
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g108

The Workflow Of Nanite Real-Time Rendering

Optimization And Lumen Technology In Unreal

Engine 5

Almurat Amangeldy

Vistula University of Finance and Business, Warsaw, Poland

Abstract

The ongoing evolution of real-time rendering solutions has raised the bar on realism, interactivity, and

scalability in modern digital applications such as gaming, architectural rendering, and virtual production.

Classic rendering solutions are very reliant on hand-authored levels-of-detail and lightmaps, requiring a

considerable amount of time and making real-time adaptation and changes unfeasible. Unreal Engine 5 (UE5)

in April 5 2022 released two new technologies - Nanite virtualized geometry and Lumen global illumination,

that target the above challenges with fully automated and GPU-enabled solutions and real-time calculation.

In this work, a technical exploration of the two solutions is presented, examining their architecture, mechanics,

and integration into modern rendering solutions. Nanite dynamically manages geometric detail by means of

hierarchical clustering, culling on the GPU, and surface caching, eliminating the authoring needs of traditional

levels-of-detail processes. Lumen enables real-time global illumination by a hybrid tracing method including

screen-space approaches, distance-field propagation, and surface caching either with hardware or much

cheaper solution, software ray tracing support. A comparison with more traditional solutions reveals

improvements regarding production efficiency, iteration time, and image quality, besides dependencies on

hardware and workflow limitations.

Keywords: Nanite, Lumen, Real-Time Rendering, Virtualized Geometry, Global Illumination, Unreal Engine

5.

1. Introduction

Real-time rendering is an important part of current interactive applications such as video games, architectural

visualizations, virtual production, and simulation-based training systems. During the past twenty years, there

has been continued technological support in terms of graphics and rendering technology developments that

lead to highly realistic virtual environments, thus raising consumer expectations of photo-realistic and

interactive rendering. A high resolution for textures and geometry, physically based materials, and realistic

lighting are increasingly viewed as a fundamental requirement of current applications rather than optional

supplements.

Despite advancements in technology, real-time rendering still has limitations in terms of performance. There

have always been challenges in rendering engines to strike the right balance between realism and the need to

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g109

ensure that the frame rates remain stable on any hardware configuration. These challenges were addressed in

the past through optimization and various compromises. These included various methods like level of details

(LOD), mesh simplification, occlusion culling, and lighting.

Although highly successful, these traditional methods present various challenges to production. The

development and variety of multiple variants of LOD contribute to the increased cost of asset development

and authors' storage space needs. Such baked lighting methodologies offer low flexibility to analysis and

simulation development workflows since implementing any change to geometry, materials, and illumination

through baking and reauthoring takes a relatively long time for large-scale projects along with complex virtual

environments like open-world environments.

In 2022, Epic Games launched the Unreal Engine 5 (UE5), which overcomes these challenges by including

Nanite virtualized geometry and global illumination through the „Lumen”.

Nanite helps completely remove the necessity for the manual creation of LOD pipelines by virtualizing

geometry and automatically choosing the right level of detail based on that geometry during runtime. This

helps artists insert highly detailed content like photogrammetry scans directly into scenes without the need for

level-of-detail creation. Meanwhile, the Lumen takes the traditional static baking-based global illumination

solution and completely replaces it with a dynamic global illumination system that reacts, in real-time, to

changes in the lighting or geometry present in a scene.

In the following sections, a closer look will be taken at these technologies, from a historical context in

geometry management and global illumination, through an examination of the workflows and comparison for

Nanite and Lumen.

1.1 Background and Related Work

Real-time rendering has experienced a revolution in the past decades due to growing interest in very detailed,

interactive virtual environments. Some of the key challenges for work in this area include the control of

geometric complexity, global illumination calculations, and performance/visual detail trade-offs. This section

gives an insight into some of the previous works conducted based on geometry management and global

illuminations, showing how things have led up to the development of the Unreal Engine 5’s Nanite and Lumen

technology.

1.1.1 Evolution of Geometry Management in Real-Time Rendering

The effective management of geometric complexity has been a long-standing issue within real-time graphics

since the birth of interactive three-dimensional systems. The initial research contribution made by Clark in

1976 gave a boost to hierarchical geometric models and signaled a new direction in reducing computational

requirements with a proposal for the division of geometric objects into a hierarchical structure that could be

loaded with varying levels of detail based on their importance on the screen.

The classic way to create levels-of-detail (LOD) in a video game is to have multiple hard-coded versions of

an object, displaying it with increasing polygon counts. The engine will then select the appropriate view or

rendering of the asset according to the distance between the object and the camera or screen coverage.

Figure 1. Static mesh LOD illustration

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g110

LOD Type Distance of Triggering

LOD 1 0 - 15m

LOD 2 15 – 40m

LOD 3 40m +

Table 1. LOD Distance of Triggering

Although efficient in lightening the workload on the computer, this method presents several drawbacks. The

process of creating multiple versions requires the artwork team to create the asset manually. Moreover,

transitions between the asset versions create popping.

In addition to these, various methods like normal mapping, texture baking, etc. were also being used for

improved efficiency. In these processes, normal mapping helps in embedding high-frequency geometric

information into textures to reproduce the desired result of more detailed geometric representation using

simpler meshes. Even though such processes often result in lack of detailing, especially around cracks or

structural geometry.

Figure 2. Normal Mapping visualized

The rise of high-resolution asset creation techniques such as photogrammetry and procedural modeling has

also put a lot of strain on the traditional method of working with LODs. Handling dense meshes is difficult

and computationally expensive. They also require a lot of optimizations if a certain frame rate needs to be

maintained. This highlights the importance of more automated and GPU-based solutions related to geometry

management, which UE5's Nanite virtualized geometry addresses directly.

1.1.2 Global Illumination Techniques

Global illumination (GI) refers to the simulation of several indirect illumination phenomena: Diffuse

interreflection, Color bleeding, Soft shadows, and Caustics. Computing GI correctly is computationally

expensive and even more so in dynamic environments, which change their illumination and geometry in real

time. As such, the precomputing of illumination—such as lightmaps—is a common method used by traditional

game engines to simulate GI in a computationally efficient manner.

Baked lighting computes light interactions with precomputed geometry and stores the results in textures which

are then evaluated during lighting calculation. This technique delivers very efficient runtime lighting but

restricts the customization of lighting in the scene. For dynamic objects, lighting can only be implemented

using approximate solutions such as light probes and ambient light components in the material equation, which

cannot reproduce the complex interactions between light and objects.

Nevertheless, in order to overcome some drawbacks of completely baked lighting, there have been efforts on

screen-space techniques. Screen-Space Ambient Occlusion (SSAO) and Screen-Space Reflections (SSR) are

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g111

some of these techniques. These methods simulate the indirect effect using information contained in a render

result of a frame. Although they can update dynamically, they lack information contained in a visible region

of a rendering result, which may cause, for example, lack of reflection in particular regions, or incorrect

ambient occlusion.

Ray tracing enables the rendering engine to calculate the lighting paths directly by sending multiple rays form

camera to world. Ray tracing supports the rendering of complex lighting scenes like reflections, refractions,

and shadowing. However, ray tracing across an entire scene is a resource-intensive and expensive process,

beyond the capabilities of mid-range GPUs in complex scenarious. As such, ray tracing hybrids have emerged

that enable rasterization for determining primary visibility and then using ray tracing for illumination paths.

The Lumen solution in Unreal Engine 5 is one such solution that supports screen-space tracing and distance-

field sampling alongside optional hardware ray tracing.

1.2 Integration of Geometry and Lighting Management

One of the biggest issues in contemporary rendering pipelines is the integration of management of geometry

and dynamic lighting. Dense meshes require sophisticated culling and level-of-detail selection techniques to

prevent overwhelming the GPU, and global illumination algorithms demand correct spatial and material

information to simulate the correct illumination propagation. All these issues had been addressed separately

in the past; the optimization of the geometry was handled by the LOD, and the illumination was addressed

through the use of lightmaps and illumination probes. However, in both cases, there are inefficiencies due to

the recalculations and the high-density mesh.

Nanite and Lumen solve this issue of integration by utilizing workflows that are GPU-enabled and adaptable

during execution. Nanite virtualizes geometry so that it becomes possible for the engine to execute operations

based solely on visible triangles. Lumen uses a surface cache system that relies on hybrid tracing to execute

light computation for indirect illumination in real time without using light maps. Both of these tools facilitate

detailed visualization of light effects in large environments while adding little manual effort.

1.3 Research Goals

For addressing these research objectives, the following research questions can be identified:

1. In what ways does the Nanite virtualized geometry advance classic geometry processing, as applied in real-

time engines, into this domain?

2. Architectural approaches and computational methods that facilitate the efficient calculation of real-time global

illumination in the Lumen technique.

3. On the basis of scalability, production efficiency, and performance, what is the difference in rendering

pipelines between Nanite and the regular pipelines?

4. What are the limitations and constraints on the deployment of Nanite and Lumen in large-scale projects?

These questions are intended to give a framework to discuss the rendering innovations in UE5 and place them

into context with the state of real-time research into computer graphics.

1.4 Paper Structure

The overall objective of this research work is to undertake a technical analysis of the Unreal Engine 5 Nanite

and Lumen technologies, with a focus on their implementation within modern real-time rendering engines.

Unlike previous research works, which have tended to focus on the performance or demo aspect of the

technology, this will examine the underlying technology and implementation of this technology, as well as

what it means in terms of production scalability and resources.

1. Study the Virtualized Geometry process

This study is intended to examine the means by which the Nanite reworks the conventional geometry

processing pipelines through the virtualization of high-density meshes into hierarchical clusters based on the

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g112

detail levels chosen at runtime and the application of rasterization through the GPU acceleration capabilities

for enhanced rendering performance.

2. Study the Real-Time Global Illumination Techniques

This goal concerns comprehension related to how Lumen completes fully dynamic global illumination. Topics

to be explored include techniques involving the use of surface caches, a combination technique involving

screen-space data and distance fields and optional hardware ray tracing, and techniques related to handling

indirect lighting for complex and large-scale scenes.

3. UE5 Workflows vs. Classic Rendering Pipelines

One of the main objectives is determining how the Nanite and Lumen combination affects the efficiency of

production, iteration rate, and scalability over traditional approaches involving LOD and baked lighting. The

experiment examines the efficacy of such solutions at lowering manual optimization costs and optimizing

image quality.

4. Identify Technical Limitations and Practical Constraints

This objective aims at identifying possible hindrances to the widespread use of the Nanite and Lumen features.

Issues like hardware requirements, performance considerations, compensation of transparent assets in

dynamic environments, as well as the effect of error approximation on quality are thoroughly studied.

2. Methodology

This particular research uses a qualitative technical research methodology in order to assess and analyze

Unreal Engine 5’s features: Nanite and Lumen. Due to its nature and high degree of fluctuation when it comes

to performance, a qualitative method for this research is appropriate as it enables an in-depth look at

architecture and functionality without needing performance metrics for comparison. The approach is designed

such that the research questions laid out in Section 3 are methodically explored, with a focus on workflow

analysis, decomposition, and comparisons made with conventional rendering pipelines.

2.1 Analysis

The analysis will use a multi-step approach:

1. Architect: Every system (Nanite and Lumen) is broken down into its fundamental parts, including data

structures, processing, and GPU execution. This highlights how the systems deliver optimal performance and

minimize manual effort to achieve scalable graphical realism.

2. Workflow: The operational flows involving assets from import to render will help in determining how all the

systems will work well together in UE5. This has been done by looking into things like how clusters are

managed in Nanite, as well as how surface caches and traces work in Lumen.

3. Comparative: Traditional pipelines that rely on discrete levels-of-detail and lighting are evaluated alongside

those based on UE5's technology in order to draw a comparable analysis on their benefits and shortcomings

with respect to production overhead, iteration time, memory consumption, and support for scalability on

complex scenes.

2.2 Nanite Virtualized Geometry

Nanite is a revolutionary method for geometry processing in real-time rendering and completely changes the

paradigm of high-density mesh management and rendering in Unreal Engine 5. Nanite does not belong to the

classical category of LOD solutions, since it virtualizes geometry at a very detailed level and allows the engine

to render only those geometry pieces that actually effect the image. This chapter delivers a technical analysis

of Nanite functionality and constraints.

The disadvantage of using discrete LOD in computer-graphics work is handled by the Nanite engine with the

use of a hierarchical clustering system when handling geometry. The system breaks down each mesh in the

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g113

scene into a cluster of triangles. The process organizes the triangles in clusters in a manner that resembles a

tree structure. The choice of the clusters depends on the coverage on the screen.

Figure 3. Nanite polygon clusters visualized.

This allows for a hierarchical mode where the LOD selection becomes the responsibility of the engine and not

the creator of the assets. Artists can even take in models with very high-resolution levels that have billions of

triangles using photogrammetry scans without requiring any manual creation of Low Detail versions. The

relevant clusters for a frame will be decided solely by the Nanite.

One of the major innovations introduced by Nanite is its GPU-based rendering pipeline. This differs from the

traditional draw call methods handled by the CPU. In the traditional engine, the CPU handles the draw call

tasks regarding the mesh or level-of-detail. This causes a bottleneck when it comes to managing a large

number of assets. However, Nanite reduces the need for CPU interaction by doing cluster selection, culling,

and rendering on the GPU.

Triangle clusters are represented with efficient data structures that minimize memory bandwidth. By choosing

clusters that contribute to visible pixels and pruning clusters below the visibility threshold, Nanite enables

effective resource usage on the GPU. This technology enables real-time rendering of assets that have extreme

geometric detail. Such assets would otherwise be unrenderable on a large scale.

2.2.1 Culling Strategies and Surface Caching

Nanite integrates various fine culling shader solutions for better performance balance:

Culling Types Definition

Frustum Culling
Removes instances that are

not in screen space

Distance Culling
Unload objects that are too far

from camera

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g114

Size-Based Culling
Removes object that is too

small

Back face Culling
Skips polygons that are facing

opposite face of camera

Occlusion Culling
Unload objects that are

blocked by others

Ray Tracing Culling

Skips meshes in acceleration

structure process that are too

far away and may not get hit

by rays

LOD Culling

Replays High poly meshes

with simplified versions based

on distance

Table 2. List of Culling Types.

Moreover, Nanite uses a surface caching system, which retains information of a geometric nature on a frame-

by-frame basis in order to prevent repeated calculations. In a static or semi-static environment, it is beneficial

since it reduces repeated re-evaluations of the cache, which is responsible for stable frame rates, even under

highly dense geometric environments. Such environments make use of hierarchical clustering, a GPU-enabled

selection process, in addition to a surface caching system.

2.2.2 Limitations

Although there are many benefits of using Nanite, not all assets can benefit from this feature:

Deformable or Skeletal

Meshes:

The meshes that require

constant transformations, like

skeletal meshes used in

characters, do not support a

cluster-based system like

Nanite.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g115

Fluid Simulations and Particle

Systems:

Highly dynamic systems

featuring large vertex

variance are not optimized for

using Nanite.

Alpha-Masked or Transparent

Geometry:

Currently, Nanite’s

architecture is optimized for

handling opaque geometry,

and too much transparency

can be counterproductive

when processing clusters.

Dense Foliage or Kit-bashed

Structures:

Some intricate designs could

lead to the generation of

clusters that are under

exploited.

Table 3. Nanite Limitations.

Figure 4. Overdraws area during Kit-bashing process.

2.2.3 Production and Performance Implications

The incorporation of Nanite changes the way in which productions are performed by minimizing the

requirements for the creation of manual LODs while providing the ability for fast iteration on detailed content.

This allows artists to concentrate on the creation of high detail geometry without being limited by the creation

process for an assortment of LODs.

In performance, Nanite offloads the computation from the CPU to the GPU, stressing the importance of

contemporary GPU architecture with strong parallel processing and memory bandwidth. Although such

technology provides unprecedented geometric detail, those developing for lesser systems need to manage

these limitations carefully, including the density of assets and configurations of hybrid rendering.

2.3 Lumen Global Illumination

Lumen is the Unreal Engine 5 answer to the problem of fully dynamic global Illumination and Reflections,

and it is tailored to replace the traditional lightmapping methods. Lumen differs from the normal lightmapping

process in the fact that the indirect lighting computation happens in real-time, allowing for dynamical scenes

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g116

and light changes without the need to relight the entire scene. This chapter will dive into the technical

surrounding of Lumen.

2.3.1 Architecture

The architecture of Lumen is inherently developed with the aspect of balancing both fidelity and performance,

as well as runtime flexibility. At its essence, the process of building a surface cache with the definition of

geometries and materials, albedo, roughness, emissive properties, and normal data forms the foundation for

approximating light interactions.

This system uses a hybrid tracing approach that combines different techniques such as:

1. Screen Space Tracing: It is able to trace the reflections and the indirect lighting from the information contained

within the frame buffer.

2. Distance Field Tracing: Makes use of the concept of the signed distance field to approximate the way light

travels to regions not being viewed on the display

3. Hardware Ray Tracing: Offers high-accuracy light and reflection calculations when hardware-based GPU ray

tracing is available.

Through dynamic decision-making of appropriate methods according to the complexity of the scene and

performance requirement, Lumen strikes a good balance between speed and visual fidelity.

2.3.2 Surface Cache and Lighting Representation

The surface cache is a key component within Lumen to enable efficiency. The surface cache holds information

about each surface in a spatial format, usually implemented by ‘lighting cards.’ The lighting cards encode

information about a surface from different viewpoints. The cards enable Lumen to approximate the indirect

lighting within a complex environment, eliminating ray tracing. The components of each card include:

• Category: material properties, albedo, roughness, emissive

• Geometric orientation and spatial extent

• Visibility and occlusion information

The surface cache enables the re-use of lighting information between frames to avoid repeated computations,

thereby making the system run at a stable frame rate.

2.3.4 Limitations

Lumen allows a flexible and dynamic lighting model, offering a set of new performance requirements

compared to traditional lighting techniques. These issues are discussed below:

Approximation Errors

Insufficient card coverages

or data in the surface cache

could result in light leakage,

a lack of indirect

illumination, or even

artifacts in more complex

scenes.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g117

Hardware Dependence

A sufficient amount of

memory bandwidth from

high-performance GPUs is

very necessary for

developing stable frame

rates, mainly in the process

of rendering large-scale

detailed scenes.

Complex Scene Limitations

scenes with high-reflection

surfaces, many dynamic

objects, or volumetrics

might see compromised GI

rendering or fallback to

hybrid approaches.

Table 4. Lumen Constraints.

They have to rely on careful decisions regarding where to draw the line between performance and look in

some cases, by combining the use of Lumen and pre-calculated lighting for static objects.

2.3.5 Practical Implications for Production

Lumen brings considerable improvements in iteration speed and creativity. Lighting, materials, and geometric

interactions are possible with direct artist input, making it less dependent on pre-computed light-maps. This

direct capability is especially useful where lighting is needed for scene modifications frequently, such as in

virtual production, architectural rendering, or massive open-world scenarios.

Nonetheless, it is more important that Lumen’s dynamic nature is centered around resource management on

GPUs. While it is possible that some final applications might target lower-end hardware, their respective

settings could demand restriction in model complexity, resolution, or turning off high-accuracy tracing options

if high levels of performance are required.

3. Analysis Unreal Engine Techniques and Traditional Rendering Pipelines

The combination of Nanite and Lumen in Unreal Engine 5 is a paradigm shift in real-time rendering. To

understand how significant a role Nanite and Lumen play, it is necessary to briefly discuss a traditional

workflow that instead focuses on discrete LOD geometry and lightmapping.

3.1 Geometry Management: Nanite vs. Traditional LOD

3.1.1 Traditional LOD Pipelines

In typical rendering engines, the geometric complexity is managed by LOD meshes authored manually.

Variations of a particular asset, depending on the polygon density, are created and retained. In runtime, a

particular LOD is chosen depending upon either the camera distances or the screen coverage values. Although

it decreases the rendering load, there are a number of disadvantages associated with this technique. One of

them is high production overhead. Artists have to create multiple copies of each asset. The more LODs, the

larger the storage capacity required. Which inevitably leads to sudden transitions in level of detail which cause

popping artifacts, which in turn need smoothening or dithering.

3.1.2 Nanite Virtualized Geometry

Nanite replaces this manual process for LOD with hierarchical clustering and selection processing by GPU.

Clusters of visible geometry only are considered to reduce graphics processing unit workload. Clustering

representations help to reduce bandwidth and vertex computation redundancies. Which leads to greatly

simplification of production and support high geometric fidelity at all scales. Artists can import extremely

high-resolution meshes without generating simplified variants.

Traditional approaches are predictable and hardware-agnostic but introduce heavy overhead and suffering

compromises regarding fidelity at larger scales.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g118

3.2 Global Illumination: Lumen vs. Baked

3.2.1 Baked Lighting

Traditional GI is highly dependent on pre-computed lightmaps:

• High Runtime Efficiency: The pre-lighted environments involve little computation during runtime.

• Low Flexibility: It demands re-baking in case of any change in the geometry or lighting.

• Static Scene Constraints: The dynamic objects are modeled by the use of light probes or ambient terms. These

do not capture the indirect illumination properly.

3.2.2 Lumen Real-Time Global Illumination

Lumen provides a completely dynamic solution:

• Hybrid Tracing: This combines screen-space, distance-field, and hardware ray tracing solutions for real-time

indirect lighting.

• Surface Cache Utilization: Allows for the reuse of light information, which provides improved runtime

efficiency with the ability to be more dynamic.

• Responsive to Scene Changes: Facilitates interactive changes related to lights, materials, and geometry

without re-baking.

3.3 Scalability

The integration of Nanite and Lumen allows for large-scale, detailed environments with less manual

optimization:

• Scene Complexity: Nanite provides effective support for dense meshes so that vast levels with billions of

triangles are possible.

• Iteration Speed: Lumen provides the capacity to make runtime adjustments to lighting and materials, hence

lessening the need for offline baking workflows.

• Hybrid Approaches: In both systems, dynamic or transparent assets involve traditional workflows, coupled

with Lumen and Nanite assets in static scenes requiring high levels of detail.

While more straightforward in principle, more traditional pipelined approaches require a large amount of

resource-intensive LOD generation and optimized lighting, especially when applied to open world content.

Both Nanite and Lumen try to diminish manual labor and enhance realism, the computation is relied upon the

GPU. High-resolution clusters and dynamic GI need contemporary GPUs with appropriate levels of parallel

processing and memory bandwidth. Light leaking, imprecise reflections, or artifacts might occur in real-time

GI, especially within very dense or dynamic environments by Lumen.

4. Discussion

Analysis of the Nanite and Lumen features implemented in Unreal Engine 5 demonstrates the essential

paradigm shift taking place for real-time rendering technology. This final section of the paper integrates the

learnings taken from the previous sections.

4.1 Architectural

This is evident in the merging of Nanite and Lumen, where there is a move from manual and CPU-based

rendering techniques and workflows to GPU-based and data-driven rendering pipelines:

• Nanite’s Hierarchy Cluster System: With the use of its geometry-expressed fine-grained cluster system,

Nanite facilitates the reduction of CPU usage in the selection process to enable the rendering of highly detailed

assets in real-time, thus breaking the need to handle the management of polygons in the hierarchy cluster

system through the management of the number of pixels to render.

• Hybrid Global Illumination in Lumen: The Lumen system replaces the use of lightmaps with a dynamic GI

solution involving multiple methods, namely the use of screen-space data and distance field tracing with an

option for hardware ray tracing.

Together, these systems represent a pipeline-level integration strategy, where geometry handling and lighting

computation are optimized within a comprehensive framework, rather than independently. This integrated

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g119

strategy is more runtime-efficient and enables the developer to address artistic considerations with less

attention to underlying techno-functional limitations.

4.2 Benefits

In terms of efficiency and creative iteration, Nanite and Lumen provide immense value:

• Reduced Manual Optimization: Artists are not required or needed to create LODs or precompute lightmap

data, making it easier for them.

• Rapid Iteration: Lumen provides a real-time functionality that makes it possible to change lighting conditions,

and designers can see immediate results.

• Scalable Scene Management: Open-world scenarios with huge sizes could be populated with ultra-detailed

content without integrating significant CPU processing constrains, based on GPU-powered culling and surface

caching.

It increases the ease of prototyping, content updating, as well as realism in virtual world applications due to

its usefulness in supporting modern game development and production.

4.3 Technical Trade-Offs

In spite of the benefits, the implementing of Nanite and Lumen necessitates the consideration of technical

trade-offs. First of all, hardware dependence, the graphics processing parts are designed for high-end GPUs

with large memory bandwidth support in both options. Highly complex geometries or high-resolution lighting

can be less effective on low-end graphics processing hardware. Unfortunately, Nanite has several

compatibility issues. It is not compatible with deformable meshes, skeletal animations, or alpha-masked

geometry. Lumen can introduce errors of approximation, light bleeding, and lacking reflection accuracy in

crowded scenes. In addition to that, both technologies’ pipeline is complex. It may require certain level of the

developer skills to mix and matched hybrid workflows involving standard rendering, Nanite, and Lumen.

4.4 Industry Trends and Implications

Nanite and Lumen represent some wider trends in real-time graphics and interactive media:

1. Automation and Intelligent Resource Management: GPU-enabled operations and intelligent runtime-level of

detail allow for reduced manual effort and smart allocation of resources with relevance to a scene.

2. Dynamic Realism: Realtime global illumination and geometry density enable dynamic lighting and materials,

adding to realism.

3. Virtual Worlds at a Large Scale: The rendering of billions of triangles per frame at high speeds opens up vast

virtual worlds with simulation capabilities unhampered by optimization limitations.

4. Integration of Hybrid Techniques: The use of hybrid techniques for tracing, distance-field tracing, and

hardware or other methods for ray tracing emphasizes the need for a hybrid rendering architecture due to the

visual fidelity Vs Compute complexity trade-off.

5. Conclusion

In conclusion, this research work has offered a thorough technical dissection of the Nanite virtualized

geometry and Lumen global illumination features found in Unreal Engine 5, within the general framework of

real-time rendering. Through a technical analysis of their architecture, working process, and advantage over

conventional rendering pipelines, this research work has demonstrated how much the industry has been

revolutionized by such technologies.

Nanite:

• Hierarchical Clustering and GPU-based rendering that dynamically deals with geometric details at a fine level

of granularity.

 No need for writing LODs by hand, making high-quality asset integration possible without requiring much

production effort.

 It uses various culling methods and surface caching to optimize performance, but it is not so effective when

it comes to deformable meshes, skeletal animations, or transparent surfaces.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g120

Lumen

 Exemplifies a real-time GI approach using a hybrid GI system where screen space techniques are applied in

conjunction with distance field tracing techniques.

 Uses a surface cache and lighting cards to efficiently simulate the effect of indirect lighting.

 Enables high creative freedom but adds GPU-computational complexity and potential approximation errors

when used in complex or highly reflective scenes.

 Nanite and Lumen provide improved optimization and are able to handle large scenes.

 Conventional pipelined architectures have been predictable and friendly to the CPU but have posed heavy

production overhead and rigidity to adaptation to the dynamic

The integration of these systems is indicative of a move to more automated and scalable graphics, thanks to

GPUs.

Although Nanite and Lumen offer a huge leap forward regarding the technology of real-time rendering, this

area keeps growing at an incredible pace. Future engine developments and hybrid rendering approaches may

also improve the effectiveness and usability of the above-mentioned rendering technologies. Yet the main

factor for realizing their potential and related best practices for the development of interactive media will

again evidently remain the need for further research.

The final conclusion is that Unreal Engine 5’s Nanite and Lumen technologies represent a complete paradigm

shift for real-time rendering by providing a range of unified, GPU-enabled solutions for geometry handling

and global illumination. While these tools may represent a slightly limited achievement, when placed within

the historical progression of real-time graphics, a new standard for highly capable, automated real-time

rendering engines is established.

References

1. Epic Games. (2022). Unreal Engine 5 is now available. Epic Games.

https://www.unrealengine.com/en-US/blog/unreal-engine-5-is-now-available

2. Epic Games. (2022). Nanite Virtualized Geometry. Epic Games.

https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-

unreal-engine

3. Epic Games. (2022). Lumen Technical Details. Epic Games.

https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-

engine

4. Disguise. What is UV mapping. Disguise. https://help.disguise.one/workflows/3d-modelling/uv-

mapping/what-is-uv-mapping?utm_medium=organic&utm_source=yandexsmartcamera

5. Clay, S. (2021) UE4: Optimization & Performance | Pt.2 – LODs. Art Station.

https://www.artstation.com/blogs/samslover/QwNE/ue4-optimization-performance-pt2-

lods?utm_medium=organic&utm_source=yandexsmartcamera

6. Epic Games. (2022). Lumen Performance Guide. Epic Games.

https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-

engine?application_version=5.6

http://www.ijcrt.org/
https://www.unrealengine.com/en-US/blog/unreal-engine-5-is-now-available
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine
https://help.disguise.one/workflows/3d-modelling/uv-mapping/what-is-uv-mapping?utm_medium=organic&utm_source=yandexsmartcamera
https://help.disguise.one/workflows/3d-modelling/uv-mapping/what-is-uv-mapping?utm_medium=organic&utm_source=yandexsmartcamera
https://www.artstation.com/blogs/samslover/QwNE/ue4-optimization-performance-pt2-lods?utm_medium=organic&utm_source=yandexsmartcamera
https://www.artstation.com/blogs/samslover/QwNE/ue4-optimization-performance-pt2-lods?utm_medium=organic&utm_source=yandexsmartcamera
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-engine?application_version=5.6

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512681 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org g121

7. Maurya, N. (2022). Nanite: Epic’s Practical Implementation of Virtualized Geometry. Medium.

https://medium.com/@GroundZer0/nanite-epics-practical-implementation-of-virtualized-geometry-

e6a9281e7f52

http://www.ijcrt.org/
https://medium.com/@GroundZer0/nanite-epics-practical-implementation-of-virtualized-geometry-e6a9281e7f52
https://medium.com/@GroundZer0/nanite-epics-practical-implementation-of-virtualized-geometry-e6a9281e7f52

