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Abstract: The report presents a fast and adaptable ship routing algorithm leveraging machine learning
techniques to optimize maritime navigation, considering real-time environmental factors. It addresses
limitations of traditional rigid routing methods by incorporating dynamic data such as weather, sea currents,
and vessel load to improve fuel efficiency, safety, and operational costs. The developed system demonstrates
enhanced route planning performance, contributing towards sustainable and intelligent maritime
transportation.

Index Terms - Ship Routing Optimization, Machine Learning, Maritime Navigation, Adaptive Routing
Algorithm.

l. INTRODUCTION

Modern maritime transportation forms the backbone of international trade, with more than 80% of global
cargo by volume moving along sea routes. As shipping operations grow in scale.and complexity, the need for
efficient, safe, and environmentally sustainable route planning is increasingly important. Traditional ship
routing methods often rely on fixed paths and static parameters, leaving them ill-equipped to adapt to the real-
time challenges of dynamic maritime environments such as sudden weather changes, fluctuating sea currents,
and variations in vessel load. These inefficiencies can result in excessive fuel consumption, higher operational
costs, increased greenhouse gas emissions, and compromised safety at sea.

To address these limitations, recent research emphasizes the development of intelligent, data-driven routing
algorithms leveraging machine learning and hybrid optimization techniques. By incorporating real-time
environmental data, vessel characteristics, and multi-objective optimization—including parameters like fuel
efficiency, travel time, safety, and emission control—these advanced systems promise greater adaptability and
operational reliability. The proposed research aims to develop a fast, scalable, and adaptive ship routing
framework that not only enhances route efficiency and maritime safety but also contributes to the global
objective of sustainable, low-emission shipping practices, aligning closely with recent advancements in the
field.

Il. METHODS AND MATERIAL

The methodology for this project centers around developing a fast, adaptive, and intelligent ship routing
algorithm using machine learning combined with hybrid optimization techniques. The process begins with data
collection and preprocessing, which involves gathering historical and real-time data on ship routes,
environmental conditions such as wind, waves, and currents, vessel characteristics, and port information. This
data is cleaned and normalized to handle missing or noisy inputs to ensure reliable algorithm performance.
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Critical parameters affecting routing decisions—fuel consumption, weather conditions, travel time, safety
margins, and emission levels—are modelled and weighted according to specific routing scenarios.

The core algorithm is designed as a hybrid optimization engine that integrates rule-based logic with machine
learning models, allowing the system to dynamically adapt to changing maritime conditions while optimizing
for multiple objectives. The system is trained on historical data to learn optimal routes under varying conditions
and evaluated using metrics such as route efficiency, time savings, fuel consumption, and safety improvements.
Two primary pathfinding algorithms are implemented: Dijkstra's algorithm for shortest path routing and an
enhanced A-Star algorithm that incorporates environmental factors and dynamically calculated weather costs.
The architecture consists of multiple layers—data, processing, and algorithmic computation, application via a
Flask server, and presentation through a web interface—facilitating efficient data handling, route computation,
and user interaction.

The project utilizes software tools including Python (with libraries such as NumPy, Pandas, Scikit-learn,
TensorFlow/PyTorch for machine learning), and optionally MATLAB for simulation and visualization. Data
sources include open maritime datasets, real-time marine traffic APIs, and weather data from NOAA, while
simulations rely on GIS-based tools for performance validation. The system is optimized for computational
efficiency to run on modern hardware equipped with adequate processing power and memory, ensuring
scalability across different ship types and maritime zones.

111. DESIGN AND IMPLEMENTATION

The solution is architected as a multi-layered system designed to efficiently process geographical data, compute
optimal maritime routes, and serve results via a web interface. The core functionality revolves around two
primary layers: the Processing/Algorithm Layer and the Data Layer. System Architecture The system is
organized into the following key layers, as depicted in the design diagram:
1. Data Layer: This layer is responsible for storing and providing all necessary geographical and environmental
data.

* Source Data: Includes external data like GEBCO (General Bathymetric Chart of the Oceans) for depth,
coastline shapefiles,  and weather grid data.

» Stored Artifacts: Data is pre-processed and stored as csvdata/objects (pickle files) to enable fast loading.
Key objects include the comprehensive Grid structure, KD-Tree, and bathymetry/weather mappings.

» Model Layer: The MODELS/ section represents the low-level data structure for Earth's surface analysis,
including the Grid Cell model that stores latitude, longitude, bathymetry, land status, and weather information.

2.Processing/Algorithm Layer: This is the core computational layer where the route calculation occurs. It is
defined by the Grid Generation and Filtration components.

* Grid Generation: This component manages the spatial indexing of the data. The Grid object is initialized
by loading the pre- processed cell data and the KD-Tree. o Grid: A 2D array of Grid Cell objects, representing
the sampled ocean surface. o Spatial Sampling + Exclusion: The initial process that creates the grid from
GEBCO and coastline data, excluding areas that are land, too shallow, or near the coastline.

* Filtration (Pathfinding Algorithms): This component performs the pathfinding computation. o KD-Tree
(Nearest Neighbor Search): Used to quickly find the closest valid Grid Cell for any given starting or ending
latitude/longitude point. o Haversine Formula: Used in all algorithms to accurately calculate the great-circle
distance between two lat/lon points on the globe, providing the core cost metric.

3. Application Layer (Flask Server): A Flask Server uses a web framework to receive user requests (start/end
coordinates, initial speed/time) and calls the pathfinding methods in the Processing Layer.

4. Presentation Layer: The Webpage component is responsible for visualizing the input form, the computed
path, and associated data to the user.
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Fig 1: system design
Implemented Pathfinding Algorithms
Grid Generation Algorithm (Custom Spatial Grid)

Algorithm Type: Custom grid sampling & filtering algorithm using:

GEBCO + Shapely + Geopy.
Pseudocode:
Divides the map into cells (e.g., 1 km or 10 km resolution).
For each cell:

Extracts bathymetry depth from GEBCO NetCDF.

Checks if the point is on land (depth = 0).

Finds the nearest coastline using shapely.nearest_points().

Computes distance to coast with geopy.geodesic().

Mark cells within 22 km of the coast as “near coastline” to avoid during routing.

Used For:
Generating grid datasets used later in route planning (as input to pathfinding).

Algorithm Grid Generation:
Input: GEBCO bathymetry data, Coastline shapefile
Output: Grid CSV with bathymetry and land/sea flags

Begin
Define grid resolution (km)
Generate latitude range
For each latitude do
Compute longitude spacing using cos(latitude)
For each longitude do
Read bathymetry depth from GEBCO
If depth = 0 then
Mark cell as Land
Else
Mark cell as Sea
Endif

Find nearest coastline point

Compute distance to coastline

I distance < exclusion_radius then
Mark cell as Near-Coastline

Endif
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Store grid cell attributes
End For
Store column count for row
End For
Save grid data to CSV
End

KD-Tree (Nearest Neighbor Search)

Algorithm Type: Spatial Indexing / Nearest Neighbor Search.
Library: sklearn. neighbors. KDTree.

KD-Tree partitions space so that finding the closest point to a given coordinate happens in logarithmic time.

How it works here:
All grid points’ (latitude, longitude) are converted into 3D Cartesian coordinates (Earth’s sphere
approximation).
A KD-Tree is built from these points (build_KDTree()).
Whenever a user gives a start or end coordinate, the system calls:
distance, index = kdtree.query([point])
to find the nearest valid grid cell — this ensures the start/end points align with the grid.

Used In: Used before pathfinding begins.

Pseudocode:

Algorithm Nearest_Cell_Search
Input: Latitude, Longitude
Output: Nearest Grid Cell

Begin
Convert lat, lon to Cartesian coordinates
Query KD-Tree for nearest neighbor
Return corresponding grid cell

End

Haversine Formula

Algorithm Type: Mathematical distance formula on a sphere.
Purpose: Computes distance between two latitude/longitude points accounting for Earth’s curvature.

How it works:

d = 2R - arcsin (\/sin2 (AT(’)) + cos(¢p;)cos(¢,)sin? (%)) (eq-1)

Used In:
Dijkstra and A* path cost calculations.
Weather-influenced heuristic calculations.
Distance filtering to the coastline and between grid cells.

Pseudocode

Algorithm Haversine

Input: latl, lonl, lat2, lon2
Output: Distance in kilometers
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Begin
Convert all angles to radians
Apply the haversine formula
Return R x central _angle
End

Dijkstra’s Algorithm
Algorithm Type: Graph shortest path (uniform cost search).

Concept:
Starts from a source node (grid cell).
Explores all reachable neighbors with the smallest cumulative distance.
Always picks the cell with the lowest total distance seen so far (using a priority queue).
Stops when reaching the destination.

In this project:
The ocean grid is treated as a graph:
Each cell = node.
Distance between adjacent ocean cells = edge cost.
The algorithm avoids:
Land cells (is_land = True).
Shallow or near-coastline cells.
Distance between neighbors computed via Haversine formula.
Stores previous nodes to reconstruct the shortest path.

Pseudocode:

Algorithm Dijkstra_Routing
Input: Start cell, End cell
Output: Shortest path

Begin
Initialize all distances to infinity
Set start distance = 0
Push start cell into priority queue

While queue not empty do
Extract cell with minimum distance
If destination reached then break

For each neighbor cell do
If neighbor is sea and safe then
Compute distance using Haversine
If new distance < stored distance then
Update distance and predecessor
Push neighbor into queue
EndIf
EndIf
EndFor
EndWhile

Reconstruct path using predecessor map
End
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A* (A-Star) Pathfinding Algorithm

Algorithm Type: Heuristic shortest path search (extension of Dijkstra).
Concept:
A* combines:
g(n) = cost from start — current node
h(n) = heuristic estimate from current — goal
Final score:
f(n)=g(n) +h(n)  (eq-2)
In this project:
g(n) = cumulative distance (same as Dijkstra)
h(n) = heuristic = distance to goal (Haversine)
weather-based cost using get_cost()
get_cost() considers:
Wave height (Thgt)
Wave direction (Tdir)
Wave period (Tper)
Ship heading vs wave direction
— Calculates how hard or easy it is to travel through that cell (dynamic cost).

Pseudocode:

Algorithm A_Star_Routing

Input: Start, End, Ship speed, Weather grid
Output: Optimized route

Begin
Initialize distance[start] = 0
Push start node into priority queue

While queue not empty do
Extract node with lowest priority f(n)
If close to destination then break

For each valid neighbor do
Compute travel distance
Compute travel time
Compute heuristic (distance to goal)
Compute weather cost
f(n) = a(g + h) + B(weather cost)

If new cost < stored cost then
Update cost and predecessor
Push neighbor into queue
Endif
EndFor
EndWhile

Reconstruct path
End

Meaning:
80% path efficiency (distance/time)
20% environmental penalty (waves, direction, etc.)
Result:
A dynamic route that avoids rough seas, shallow areas, and land — more efficient and safer than Dijkstra.

IJCRT2512696 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g221


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Key Code:

cost = get_cost(r, ¢, angles|i], end_time, self.wgrid)
priority = 0.8*(heuristic + new_distance) + 0.2*(cost)
heapg.heappush(priority_queue, (priority, (r, ¢, end_time)))

Weather Cost Computation Model
Algorithm Type: Physics-based Cost Function.
Purpose: Quantify environmental resistance due to waves and direction.

In this project:
For each grid cell at a given hour:
Extract:
Wave height (Thgt)
Wave period (Tper)
Wave direction (Tdir)

Compute:
_ (wave_height)? i
speed =5 wave_period (eq 3)
X 100
dir = — * cos(heading — wave_direction) (eq — 4)
spee
cost = speed + dir (eq-5)

This cost feeds into A*, so the ship tends to avoid regions with opposing or high waves.

Pseudocode:

Algorithm Weather_Cost

Input: Grid cell, Ship heading, Time
Output: Environmental cost

Begin
Read wave height, period, direction
Compute speed penalty using wave height
Compute directional resistance
Return combined cost

End

IV. RESULTS AND DISCUSSION

The development and implementation of a fast and adaptive ship routing algorithm using machine learning
are expected to yield several impactful outcomes. These outcomes are designed to address the core
limitations of existing systems and promote sustainable, efficient, and intelligent maritime navigation.
Adaptive Routing Algorithm: A validated and deployable ship routing algorithm capable of processing
environmental and operational data to make intelligent routing decisions. The algorithm will dynamically
adjust the optimal path based on changing sea conditions, vessel status, and fuel considerations. Improved
Route Efficiency Significant improvements in route optimization leading to:
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* Reduced travel time

* Lower fuel consumption

* Minimized emissions This translates directly to cost savings and more eco-friendly operations for shipping
companies.

Enhanced Maritime Safety By integrating weather data and risk factors (such as high wave zones, piracy
zones, and traffic congestion), the system enhances onboard decision-making and ensures safer route
planning, reducing the likelihood of maritime accidents.
Scalability and Flexibility The system is designed to be scalable for:

* Different types of vessels (cargo, tanker, container ships)

* Various maritime regions (coastal, oceanic, high-risk zones) It offers flexibility to accommodate custom
parameters and constraints, making it highly adaptable for real-world deployment.

Integration with Commercial Navigation Systems The proposed solution can be integrated with modern
commercial maritime software and onboard navigation systems, potentially enhancing decision support
systems (DSS) used by ship operators and fleet managers.

Contribution to Sustainable Maritime Practices By reducing carbon emissions and optimizing fuel use, the
system supports the global movement toward greener shipping and complies with international regulations
such as IMO (International Maritime Organization) environmental guidelines.
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Fig 3: Nautilus user interface showing input coordinates and selected departure and arrival locations on
the map.

IJCRT2512696 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g223


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Nautilus

s . oG- EECEBC D

A6 % vew

e =5 C -0 Wonssn o D™ g ¢

Nautilus

i [ RO ScsDaC¢eEcsec2x ~ 3 5 ean Jum
. @AY
Fig 5:"C)ptir_n_ized ship route generated by the Nautilus s with real-time weather information

displayed at a selected waypoint.

Fig 6: Weather Data Integration
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Fig 7: Interactive User Interface for Voyage Parameter Input and Optimized Maritime Route
Visualization

V. CONCLUSION

Although a conclusion may review the main points of the paper, do not replicate the abstract as the conclusion.
A conclusion might elaborate on the importance of the work or suggest applications and extensions. Authors

are strongly encouraged not to call out multiple figures or tables in the conclusion these should be referenced
in the body of the paper
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