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Abstract:  The report presents a fast and adaptable ship routing algorithm leveraging machine learning 

techniques to optimize maritime navigation, considering real-time environmental factors. It addresses 

limitations of traditional rigid routing methods by incorporating dynamic data such as weather, sea currents, 

and vessel load to improve fuel efficiency, safety, and operational costs. The developed system demonstrates 

enhanced route planning performance, contributing towards sustainable and intelligent maritime 

transportation. 

 

Index Terms - Ship Routing Optimization, Machine Learning, Maritime Navigation, Adaptive Routing 

Algorithm. 

I. INTRODUCTION 

 

Modern maritime transportation forms the backbone of international trade, with more than 80% of global 

cargo by volume moving along sea routes. As shipping operations grow in scale and complexity, the need for 

efficient, safe, and environmentally sustainable route planning is increasingly important. Traditional ship 

routing methods often rely on fixed paths and static parameters, leaving them ill-equipped to adapt to the real-

time challenges of dynamic maritime environments such as sudden weather changes, fluctuating sea currents, 

and variations in vessel load. These inefficiencies can result in excessive fuel consumption, higher operational 

costs, increased greenhouse gas emissions, and compromised safety at sea. 

 

To address these limitations, recent research emphasizes the development of intelligent, data-driven routing 

algorithms leveraging machine learning and hybrid optimization techniques. By incorporating real-time 

environmental data, vessel characteristics, and multi-objective optimization—including parameters like fuel 

efficiency, travel time, safety, and emission control—these advanced systems promise greater adaptability and 

operational reliability. The proposed research aims to develop a fast, scalable, and adaptive ship routing 

framework that not only enhances route efficiency and maritime safety but also contributes to the global 

objective of sustainable, low-emission shipping practices, aligning closely with recent advancements in the 

field. 

 

 

II. METHODS AND MATERIAL 

 

The methodology for this project centers around developing a fast, adaptive, and intelligent ship routing 

algorithm using machine learning combined with hybrid optimization techniques. The process begins with data 

collection and preprocessing, which involves gathering historical and real-time data on ship routes, 

environmental conditions such as wind, waves, and currents, vessel characteristics, and port information. This 

data is cleaned and normalized to handle missing or noisy inputs to ensure reliable algorithm performance. 
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Critical parameters affecting routing decisions—fuel consumption, weather conditions, travel time, safety 

margins, and emission levels—are modelled and weighted according to specific routing scenarios. 

The core algorithm is designed as a hybrid optimization engine that integrates rule-based logic with machine 

learning models, allowing the system to dynamically adapt to changing maritime conditions while optimizing 

for multiple objectives. The system is trained on historical data to learn optimal routes under varying conditions 

and evaluated using metrics such as route efficiency, time savings, fuel consumption, and safety improvements. 

Two primary pathfinding algorithms are implemented: Dijkstra's algorithm for shortest path routing and an 

enhanced A-Star algorithm that incorporates environmental factors and dynamically calculated weather costs. 

The architecture consists of multiple layers—data, processing, and algorithmic computation, application via a 

Flask server, and presentation through a web interface—facilitating efficient data handling, route computation, 

and user interaction. 

The project utilizes software tools including Python (with libraries such as NumPy, Pandas, Scikit-learn, 

TensorFlow/PyTorch for machine learning), and optionally MATLAB for simulation and visualization. Data 

sources include open maritime datasets, real-time marine traffic APIs, and weather data from NOAA, while 

simulations rely on GIS-based tools for performance validation. The system is optimized for computational 

efficiency to run on modern hardware equipped with adequate processing power and memory, ensuring 

scalability across different ship types and maritime zones. 

 

III. DESIGN AND IMPLEMENTATION  

 

The solution is architected as a multi-layered system designed to efficiently process geographical data, compute 

optimal maritime routes, and serve results via a web interface. The core functionality revolves around two 

primary layers: the Processing/Algorithm Layer and the Data Layer. System Architecture The system is 

organized into the following key layers, as depicted in the design diagram: 

 1. Data Layer: This layer is responsible for storing and providing all necessary geographical and environmental 

data. 

 • Source Data: Includes external data like GEBCO (General Bathymetric Chart of the Oceans) for depth, 

coastline shapefiles,      and weather grid data.  

• Stored Artifacts: Data is pre-processed and stored as csvdata/objects (pickle files) to enable fast loading. 

Key objects include the comprehensive Grid structure, KD-Tree, and bathymetry/weather mappings.  

• Model Layer: The MODELS/ section represents the low-level data structure for Earth's surface analysis, 

including the Grid Cell model that stores latitude, longitude, bathymetry, land status, and weather information. 

 

2.Processing/Algorithm Layer: This is the core computational layer where the route calculation occurs. It is 

defined by the             Grid Generation and Filtration components. 

• Grid Generation: This component manages the spatial indexing of the data. The Grid object is initialized  

by loading the pre-     processed cell data and the KD-Tree. o Grid: A 2D array of Grid Cell objects, representing 

the sampled ocean surface. o Spatial Sampling + Exclusion: The initial process that creates the grid from 

GEBCO and coastline data, excluding areas that are land, too shallow, or near the coastline.  

• Filtration (Pathfinding Algorithms): This component performs the pathfinding computation. o KD-Tree 

(Nearest Neighbor Search): Used to quickly find the closest valid Grid Cell for any given starting or ending 

latitude/longitude point. o Haversine Formula: Used in all algorithms to accurately calculate the great-circle 

distance between two lat/lon points on the globe, providing the core cost metric.  

 

3. Application Layer (Flask Server): A Flask Server uses a web framework to receive user requests (start/end 

coordinates, initial speed/time) and calls the pathfinding methods in the Processing Layer. 

 

 4. Presentation Layer: The Webpage component is responsible for visualizing the input form, the computed 

path, and associated data to the user. 
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Fig 1: system design 

 

Implemented Pathfinding Algorithms 

 

Grid Generation Algorithm (Custom Spatial Grid) 

 

Algorithm Type: Custom grid sampling & filtering algorithm using: 

GEBCO + Shapely + Geopy. 

 

Pseudocode:  

 Divides the map into cells (e.g., 1 km or 10 km resolution). 

 For each cell: 

 Extracts bathymetry depth from GEBCO NetCDF. 

 Checks if the point is on land (depth ≥ 0). 

 Finds the nearest coastline using shapely.nearest_points(). 

 Computes distance to coast with geopy.geodesic(). 

 Mark cells within 22 km of the coast as “near coastline” to avoid during routing. 

 

Used For: 

 Generating grid datasets used later in route planning (as input to pathfinding). 

 

Algorithm Grid Generation: 

Input: GEBCO bathymetry data, Coastline shapefile 

Output: Grid CSV with bathymetry and land/sea flags 

 

Begin 

    Define grid resolution (km) 

    Generate latitude range 

    For each latitude do 

        Compute longitude spacing using cos(latitude) 

        For each longitude do 

            Read bathymetry depth from GEBCO 

            If depth ≥ 0 then 

                Mark cell as Land 

            Else 

                Mark cell as Sea 

            Endif 

 

            Find nearest coastline point 

            Compute distance to coastline 

            If distance < exclusion_radius then 

                Mark cell as Near-Coastline 

            Endif 
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            Store grid cell attributes 

        End For 

        Store column count for row 

    End For 

    Save grid data to CSV 

End 

 

 

KD-Tree (Nearest Neighbor Search) 

 

Algorithm Type: Spatial Indexing / Nearest Neighbor Search. 

Library: sklearn. neighbors. KDTree. 

 

KD-Tree partitions space so that finding the closest point to a given coordinate happens in logarithmic time. 

 

How it works here: 

 All grid points’ (latitude, longitude) are converted into 3D Cartesian coordinates (Earth’s sphere 

approximation). 

 A KD-Tree is built from these points (build_KDTree()). 

 Whenever a user gives a start or end coordinate, the system calls: 

distance, index = kdtree.query([point]) 

 to find the nearest valid grid cell — this ensures the start/end points align with the grid. 

 

Used In: Used before pathfinding begins. 

 

Pseudocode: 

Algorithm Nearest_Cell_Search 

Input: Latitude, Longitude 

Output: Nearest Grid Cell 

 

Begin 

    Convert lat, lon to Cartesian coordinates 

    Query KD-Tree for nearest neighbor 

    Return corresponding grid cell 

End 

 

Haversine Formula 

 

Algorithm Type: Mathematical distance formula on a sphere. 

Purpose: Computes distance between two latitude/longitude points accounting for Earth’s curvature. 

 

How it works: 

𝑑 = 2𝑅 ⋅ arcsin⁡(√sin⁡2 (
Δ𝜑

2
) + cos⁡(𝜑1)cos⁡(𝜑2)sin⁡

2 (
Δ𝜆

2
))         (eq-1) 

Used In: 

 Dijkstra and A* path cost calculations. 

 Weather-influenced heuristic calculations. 

 Distance filtering to the coastline and between grid cells. 

 

Pseudocode 

Algorithm Haversine 

Input: lat1, lon1, lat2, lon2 

Output: Distance in kilometers 

 

http://www.ijcrt.org/


www.ijcrt.org                                                 © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882 

IJCRT2512696 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g220 
 

Begin 

    Convert all angles to radians 

    Apply the haversine formula 

    Return R × central_angle 

End 

 

Dijkstra’s Algorithm 

 

Algorithm Type: Graph shortest path (uniform cost search). 

 

Concept: 

 Starts from a source node (grid cell). 

 Explores all reachable neighbors with the smallest cumulative distance. 

 Always picks the cell with the lowest total distance seen so far (using a priority queue). 

 Stops when reaching the destination. 

 

In this project: 

 The ocean grid is treated as a graph: 

 Each cell = node. 

 Distance between adjacent ocean cells = edge cost. 

 The algorithm avoids: 

 Land cells (is_land = True). 

 Shallow or near-coastline cells. 

 Distance between neighbors computed via Haversine formula. 

 Stores previous nodes to reconstruct the shortest path. 

 

Pseudocode: 

Algorithm Dijkstra_Routing 

Input: Start cell, End cell 

Output: Shortest path 

 

Begin 

    Initialize all distances to infinity 

    Set start distance = 0 

    Push start cell into priority queue 

 

    While queue not empty do 

        Extract cell with minimum distance 

        If destination reached then break 

 

        For each neighbor cell do 

            If neighbor is sea and safe then 

                Compute distance using Haversine 

                If new distance < stored distance then 

                    Update distance and predecessor 

                    Push neighbor into queue 

                EndIf 

            EndIf 

        EndFor 

    EndWhile 

 

    Reconstruct path using predecessor map 

End 
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A* (A-Star) Pathfinding Algorithm 

 

Algorithm Type: Heuristic shortest path search (extension of Dijkstra). 

Concept: 

A* combines: 

 g(n) = cost from start → current node 

 h(n) = heuristic estimate from current → goal 

Final score: 

                          f(n) = g(n) + h(n)        (eq-2) 

In this project: 

 g(n) = cumulative distance (same as Dijkstra) 

 h(n) = heuristic = distance to goal (Haversine) 

 weather-based cost using get_cost() 

get_cost() considers: 

 Wave height (Thgt) 

 Wave direction (Tdir) 

 Wave period (Tper) 

 Ship heading vs wave direction 

→ Calculates how hard or easy it is to travel through that cell (dynamic cost). 

 

Pseudocode: 

Algorithm A_Star_Routing 

Input: Start, End, Ship speed, Weather grid 

Output: Optimized route 

 

Begin 

    Initialize distance[start] = 0 

    Push start node into priority queue 

 

    While queue not empty do 

        Extract node with lowest priority f(n) 

        If close to destination then break 

 

        For each valid neighbor do 

            Compute travel distance 

            Compute travel time 

            Compute heuristic (distance to goal) 

            Compute weather cost 

            f(n) = α(g + h) + β(weather_cost) 

 

            If new cost < stored cost then 

                Update cost and predecessor 

                Push neighbor into queue 

            EndIf 

        EndFor 

    EndWhile 

 

    Reconstruct path 

End 

 

Meaning: 

 80% path efficiency (distance/time) 

 20% environmental penalty (waves, direction, etc.) 

Result: 

A dynamic route that avoids rough seas, shallow areas, and land — more efficient and safer than Dijkstra. 
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Key Code: 

 cost = get_cost(r, c, angles[i], end_time, self.wgrid) 

 priority = 0.8*(heuristic + new_distance) + 0.2*(cost) 

 heapq.heappush(priority_queue, (priority, (r, c, end_time))) 

 

 

Weather Cost Computation Model 

 

Algorithm Type: Physics-based Cost Function. 

 

Purpose: Quantify environmental resistance due to waves and direction. 

 

In this project: 

For each grid cell at a given hour: 

 Extract: 

 Wave height (Thgt) 

 Wave period (Tper) 

 Wave direction (Tdir) 

      Compute:                                                                                                                                                                                

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡speed = 5 ∗
(wave_height)2

wave_period
           (eq-3) 

   

dir = −
100

speed
∗ cos(heading− wave_direction)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑒𝑞 − 4) 

cost = speed + dir⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(eq-5)⁡⁡⁡⁡⁡ 

 

 

 

 

This cost feeds into A*, so the ship tends to avoid regions with opposing or high waves. 

 

Pseudocode: 

Algorithm Weather_Cost 

Input: Grid cell, Ship heading, Time 

Output: Environmental cost 

 

Begin 

    Read wave height, period, direction 

    Compute speed penalty using wave height 

    Compute directional resistance 

    Return combined cost 

End 

 

 

IV. RESULTS AND DISCUSSION 

 

The development and implementation of a fast and adaptive ship routing algorithm using machine learning 

are expected to yield several impactful outcomes. These outcomes are designed to address the core 

limitations of existing systems and promote sustainable, efficient, and intelligent maritime navigation.  

Adaptive Routing Algorithm: A validated and deployable ship routing algorithm capable of processing 

environmental and operational data to make intelligent routing decisions. The algorithm will dynamically 

adjust the optimal path based on changing sea conditions, vessel status, and fuel considerations. Improved 

Route Efficiency Significant improvements in route optimization leading to:  
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• Reduced travel time 

• Lower fuel consumption  

• Minimized emissions This translates directly to cost savings and more eco-friendly operations for shipping 

companies. 

 

Enhanced Maritime Safety By integrating weather data and risk factors (such as high wave zones, piracy 

zones, and traffic congestion), the system enhances onboard decision-making and ensures safer route 

planning, reducing the likelihood of maritime accidents.  

Scalability and Flexibility The system is designed to be scalable for:  

    • Different types of vessels (cargo, tanker, container ships)  

    • Various maritime regions (coastal, oceanic, high-risk zones) It offers flexibility to accommodate custom 

parameters and constraints, making it highly adaptable for real-world deployment. 

 

Integration with Commercial Navigation Systems The proposed solution can be integrated with modern 

commercial maritime software and onboard navigation systems, potentially enhancing decision support 

systems (DSS) used by ship operators and fleet managers.  

 

Contribution to Sustainable Maritime Practices By reducing carbon emissions and optimizing fuel use, the 

system supports the global movement toward greener shipping and complies with international regulations 

such as IMO (International Maritime Organization) environmental guidelines. 

 

 

 
  

Fig 2: User Interface 

 

 
  

Fig 3: Nautilus user interface showing input coordinates and selected departure and arrival locations on 

the map. 
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Fig 4: Generated Route 

 

 
 

  

Fig 5: Optimized ship route generated by the Nautilus system with real-time weather information 

displayed at a selected waypoint. 

 

 
 

Fig 6: Weather Data Integration 
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Fig 7: Interactive User Interface for Voyage Parameter Input and Optimized Maritime Route 

Visualization 

 

V.  CONCLUSION 

 

Although a conclusion may review the main points of the paper, do not replicate the abstract as the conclusion. 

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Authors 

are strongly encouraged not to call out multiple figures or tables in the conclusion these should be referenced 

in the body of the paper 
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