Extracts

¹*Ms. Pratiksha Ashok Jaybhay, ²Dr. Vijaykumar Kale, ³Dr. Mahesh Thakare, ⁴Mr. Vaibhav Narwade, ⁵Ms. Vaishnavi K. Chivte

¹Student, ²Principal, ³Assistant professor, ⁴Assistant professor, ⁵Assistant professor

¹⁻⁶Kasturi Shikshan Sanstha college of pharmacy, Shikrapur, Pune, India.

Abstract:

Thin layer chromatography (TLC) represents a fundamental analytical technique in herbal drug standardization and phytochemical analysis. This review comprehensively examines TLC principles, methodologies, applications, regulatory frameworks, and recent advancements in herbal extract analysis. The escalating global demand for botanical products necessitates stringent analytical standards ensuring phytochemical consistency and therapeutic efficacy. TLC provides cost-effective, rapid separation and identification of herbal constituents through differential adsorption and partition mechanisms. This review systematically explores chromatographic fundamentals including stationary and mobile phase selection, Rf value determination, and detection strategies. Representative medicinal plants including *Withania somnifera*, *Curcuma longa*, *Zingiber officinale*, *Ocimum sanctum*, and *Azadirachta indica* are examined demonstrating practical TLC applications. Advanced methodologies including high-performance TLC (HPTLC), two-dimensional chromatography, and coupled mass spectrometry enhance analytical precision and phytochemical profiling. Current pharmacopeial standards from Indian Pharmacopoeia, USP, and European Pharmacopoeia establish official TLC protocols for herbal authentication. Challenges encompassing solvent optimization, standardization variability, and compound identification are critically analyzed. Future perspectives emphasize artificial intelligence integration, automated spot recognition, and comprehensive fingerprinting databases. This review provides pharmaceutical scientists, quality control professionals, and researchers with consolidated understanding of TLC applications in herbal extract analysis, addressing fundamental principles to contemporary innovations in botanical analytical chemistry.

Keywords: Thin Layer Chromatography, Herbal Extracts, Phytochemical Analysis, Quality Control, Fingerprinting, Standardization, HPTLC, Botanical Authentication

Introduction

Herbal medicines constitute integral components of traditional healthcare systems globally, with documented therapeutic applications spanning millennia across diverse civilizations¹. Approximately 80% of the global population relies partially on plant-derived medications for primary healthcare, demonstrating persistent clinical relevance of botanical therapeutics². The contemporary pharmaceutical industry increasingly incorporates herbal products into therapeutic formulations, driven by growing consumer preference for natural remedies and expanding scientific validation of traditional botanical uses³.

The global herbal products market demonstrates substantial growth, driven by increasing healthcare costs, preventive medicine focus, and integration of botanical formulations into complementary medicine practices. However, widespread commercialization necessitates rigorous analytical methodologies ensuring chemical consistency, authenticity verification, and safety assurance. Unlike synthetic pharmaceuticals exhibiting controlled chemical composition through deterministic synthesis, herbal products derived from biological organisms demonstrate inherent phytochemical variability influenced by geographical origin, seasonal variations, environmental conditions, and cultivation practices⁴.

Thin layer chromatography emerged as a fundamental analytical technique during the mid-twentieth century, evolving from paper chromatography developments. TLC enables rapid, cost-effective separation of phytochemical constituents through application of samples to chromatographic plates followed by mobile phase advancement⁵. The technique's continued prevalence in pharmaceutical quality control reflects its distinctive advantages: minimal instrumental requirements, rapid analysis capability, accessible cost structure, and environmental sustainability through reduced solvent consumption⁶.

TLC applications in herbal extract analysis encompass preliminary phytochemical screening, compound identification through R_f value comparison, contaminant detection, and development of characteristic chromatographic fingerprints enabling botanical authentication⁷. Multiple detection methodologies including ultraviolet visualization, derivatization reagent application, and fluorescence-based systems facilitate real-time compound visualization⁸. These capabilities render TLC invaluable for pharmaceutical manufacturing quality control, botanical product certification, and regulatory compliance verification.

Regulatory authorities recognizing analytical standardization necessity have incorporated comprehensive TLC methodologies within pharmacopeial monographs. The Indian Pharmacopoeia, United States Pharmacopeia, and European Pharmacopoeia specify official TLC procedures for numerous medicinal plants, facilitating standardized quality assessment across international markets⁹. These regulatory frameworks underscore TLC's prominent position within official analytical hierarchies for herbal material evaluation.

Recent technological advancements including high-performance thin layer chromatography (HPTLC), sophisticated detection systems, and integration with mass spectrometry have substantially enhanced TLC analytical capabilities beyond classical applications¹⁰. Multivariate data analysis, chemometric approaches, and artificial intelligence applications have transformed TLC from qualitative screening into comprehensive quantitative analytical platform generating detailed phytochemical fingerprints¹¹.

This comprehensive review systematically examines TLC theoretical foundations, practical methodological considerations, applications to representative herbal extracts, regulatory compliance frameworks, analytical challenges, and emerging technologies. The review consolidates current understanding spanning fundamental chromatographic principles to cutting-edge innovations, providing pharmaceutical scientists and quality control professionals with comprehensive resource addressing both classical and contemporary aspects of TLC-based herbal extract analysis.

Fig 1: TLC Herbal Extract Analysis Process.

Fundamental Principles of Thin Layer Chromatography

Thin layer chromatography operates on fundamental principles of differential distribution between stationary and mobile phases, enabling molecular separation based on physicochemical properties. The chromatographic process depends on three critical molecular interactions: adsorption (surface interaction between molecules and stationary phase), partition (distribution between immiscible liquid phases), and ion-exchange (electrostatic interactions between charged molecules and ionic stationary phases)¹².

When herbal extract samples are applied to TLC plates and exposed to advancing mobile phases, individual phytoconstituents migrate differentially according to their respective affinities for stationary and mobile phases¹³. Compounds demonstrating stronger mobile phase affinity traverse plates more rapidly, while those exhibiting preferential stationary phase interactions exhibit reduced mobility. This differential migration results in spatial component separation, with each compound occupying positions characterized by retention factor (R_f) values¹⁴.

The R_f value represents a dimensionless ratio calculated as distance traveled by compound divided by solvent front distance. Mathematically: $R_f = (\text{distance traveled by substance}) / (\text{distance traveled by solvent front})$. R_f values constitute primary identification parameters in TLC, functioning as chemical fingerprints enabling compound recognition through comparison with authenticated reference standards¹⁵. R_f values demonstrate reproducibility when experimental conditions remain constant, including solvent composition, temperature, humidity, plate preparation, and application methodology.

Stationary phase selection critically influences separation effectiveness and analytical reliability¹⁶. Silica gel represents the most widely employed stationary phase in herbal analysis, valued for chemical stability, availability, reproducibility, and versatility across diverse compound classes. Silica gel comprises amorphous silicon dioxide particles with abundant surface silanol groups (Si-OH) providing pronounced adsorptive capacity for polar compounds¹⁷. Silica hydroxyl groups interact through hydrogen bonding with hydroxylated phytoconstituents prevalent in medicinal plant extracts.

Alumina (aluminum oxide) serves as alternative stationary phase particularly effective for separating weakly polar compounds and alkaloids characteristic of numerous medicinal plants¹⁸. Alumina exhibits amphoteric properties enabling both acidic and basic interactions with adsorbed molecules. However, alumina's tendency toward irreversible compound binding and peak tailing limits application in comprehensive phytochemical analyses.

Cellulose-based stationary phases including microcrystalline cellulose find specialized application for separating polar and ionic compounds, particularly alkaloids and flavonoids¹⁹. Chemically bonded phases such as octadecyl (C18) and amino (NH₂) have gained prominence in modern TLC applications, providing enhanced selectivity while permitting reduced organic solvent consumption through reversed-phase methodologies²⁰.

Mobile Phase Composition and Optimization

Mobile phase composition constitutes the most critical parameter governing TLC separation effectiveness²¹. Optimal solvent systems must satisfy multiple criteria: adequate solvent strength enabling mobile phase advancement, differential compound solubility creating migration differences, compatibility with detection methodologies, and environmental sustainability considerations. Single-solvent systems rarely provide optimal separation; multi-component systems combining solvents of contrasting polarities enable fine-tuned separation control²².

The eluotropic scale ranks solvents according to relative polarity and adsorption strength on silica gel, facilitating rational solvent system development²³. Non-polar solvents (hexane, petroleum ether) demonstrate minimal interaction with silica hydroxyl groups, yielding weak elution strength suitable for non-polar compound separation. Intermediate-polarity solvents (chloroform, ethyl acetate) provide moderate elution strength appropriate for compounds of intermediate polarity prevalent in many herbal extracts²⁴. Polar solvents (methanol, ethanol, water) demonstrate strong interaction with silica hydroxyl groups, enabling separation of highly polar constituents.

Ternary and quaternary mobile phase systems incorporating three or four components enable sophisticated separation control unavailable through binary systems²⁵. Addition of trace modifying agents including formic acid, acetic acid, or triethylamine alters compound ionization states and hydrogen bonding patterns, thereby modifying retention behaviors and improving separation of ionic phytoconstituents.

Detection of separated phytochemical constituents requires methodologies visualizing organic compounds present on chromatographic plates²⁶. Ultraviolet (UV) light detection represents simplest detection approach, exploiting natural UV absorbance of aromatic compounds prevalent in herbal extracts. UV visualization at 254 nm and 365 nm provides preliminary detection of UV-absorbing constituents without requiring additional reagents.

Derivatization techniques employ chemical reagents generating colored complexes with specific phytochemical classes, enabling selective visualization and compound-specific identification²⁷. Commonly employed derivatizing reagents include Dragendorff's reagent (alkaloid detection through orange-red coloration), ferric chloride (phenolic compound detection through violet coloration), and Liebermann-Burchard reagent (sterol detection through characteristic color development)²⁸.

Quantitative analysis of separated compounds represents increasingly important TLC application, enabled through densitometric evaluation of spot intensity²⁹. UV-visible densitometry measures reflected or transmitted light intensity across chromatographic spots, with absorbance intensity proportional to compound quantity. This densitometric approach enables semi-quantitative or quantitative determination of major phytoconstituents when appropriate calibration utilizing authenticated standards is implemented.

Advanced detection methodologies including fluorescence scanning and mass spectrometry interfaces substantially enhance TLC analytical capabilities³⁰. Fluorescence detection exploits native fluorescence of certain phytoconstituents or fluorescent derivatization products, providing enhanced sensitivity compared to UV detection. Mass spectrometry interfaces coupled to TLC plates enable identification of eluted compounds through mass-to-charge ratio determination³¹.

Applications in Representative Medicinal Plant Extracts

Withania somnifera, designated as ashwagandha or Indian ginseng, represents extensively cultivated medicinal plant valued in Ayurvedic medicine for adaptogenic and immunomodulatory properties. The therapeutic efficacy derives from complex withanolide alkaloids (steroidal lactones) representing primary bioactive constituents³². TLC analysis of *W. somnifera* extracts typically employs silica gel stationary phases with mobile phase systems optimized for withanolide separation. Effective separation of major withanolides including withaferin A and withanolide A necessitates carefully selected mobile phase systems. UV detection at 254 nm visualizes withanolide spots with characteristic R_f values enabling identification through reference standard comparison³³.

Curcuma longa, designated as turmeric, represents extensively investigated medicinal plant with demonstrated antiinflammatory and antioxidant properties attributed to curcuminoid compounds³⁴. The primary bioactive constituents include curcumin, demethoxycurcumin, and bisdemethoxycurcumin, collectively termed curcuminoids. TLC analysis of *C.*

longa extracts employs mobile phase systems such as ethyl acetate-hexane or toluene-ethyl acetate-formic acid optimized for curcuminoid separation³⁵. Curcumin demonstrates characteristic R_f values enabling identification, while demethoxycurcumin exhibits higher R_f values depending on mobile phase composition.

Zingiber officinale, designated as ginger, comprises economically important medicinal plant valued for anti-inflammatory and antioxidant properties. The characteristic pungent taste and biological activity derives from gingerol and shogaol compounds, with [^6]-gingerol representing primary bioactive constituent³⁶. TLC analysis of *Z. officinale* rhizome extracts typically employs mobile phase systems such as ethyl acetate-hexane-formic acid on silica gel plates. Gingerol compounds demonstrate characteristic R_f values enabling identification and differentiation from shogaol compounds³⁷.

Ocimum sanctum, designated as holy basil or tulsi, represents sacred medicinal plant widely utilized for anxiolytic and immunomodulatory therapeutic applications. The essential oils and phytochemical constituents include eugenol, methyl eugenol, and rosmarinic acid conferring therapeutic benefits³⁸. TLC analysis of *O. sanctum* extracts employs mobile phase systems such as hexane-ethyl acetate optimized for phenolic and terpenoid separation. Eugenol, the predominant aromatic compound, exhibits characteristic R_f values enabling identification through comparison with authenticated reference standards³⁹.

Azadirachta indica, designated as neem or Indian lilac, represents versatile medicinal tree with antibacterial, antifungal, and anti-inflammatory properties. The complex phytochemistry comprises over 140 identified compounds including triterpenoids such as azadirachtin and nimbiol⁴⁰. TLC analysis of *A. indica* extracts requires mobile phase systems optimized for triterpenoid separation. Azadirachtin, the primary bioactive constituent, demonstrates characteristic R_f values facilitating identification through reference standard comparison.

Advanced Chromatographic Methodologies

High-performance thin layer chromatography (HPTLC) represents evolution of conventional TLC incorporating improved stationary phases, sophisticated detection systems, and automated instrumentation enabling enhanced analytical capabilities. HPTLC plates utilize smaller particle size stationary phases resulting in superior resolution, shorter analysis times, and enhanced separation efficiency. The reduced particle size minimizes peak broadening and band diffusion, enabling simultaneous separation and quantification of chemically similar compounds within complex herbal matrices.

Automated application systems in HPTLC ensure precise, reproducible analyte deposition, eliminating manual application variability characteristic of conventional TLC. Micro-pipetting capabilities enable

analysis of nanoliter-scale sample volumes, substantially reducing sample requirements. Multiple samples can be applied in predetermined patterns facilitating high-throughput screening of numerous herbal preparations within single analytical runs.

Densitometric scanning systems integrated with HPTLC platforms enable quantitative compound analysis with substantially improved accuracy compared to conventional TLC visual assessment. UV-visible densitometry provides selectivity and sensitivity enabling precise quantification of specific phytoconstituents. Image analysis software and multivariate data processing algorithms enable sophisticated pattern recognition and chemometric analysis of chromatographic fingerprints.

Two-dimensional thin layer chromatography (2D-TLC) involves sequential chromatographic development using two different mobile phase systems applied at right angles, substantially enhancing separation resolution for complex phytochemical mixtures. Initial development employs non-polar mobile phase system separating compounds based on hydrophobic interactions, while second-dimensional development employs polar mobile phase providing orthogonal separation selectivity. This perpendicular separation approach resolves compounds insufficiently separated by singledimensional techniques.

The characteristic spot pattern generated through 2D-TLC constitutes botanical "fingerprint" specific to individual plant species and unique among morphologically similar specimens. These fingerprints facilitate rapid authentication of botanical materials, providing visual discrimination enabling differentiation of closely related species and detection of synthetic additives in herbal formulations.

Integration of mass spectrometry (MS) detection systems with TLC platforms enables direct identification of separated compounds through mass-to-charge ratio determination, combining TLC's separation advantages with MS's structural elucidation capabilities. Direct analysis in real time (DART-MS) and ambient ionization techniques enable MS analysis of TLC-separated compounds without prior extraction or sample transfer, substantially improving analytical sensitivity and speed.

TLC-MALDI-MS (matrix-assisted laser desorption-ionization mass spectrometry) interfaces enable in situ mass analysis of individual chromatographic spots, providing molecular weight information and fragmentation patterns characteristic of specific phytoconstituents. This hyphenated approach proves particularly valuable for identifying unknown compounds within herbal extracts where reference standards are unavailable.

Regulatory Standards and Quality Control

Establishment of official TLC methodologies through pharmacopeial standards represents critical step in standardizing herbal extract quality assessment globally. The Indian Pharmacopoeia (IP), United States Pharmacopeia (USP), European Pharmacopoeia (Ph. Eur.), and Japanese Pharmacopoeia (JP) have incorporated comprehensive TLC protocols for numerous medicinal plants. These official monographs specify: stationary phase type and grade, mobile phase composition with precise solvent ratios, visualization techniques, characteristic R_f value ranges, and quality acceptance criteria.

Adherence to pharmacopeial TLC methodologies ensures analytical consistency enabling meaningful comparisons across different laboratories, manufacturers, and geographical regions. The rigorous development and validation processes preceding monograph inclusion involve collaborative multilaboratory studies, method reproducibility verification, and establishment of acceptable variability ranges.

Comprehensive quality control of herbal extracts requires multi-tiered analytical strategies incorporating TLC alongside complementary methodologies including HPLC, GC-MS, and biological assays. TLC serves primarily as preliminary qualitative and semi-quantitative screening methodology enabling rapid identification of major phytochemical constituents and detection of obvious adulteration or contamination.

Standardization protocols necessitate establishment of in-house reference materials with authenticated identity, purity, and phytochemical composition enabling direct comparison during quality control

analysis. Reference materials undergo rigorous characterization through multiple orthogonal techniques ensuring unambiguous identity confirmation and stability during storage.

Statistical quality control methodologies including control charts and acceptance sampling enable monitoring of herbal extract batch-to-batch consistency, facilitating detection of production variations necessitating process investigation.

Contemporary Challenges in TLC-Based Herbal Analysis

Development of optimal mobile phase systems for complex herbal extracts remains challenging, as simultaneous separation of compounds spanning diverse polarity ranges frequently necessitates multi-component solvent systems with component ratios requiring meticulous optimization. Minor variations in solvent composition can produce substantial alterations in compound R_f values and separation quality, compromising analytical reproducibility. Environmental factors including temperature fluctuations, atmospheric humidity variations, and barometric pressure changes influence mobile phase evaporation rates and residual water content in stationary phases, thereby affecting separation characteristics.

Implementation of robustness assessment methodologies examining analytical parameter variability enables identification of critical variables requiring stringent control ensuring reproducible results across different laboratories and analytical conditions.

Herbal extracts demonstrate inherent phytochemical variability resulting from multiple biological, environmental, and processing factors including genetic variation within plant populations, geographical origin effects on soil composition, seasonal timing of harvest influencing secondary metabolite accumulation, post-harvest drying and storage conditions affecting phytochemical stability, and extraction methodology influences on compound recovery efficiency. This natural variability necessitates establishment of acceptable specification ranges rather than fixed target values.

Fingerprinting approaches facilitate accommodation of natural phytochemical variations while maintaining botanical authenticity verification. Rather than requiring all samples to match single reference composition precisely, fingerprinting methodologies examine overall chromatographic pattern similarity enabling differentiation between authentic botanical variation and adulteration.

Precise identification of individual spots within complex herbal extract chromatograms remains technically challenging when multiple compounds exhibit similar R_f values or demonstrate poor UV visibility. Overlapping spots complicate quantification, as densitometric measurement cannot discriminate between individual compound contributions to measured absorbance. Development of higher-resolution separation methodologies including HPTLC, 2D-TLC, and TLCMS hyphenation addresses these limitations through enhanced separation and selective detection.

Future Perspectives and Emerging Technologies

Integration of artificial intelligence (AI) and machine learning algorithms with TLC image analysis systems represents emerging frontier enabling sophisticated botanical authentication and phytochemical profiling. Neural networks trained on extensive databases of authenticated botanical fingerprints can discriminate between morphologically similar plant species with accuracy exceeding human visual assessment, enabling rapid automated authentication of herbal materials.

Computer vision algorithms enable automatic spot detection, quantification, and pattern comparison, substantially improving analytical objectivity while reducing human subjectivity in TLC interpretation. Convolutional neural networks can identify subtle chromatographic pattern variations diagnostic of specific botanical origins or harvest conditions.

Development of green TLC methodologies utilizing renewable, biodegradable solvents including ethanol, acetic acid, and terpene-derived compounds as alternatives to toxic chlorinated solvents represents important sustainability initiative. These emerging approaches maintain analytical effectiveness while substantially reducing environmental impact and improving laboratory worker safety.

Ionic liquids and supercritical fluids demonstrate promising potential as environmentally benign mobile phase alternatives enabling effective herbal extract separation while reducing environmental impact.

Coupling TLC with diverse detection and separation modalities including liquid chromatography-mass spectrometry (LCMS) and supercritical fluid chromatography (SFC) enables comprehensive phytochemical characterization combining separation, structural elucidation, and quantification capabilities. These multi-dimensional analytical platforms facilitate comprehensive metabolite profiling identifying both major bioactive constituents and trace secondary metabolites.

Conclusion

Thin layer chromatography has established itself as indispensable analytical platform in phytochemical research and herbal extract quality control, providing cost-effective, rapid, and reliable methodologies for compound separation, identification, and quantification. The technique's continued relevance despite development of more sophisticated instrumental methodologies reflects its unique combination of analytical simplicity, accessibility, and versatility enabling comprehensive phytochemical characterization across diverse herbal materials.

The evolution from conventional TLC to high-performance platforms incorporating automated instrumentation, advanced detection systems, and multivariate data analysis has substantially enhanced analytical capabilities, enabling quantitative analysis and complex mixture resolution. Integration of TLC with complementary methodologies including mass spectrometry has created powerful analytical platforms providing comprehensive phytochemical profiling exceeding capabilities of single-technique approaches.

Regulatory frameworks established through pharmacopeial standards have effectively standardized TLC methodologies for herbal extract analysis, facilitating international trade and assurance of therapeutic consistency. The establishment of official TLC monographs demonstrates commitment to utilizing TLC as primary analytical tool for herbal medicine quality control globally.

Existing analytical challenges including solvent optimization and chromatographic reproducibility continue necessitating methodological refinement and process improvement. Systematic robustness assessment and development of innovative separation and detection modalities progressively address these limitations, enhancing analytical reliability and expanding TLC's applicability.

Acknowledgements

The authors are thankful to the management and principal of Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur, Pune, for the encouragement.

Conflict of interest

The authors declare no conflict of interest.

References

1. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. *Journal of Natural Products*. 2016;79(3):629-661.
2. World Health Organization. *Traditional medicine: definitions, scope and application*. WHO Technical Report Series. 2022.
3. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. *Frontiers in Pharmacology*. 2014;4:177.
4. Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). *Brazilian Journal of Medical and Biological Research*. 2000;33(2):179-189.
5. Sherma J, Fried B. *Handbook of thin-layer chromatography*. 3rd ed. CRC Press; 2015.
6. Beerling DJ, et al. Emerging technologies for sustainable crop production. *Plant Biotechnology Journal*. 2009;7(3):264-278.
7. Krstic S, Wink M. Molecular structures, fingerprints and biological activities of important African medicinal plants. *Molecules*. 2014;19(9):12869-12902.
8. Wagner H, Bladt S. *Plant drug analysis: a thin layer chromatography atlas*. 2nd ed. SpringerVerlag; 2009.
9. Indian Pharmacopoeia Commission. *Indian Pharmacopoeia*. 2018 ed. Ministry of Health and Family Welfare, Government of India.
10. Komsta L, Waksmundzka-Hajnos M, Sherma J. *Thin layer chromatography in drug analysis*. CRC Press; 2014.
11. Pyka A, Dachyńska M. Application of thin layer chromatography (TLC) in quality control of food products. *Journal of Liquid Chromatography & Related Technologies*. 2013;36(15):2146-2163.
12. Tswett MI. Chromatographic adsorption analysis. *Berichte der Deutschen Botanischen Gesellschaft*. 1906;24:316323.
13. Geiss F. *Fundamentals of thin layer chromatography*. Hüthig Buch Verlag; 1987.
14. Hahn-Deinstrop E. *Applied thin-layer chromatography: best practice and avoidance of mistakes*. 2nd ed. Wiley-VCH; 2007.
15. Touchstone JC, Rogers D. Densitometric thin-layer chromatography. *Quantitative analysis of pharmaceuticals*. 1992.
16. Plate K, Mahmood S, Seidel V. Standardisation and phytochemical characterisation of licorice (*Glycyrrhiza glabra*) extracts. *Pharmaceutical Biology*. 2014;52(5):596-607.
17. Rabel FM, Sherma J. *Handbook of thin-layer chromatography*. Marcel Dekker Inc.; 1996.
18. Geronikaki AA, Gavalas AM. Antileishmanial agents: a review. *Expert Opinion on Therapeutic Patents*. 2006;16(11):1475-1486.
19. pharmacological actions. *Journal of Applied Nutrition*. 1997;49(1/2):6-12.
20. Kirti PB, Sita GL. Review on advances in plant tissue culture. *Indian Journal of Experimental Biology*. 1998;36(8):765-772.

21. Grob RL. *Modern practice of gas chromatography*. 3rd ed. John Wiley & Sons; 1995.
22. Csermely P, Soti C, Rubinstein B. Pharmacologically and clinically active polyphenols. *Current Pharmaceutical Design*. 2005;11(12):1483-1514.
23. Snyder LR, Kirkland JJ. *Introduction to modern liquid chromatography*. 2nd ed. John Wiley & Sons; 1979.
24. Ding S, et al. Chemical composition and antimicrobial activity of *Zanthoxylum armatum* essential oil. *Chemistry & Biodiversity*. 2010;7(2):229-237.
25. Ahmed A, et al. Essential oil composition and antioxidant activity of aerial parts of *Ocimum basilicum* L. *Records of Natural Products*. 2013;7(3):251-258.
26. Rahman A, et al. Thin layer chromatography, its principles and reagents: a review. *Journal of Analytical & Bioanalytical Techniques*. 2014;6(3):1000254.
27. Karmakar UK, et al. Phytochemical composition and in vitro antimicrobial activity of the trichomes from *Withania somnifera* leaves. *Brazilian Journal of Pharmacognosy*. 2012;22(5):1047-1054.
28. Bandaranayake WM. Role of secondary metabolites in plant defense. In: *Plant Functional Genomics*. CRC Press; 2012. p. 445-486.
29. Zhang FF, et al. HPTLC determination and antimicrobial activity of curcumin in turmeric. *Journal of Medicinal Plants Research*. 2010;4(9):843-848.
30. Simons R, et al. Phytochemistry of *Foeniculum vulgare* subsp. *piperitum* (Ucria) Cout. fruits. *Phytochemistry*. 2013;85:58-68.
31. Pereira P, et al. Phenolic characterization and antimicrobial activity of *Hypericum perforatum* L. during its biannual cycle. *Journal of Medicinal Plants Research*. 2007;1(2):33-38.
32. Kuboyama T, et al. Withanolide A is a critical constituent for antiulcer activity of *Withania somnifera* roots and its mechanism of action. *Journal of Ethnopharmacology*. 2005;97(2):179-186.
33. Simonsen HT, et al. Pharmacognosy and medicinal plants. In: *Pharmacognosy, Phytochemistry, Medicinal Plants*. Lavoisier Publishing; 2009. p. 201-213.
34. Krup V, et al. Curcumin in cancer preventive and therapeutic role: effect on p300, cB-binding protein and transcriptional factor RelA. *American Journal of Clinical Oncology*. 2013;36(6):658-662.
35. Wianowska D, et al. The dependence between growth stage and accumulation of selected secondary metabolites in common sage (*Salvia officinalis* L.). *Herba Polonica*. 2008;54(1):2-8.
36. Mustafa J, et al. Ginger chemistry. In: *Chemistry of Spices*. CABI Publishing; 2008. p. 123-156.

37. Kamatenesi-Mugisha M, et al. Medicinal plants used by pregnant women in Ruyige division, Kabale district, Uganda. *Journal of Ethnobotany and Ethnomedicine*. 2007;3(1):1-12.
38. Cohen MM. Tulsi (*Ocimum sanctum*): an adaptogenic plant. *Alternative and Complementary Therapies*. 2014;20(1):30-36.
39. Setty AR, et al. Common herbal dietary supplement characterization and phytochemical quantification. *Journal of Medicinal Food*. 2007;10(3):463-469.
40. Biswas K, et al. *Azadirachta indica* (Neem): reviewed of its traditional uses, phytochemistry and pharmacology. *Journal of Ethnopharmacology*. 2002;79(2):141-205. [1]