

“Pharmacovigilance Systems and Practices A Global Perspective”

Ms. Dhanashree H. Chavan¹, Ms. Vaishnavi Jadhav², Dr. Vijaykumar Kale³, Dr. Mahesh Thakare⁴, Mr. Vaibhav Narwade⁵

¹Student, Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur

²Assistant Professor, kasturi shikshan sanstha college of pharmacy, shikrapur

³Professor, Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur

⁴Associate Professor, Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur

⁵Assistant Professor, Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur

ABSTRACT:

Pharmacovigilance (PV) is a crucial scientific discipline that focuses on the detection, assessment, understanding, and prevention of adverse effects or any drug-related problems. As the global pharmaceutical industry continues to expand and innovate, ensuring drug safety has become more important than ever.

This project aims to examine pharmacovigilance systems and practices from a global perspective, identifying key stakeholders, regulatory frameworks, challenges, and opportunities. By comparing PV systems in different countries, the project highlights best practices and the need for global harmonization in pharmacovigilance processes to protect public health.

Regional regulatory systems complement these global efforts. In the European Union, the EMA conducts pharmacovigilance through frameworks like Good Pharmacovigilance Practices (GVP), leveraging its EudraVigilance database and the PRAC (Pharmacovigilance Risk Assessment Committee) for safety evaluation. In the United States, the FDA uses systems such as Risk Evaluation and Mitigation Strategies (REMS) and the Sentinel Initiative to monitor the safety of approved medicines. Despite these developments, disparities persist: many low- and middle-income countries report low PV performance when evaluated using WHO pharmacovigilance indicators, especially in complementary process and outcome domains.

Patient participation in reporting also varies widely. Studies comparing patient adverse drug reaction (ADR) systems across countries indicate that while Western nations have patient reports constituting a large proportion of total reports, in several Asian countries, patient reporting remains underutilized. Moreover, divergent legislation and regulatory obligations influence ADR reporting rates.

Keywords: Pharmacovigilance, global drug safety, Uppsala Monitoring Centre, regulatory systems, signal detection, patient reporting, real-world data, harmonization.

I. INTRODUCTION

The necessity for pharmacovigilance arose from historical tragedies, most notably the **thalidomide disaster** in the late 1950s and early 1960s. Thalidomide, initially marketed as a sedative and treatment for morning sickness in pregnant women, led to severe birth defects in over 10,000 infants globally. This catastrophe exposed the dire need for a structured system to monitor adverse drug reactions (ADRs), especially those that might not be evident in pre-marketing clinical trials due to limited sample sizes, durations, and population diversity. It was in response to this that the **World Health Organization (WHO)** initiated its global pharmacovigilance program in 1968.

Today, pharmacovigilance has evolved far beyond the mere collection of adverse event reports. It encompasses a wide range of activities, including:

- Post-marketing surveillance (Phase IV trials)
- Signal detection and risk analysis.
- Risk-benefit assessments.
- Development of risk management plans (RMPs)
- Patient education and engagement

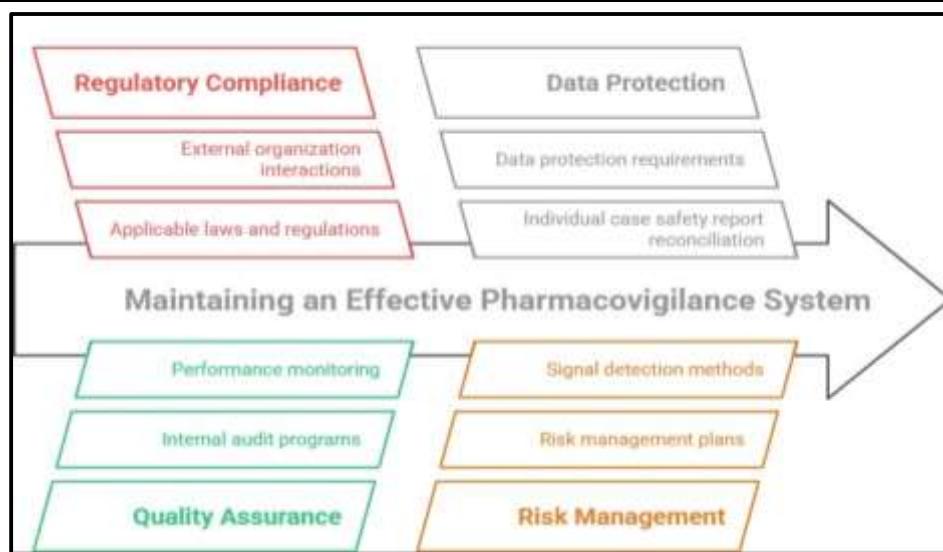


Fig No.1: Pharmacovigilance – A Regulatory Synopsis

Pharmacovigilance is not only a scientific and medical concern but also a legal and ethical obligation. Regulatory authorities such as the **U.S. Food and Drug Administration (FDA)**, **European Medicines Agency (EMA)**, **Pharmaceuticals and Medical Devices Agency (PMDA)** in Japan, and **Central Drugs Standard Control Organization (CDSCO)** in India have established comprehensive PV frameworks mandating pharmaceutical companies to collect and report ADRs, conduct risk assessments, and actively engage in post-market surveillance.

Today, pharmacovigilance has evolved far beyond the mere collection of adverse event reports. It encompasses a wide range of activities, including:

- Post-marketing surveillance (Phase IV trials).
- Signal detection and risk analysis.
- Risk-benefit assessments.
- Development of risk management plans (RMPs).
- Patient education and engagement.

Fig. No.: 2 Ensuring Effective pharmacovigilance System.

Globally, the **WHO-Uppsala Monitoring Centre (UMC)** in Sweden maintains **VigiBase**, the world's largest repository of ADR reports submitted by over 140 member countries. VigiBase enables global signal detection by analyzing trends and correlations in ADR data that might indicate previously unrecognized risks associated with specific medications. The rise of **information technology** has revolutionized pharmacovigilance.

Today, artificial intelligence (AI), machine learning, and natural language processing (NLP) are being deployed to automate data analysis, identify safety signals earlier, and manage vast datasets efficiently. Mobile apps and online portals now allow patients and healthcare providers to report adverse effects more easily and promptly. Additionally, real-world evidence (RWE) gathered from electronic health records (EHRs), social media, and patient registries play a growing role in post-market surveillance.

Pharmacovigilance (PV), the science and activities relating to the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problems, has evolved significantly over the past few decades. Initially focused on spontaneous reporting systems and post-marketing surveillance, the field has expanded to include real-time data analytics, active surveillance, and risk management planning. The following review synthesizes literature from various international sources, regulatory guidelines, and research studies to understand the global landscape of PV systems, their successes, and the challenges they face.

II. WORKING OF THE PHARMACOVIGILANCE SYSTEM

1. Detection of Adverse Drug Reactions (ADRs)

- ADRs are identified during clinical use of medicines.
- Detected by healthcare professionals, patients, or pharmaceutical companies.
- Includes reactions from prescription drugs, vaccines, biologics, and herbal products

2. Reporting of ADRs

- Suspected ADRs are reported through **spontaneous reporting systems**.
- Reports are submitted using standardized forms (online or paper).
- Reporters include doctors, pharmacists, nurses, patients, and caregivers.

3. Collection of Safety Data

- Reports are collected at **local, regional, or national pharmacovigilance centers**.
- Data includes patient details, drug information, reaction description, and outcome.
- Information is stored in national safety databases.

4. **Data Evaluation and Assessment**
 - Experts assess reports for:
 - Causality (link between drug and reaction)
 - Severity and seriousness
 - Frequency and risk factors
 - Duplicate or incomplete reports are filtered.

5. **Signal Detection**

- Continuous analysis of data to identify **new or unknown safety signals**.
- Statistical tools and clinical judgment are used.
- Signals may indicate rare, delayed, or long-term adverse effects.

6. **Risk-Benefit Analysis**

- The benefits of medicine are compared against identified risks.
- Determines whether the medicine remains safe for use.
- Special populations (children, elderly, pregnant women) are considered.

7. **Regulatory Action**

- Regulatory authorities may take actions such as:
- Updating drug labels and warnings
- Restricting use
- Issuing safety alerts
- Suspending or withdrawing the drug from the market

8. **Communication of Safety Information**

- Safety information is shared with:
- Healthcare professionals Patients
- Pharmaceutical companies
- Methods include safety alerts, bulletins, and public advisories.

9. **Submission to Global Databases**

- National centers forward validated ADR data to **WHO – VigiBase**.
- Promotes global monitoring and early detection of international safety concerns.

10. **Continuous Monitoring and Improvement**

- Pharmacovigilance is an ongoing process throughout the drug's life cycle.
- Systems are regularly updated based on new evidence and technology.
- Training and awareness programs strengthen reporting culture.

III. ADVANTAGES:

- Helps in early detection of adverse drug reactions (ADRs).
- the safety and efficacy of medicines post-marketing.
- Supports regulatory decisions such as drug recalls or warnings.
- Reduces drug-related morbidity and mortality.
- Build public trust in the healthcare system.

III. DISADVANTAGES

- Underreporting of ADRs remains a major limitation.
- Prohibitive cost of setting up and maintaining PV systems.
- Variability in PV regulations across countries.
- Incomplete or poor-quality data in reports.
- Difficulty in detecting rare or delayed adverse effects.
- Dependence on voluntary reporting leads to data gaps.
- Lack of trained personnel in many regions.
- Low integration with electronic health systems in some countries.
- Possible legal and ethical concerns in ADR disclosure.

IV. OBJECTIVES

- To analyze the global regulatory frameworks for pharmacovigilance.
- To assess the structure and functioning of national pharmacovigilance.
- To identify challenges in the implementation of pharmacovigilance systems.
- Comparing passive (spontaneous) and active surveillance methods.
- To explore the impact of digital technologies in pharmacovigilance.
- To understand the role of healthcare professionals and patients in ADR reporting.

V. Outlook and Recommendations

- Continuous Strengthening of PV Systems.
- Countries should **invest in national PV programs** and electronic reporting tools.
- Encourage **cross-border information sharing** for faster safety responses.
- Empowering Healthcare Professionals and Patients.
- Regular training, awareness drives, and simplified reporting channels. Patient-centric approaches increase transparency and participation.
- Leveraging Technology and AI .
- Implement **data analytics and machine learning** for better risk prediction.
- Use **blockchain and cloud platforms** to ensure data security and accessibility.
- Global Harmonization.
- Continued adherence to **ICH, WHO, and ISO guidelines** for unified standards.
- Collaboration ensures equitable access to safe medicines for all populations.
- Pharmacovigilance is not just a regulatory requirement—it is a moral and medical necessity.
- “Safe medicines today build a healthier and safer tomorrow.”

VI. CONCLUSION:

1. Essential Role in Drug Safety

- Pharmacovigilance PV) is the backbone of **safe and effective medicine used** worldwide.
- It enables **early detection, evaluation, and prevention** of adverse drug reactions (ADRs).

2. Improved Global Collaboration

- International cooperation through **WHO-UMC, EMA, and FDA** strengthens drug monitoring.
- Shared databases help identify global safety signals faster.

3. Impact on Public Health

- PV systems have **prevented countless drug-related injuries and deaths**.
- Safer drugs and updated labeling ensure **better patient outcomes**.

4. Growth of Digital Pharmacovigilance

- The use of **AI, big data, and real-world evidence** has modernized PV processes.
- Enables real-time monitoring and predictive safety analysis.
- Integration of PV training in healthcare education improves reporting culture.
- Strong policies and regulatory frameworks maintain global consistency.

VII. AREA OF SCOPE:

• Signal Detection and Risk Assessment

Methods for identifying, evaluating, and validating safety signals using qualitative and quantitative approaches.

• Risk Management and Minimization Strategies

Development and implementation of Risk Management Plans (RMPs) and Risk Evaluation and Mitigation Strategies (REMS).

• Post-Marketing Surveillance

Monitoring drug safety after market approval, including Phase IV studies and real-world evidence.

• Pharmacovigilance in Special Populations

Safety monitoring in vulnerable groups such as children, elderly patients, pregnant women, and patients with chronic diseases.

• Global Frameworks and Regulations

Study of international pharmacovigilance guidelines and regulatory bodies such as WHO, ICH, EMA, FDA, and their roles in drug safety monitoring.

• Adverse Drug Reaction (ADR) Reporting Systems

Examination of spontaneous reporting systems, databases (e.g., VigiBase), and reporting mechanisms used worldwide.

• Role of Healthcare Professionals and Patients

Contribution of doctors, pharmacists, nurses, and patients in reporting ADRs and improving drug safety.

• Pharmacovigilance in Developing vs. Developed Countries

Comparison of infrastructure, challenges, and opportunities across different healthcare systems globally.

• Use of Technology and Digital Tools

Application of artificial intelligence, electronic health records, mobile apps, and data mining in modern pharmacovigilance.

- **Challenges, Ethics, and Future Trends**

Ethical considerations, data privacy, under-reporting issues, and emerging trends in global pharmacovigilance.

REFERENCE:

- [1]. Bansode, P., Jadhav, Y., Autade, M., Chinchkar, S., & Kore, A. (2025). Global perspectives on ADR monitoring: A comparative review of pharmacovigilance systems. *World Journal of Pharmaceutical Science and Research*.
- [2]. Carter, E., & Fernandez, I. (2025). Pharmacovigilance and drug safety: A comprehensive review. *International Journal of Pharma Insight Studies*.
- [3]. Dhingra, G., Tanwar, S., Sharma, D., & Parihar, S. (2022). A review of pharmacovigilance. *Journal of Pharmacovigilance and Drug Research*.
- [4]. Edwards, I. R., & Aronson, J. K. (2000). Adverse drug reactions: Definitions, diagnosis, and management. *The Lancet*.
- [5]. Gadhade, J. S., & Hiray, R. S. (2021). Global pharmacovigilance: Challenges and future considerations—West globe and East globe. *Journal of Pharmacovigilance and Drug Research*.
- [6]. Garashi, H. Y., Steinke, D. T., & Schafheutle, E. I. (2022). A systematic review of pharmacovigilance systems in developing countries using the WHO pharmacovigilance indicators. *Therapeutic Innovation & Regulatory Science*.
- [7]. Jeetu, G., & Anusha, G. (2010). Pharmacovigilance: A worldwide master key for drug safety monitoring. *Journal of Young Pharmacists*.
- [8]. Lazarou, J., Pomeranz, B. H., & Corey, P. N. (1998). Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. *JAMA*.
- [9]. Narmada, S., Gourav, M. P., & Akki, A. (2021). Global perspective of pediatric pharmacovigilance and its importance. *Journal of Pharmaceutical Research International*.
- [10]. Pal, S. N., Duncombe, C., Falzon, D., & Olsson, S. (2013). WHO strategy for collecting safety data in public health programs: Complementing spontaneous reporting systems. *Drug Safety*.
- [11]. Pirmohamed, M., James, S., Meakin, S., Green, C., Scott, A. K., Walley, T. J., Farrar, K., Park, B. K., & Breckenridge, A. M. (2004). Adverse drug reactions as cause of admission to hospital: Prospective analysis
- [12]. Sharrar, R. G., & Dieck, G. S. (2013). Monitoring product safety in the postmarketing environment. *Therapeutic Advances in Drug Safety*.
- [13]. Suke, S. G., Kosta, P., & Negi, H. (2015). Role of pharmacovigilance in India: An overview. *Online Journal of Public Health Informatics*.
- [14]. Uppsala Monitoring Centre. (2018). The importance of pharmacovigilance: Safety monitoring of medicinal products. *World Health Organization*.
- [15]. World Health Organization. (2002). The importance of pharmacovigilance: Safety monitoring of medicinal products. *WHO Press*.
- [16]. World Health Organization. (2020). WHO pharmacovigilance indicators: A practical manual for the assessment of pharmacovigilance systems. *WHO Press*.

[17]. World Health Organization. (2023). WHO program for international drug monitoring. WHO Press.

[18]. Wieckowski, D. K., & Swartz, L. (2005). Adverse drug event surveillance and drug withdrawals in the United States, 1969–2002. Archives of Internal Medicine.

[19]. Zaki, S. A. (2010). Adverse drug reaction and pharmacovigilance. Journal of Postgraduate Medicine.

[20]. Olsson, S. (2015). The role of the WHO program on international drug monitoring in coordinating worldwide drug safety efforts. Drug Safety.

