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Abstract 

Accurate State of Charge (SOC) estimation is essential for ensuring the safety, reliability, and performance 

of lithium-ion batteries used in electric vehicles. Traditional SOC estimation methods often struggle under 

nonlinear conditions caused by temperature variation, dynamic load profiles, and battery ageing. To address 

these limitations, this study evaluates three neural-network-based models Deep Neural Network (DNN), 

Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) for predicting SOC using multi-

condition battery data. A structured workflow was implemented, including feature preprocessing, neural -

network modelling, supervised training, and quantitative performance analysis. The results show that the 

DNN model provides the highest accuracy, achieving an RMSE of 0.463% and MAE of 0.341% on 

experimental data, and an RMSE of 0.107% with an MAE of 0.040% on simulation data, with an R² of 

0.9999 in both cases. The GRU and LSTM models demonstrated acceptable performance but exhibited 

larger error fluctuations and higher maximum deviations, with peak errors reaching 4.6% and 5.5%, 

respectively. The DNN model also showed strong robustness under rapid current and temperature 

variations, maintaining a maximum error below 0.8%. Overall, the study confirms that data-driven neural-

network architectures, especially DNN, offer highly accurate and stable SOC estimation suitable for real-

time battery management applications. 

Keywords: State of Charge (SOC); Neural Networks; Deep Neural Network (DNN); Gated Recurrent Unit 

(GRU); Long Short-Term Memory (LSTM); Lithium-Ion Battery; Electric Vehicle; Machine Learning; 

Battery Management System (BMS); SOC Prediction. 
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1. Introduction 

The accurate estimation of the State of Charge (SOC) in lithium-ion batteries (LIBs) is a cornerstone of 

modern Battery Management Systems (BMS), especially within electric vehicles (EVs) and energy storage 

systems. SOC serves as an indicator of the remaining energy within a battery, directly influencing range 

estimation, charge control, and safety assurance. An inaccurate SOC estimation can lead to overcharging 

or deep discharging, which accelerates degradation and compromises both performance and longevity. 

Thus, precise SOC prediction enables optimal energy utilization, enhances operational safety, and extends 

battery life making it critical for efficient energy management in EVs (Yang et al., 2022). Traditional SOC 

estimation techniques such as Coulomb counting, open-circuit voltage (OCV)-based methods, and Kalman 

filter algorithms have been widely employed in BMS. However, these methods exhibit notable limitations. 

Coulomb counting accumulates integration errors over time due to sensor drift and noise, while OCV-based 

methods require long rest periods, rendering them impractical for dynamic EV conditions. Similarly, 

Kalman filters rely heavily on precise equivalent circuit modeling, which is often infeasible given the 

complex, nonlinear electrochemical behaviors of lithium-ion cells. As a result, these model-based 

approaches struggle under varying temperatures, loads, and aging effects, leading to significant deviations 

in SOC estimation (Bockrath et al., 2019); (Lipu et al., 2020). 

The inherent nonlinearity and dynamic nature of LIBs arising from temperature fluctuations, complex 

charge–discharge patterns, and progressive capacity fade further complicate traditional estimation models. 

For instance, electrochemical parameters evolve with aging and state of health (SOH), altering the voltage–

SOC relationship over time. Consequently, the SOC cannot be treated as a simple linear function of 

measurable quantities like current or voltage. These nonlinearities necessitate adaptive, self-learning 

methods capable of capturing high-dimensional temporal dependencies and compensating for variations in 

battery behavior under different operating conditions (Li et al., 2021). In response to these challenges, data-

driven approaches—particularly neural-network-based models—have emerged as a promising alternative. 

By leveraging extensive datasets of voltage, current, temperature, and historical SOC values, neural 

networks can learn complex nonlinear mappings without requiring explicit physical modeling. 

Feedforward neural networks (FNNs) and nonlinear autoregressive models with exogenous inputs (NARX) 

have demonstrated reliable real-time SOC estimation across varying conditions (Boujoudar et al., 2019); 

(Sharma et al., 2022). These machine learning models adapt to variable driving cycles and temperature 

effects while minimizing cumulative errors that plague model-based estimators. 

Among the wide array of neural architectures, deep neural networks (DNNs), gated recurrent units (GRUs), 

and long short-term memory (LSTM) networks have proven particularly effective for SOC prediction due 

to their ability to model time-dependent sequences. LSTMs and GRUs excel at capturing long-term 

dependencies between historical data and current SOC values, overcoming the vanishing gradient problem 

in conventional recurrent networks. Studies have shown that LSTM-based models outperform extended 

Kalman filters (EKF) and equivalent circuit models (ECM), achieving up to 50% reduction in root mean 

square error (RMSE) (Bockrath et al., 2019). Moreover, hybrid architectures integrating LSTM with 
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convolutional neural networks (CNNs) or attention mechanisms have further enhanced SOC prediction 

accuracy under dynamic conditions (Zhao et al., 2020). Recent developments have focused on the real-

time implementation of these deep learning models within BMS frameworks. Optimized LSTM and GRU 

architectures have achieved estimation errors below 1% RMSE under diverse conditions, demonstrating 

their potential for onboard integration (Yang et al., 2022); (Qian et al., 2022). Furthermore, hybrid 

approaches that combine Ampere-hour integration with LSTM models or utilize Bayesian optimization for 

parameter tuning have exhibited enhanced adaptability across different battery chemistries and degradation 

states (Chang & Kung, 2024). These advancements underscore the growing feasibility of deploying neural-

network-based SOC estimators in embedded real-time BMS applications. In summary, the convergence of 

machine learning techniques and electrochemical knowledge has redefined the landscape of SOC 

estimation. Neural networks, particularly recurrent architectures like LSTM and GRU, offer unparalleled 

robustness against environmental variability and aging, making them ideal for next-generation EV BMSs. 

The ongoing evolution of deep learning frameworks, combined with real-time hardware optimization, 

signals a shift toward intelligent, adaptive, and self-correcting SOC estimation paradigms a critical step in 

achieving sustainable and efficient electric mobility. 

 

2. Literature Review 

Machine-learning-based methods have gained significant traction in State of Charge (SOC) estimation for 

lithium-ion batteries (LIBs), outperforming traditional model-based approaches in accuracy and 

adaptability. Recent studies have explored diverse deep learning architectures Deep Neural Networks 

(DNNs), Convolutional Neural Networks (CNNs), Gated Recurrent Units (GRUs), and Long Short-Term 

Memory (LSTM) networks for their capacity to model the complex nonlinear dynamics of LIBs. These 

models learn intricate mappings between measurable inputs such as voltage, current, and temperature and 

the true SOC without requiring explicit electrochemical modeling. For example, Shahriar et al. (2022) 

developed a hybrid CNN–GRU–LSTM framework that effectively captured both spatial and temporal 

dependencies, achieving a mean absolute error (MAE) of 0.41–1.13% across ambient temperatures ranging 

from –10 °C to 25 °C (Shahriar et al., 2022). Similarly, a CNN–BiLSTM hybrid optimized through 

evolutionary intelligence achieved sub-1% root mean square error (RMSE) across six dynamic EV datasets, 

including HWFET, UDDS, and US06 drive cycles (Khan & Houran, 2024). Comparative analyses 

consistently demonstrate that deep learning models outperform conventional SOC estimators such as 

Coulomb counting, extended Kalman filters (EKF), and model-based observers. Huang et al. (2019) 

showed that a CNN–GRU model reduced SOC estimation errors by more than 40% compared to GRU-

only and support vector machine (SVM) approaches, achieving an RMSE below 2% under dynamic stress 

tests (Huang et al., 2019). Similarly, Wang et al. (2023) proposed a CNN–LSTM–Unscented Kalman Filter 

(UKF) collaborative system for real-time SOC estimation, reducing RMSE to below 1.5% and maintaining 

robustness against initial SOC errors (Wang et al., 2023). These findings confirm that hybrid neural 

http://www.ijcrt.org/


www.ijcrt.org                                       © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882 

IJCRT2512280 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c387 
 

architectures effectively blend data-driven learning with filter-based physical models, offering superior 

generalization and stability. 

Experimental validation under temperature variation and dynamic load profiles has been a focal point in 

recent SOC research. Hannan et al. (2021) demonstrated that a fully convolutional deep network 

maintained less than 2% RMSE even when temperature varied from –20 °C to 25 °C (Hannan et al., 2021). 

Likewise, Guo and Ma (2023) conducted a comprehensive comparative study across FCNN, GRU, LSTM, 

and Temporal Convolutional Networks (TCNs), revealing that the LSTM, GRU, and TCN consistently 

achieved RMSEs below 2%, with the TCN exhibiting the highest robustness to temperature changes and 

noise (Guo & Ma, 2023). These studies underscore the importance of evaluating ML-based SOC estimators 

under realistic driving and environmental conditions to ensure practical deployment in electric vehicles.  

Quantitatively, deep models have demonstrated remarkable precision and stability in SOC estimation. The 

Bi-GRU model proposed by Zhang et al. (2021) achieved an RMSE of 0.85% and MAE of 0.7% across 

multiple datasets by introducing Nesterov Accelerated Gradient (NAG) optimization, outperforming 

standard GRU and LSTM networks (Zhang et al., 2021). Yadav et al. (2024) developed a hybrid LSTM–

GRU–Attention model that achieved an R² = 0.9997 and demonstrated exceptional uncertainty tolerance, 

highlighting deep networks’ suitability for uncertainty-aware SOC estimation (Yadav et al., 2024). 

Moreover, the CNN–BiLSTM–EAI framework proposed by Shahriar et al. (2022) showed consistent 

estimation accuracy across temperature gradients and high interpretability, marking a step toward 

explainable AI in BMS applications. 

Despite these advances, key research gaps remain. Many neural models are trained on limited laboratory 

datasets, leading to poor generalization under unseen real-world conditions. The robustness to battery 

aging, capacity degradation, and sensor noise remains an open challenge. Most models also struggle with 

transferability across different battery chemistries and capacities. Although transfer learning approaches 

(Eleftheriadis et al., 2024) have begun to address this issue, further research is needed to improve cross-

domain adaptability and real-time computational efficiency. Moreover, few studies have incorporated aging 

data or multi-cell interactions into training, limiting long-term reliability and fleet-level scalability. 

Interestingly, several investigations have found that feedforward DNN models can outperform recurrent 

networks in certain contexts. Jo et al. (2021) demonstrated that a simple FNN trained on SOC-domain 

preprocessed data achieved higher accuracy than CNN and LSTM models when data were limited (Jo et 

al., 2021). Similarly, Chemali (2018) reported that a DNN achieved a MAE of 1.10% at 25 °C, 

outperforming LSTM under static conditions due to lower overfitting risk and faster convergence (Chemali, 

2018). These findings suggest that while recurrent models excel in capturing time dependencies, DNNs 

can outperform them under stable conditions or when computational simplicity is prioritized—a key insight 

for embedded BMS design. In summary, deep learning approaches particularly CNN-, GRU-, and LSTM-

based frameworks have substantially advanced the accuracy, robustness, and adaptability of SOC 

estimation for lithium-ion batteries. However, achieving real-time, generalizable, and aging-resilient 

models remains a critical research challenge. Future directions should emphasize transfer learning, 
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explainable AI, and physics-informed neural networks to bridge the gap between data-driven inference and 

electrochemical reality. 

 

3. Methodology 

The methodology for this study was structured to develop and evaluate neural-network-based State of 

Charge (SOC) prediction models under diverse battery operating conditions. The workflow consisted of 

four major stages: data preparation, model development, model training, and performance evaluation. Each 

stage was designed to ensure consistent comparison among the Deep Neural Network (DNN), Gated 

Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) architectures. 

3.1 Data Preparation 

The dataset used for SOC estimation included time-series measurements of battery voltage, current, 

temperature, and reference SOC values. Multiple temperature conditions were incorporated to capture 

variations in battery discharge characteristics. The raw data were preprocessed by removing noise, 

normalizing all input features using a standard scaling procedure, and constructing the required training 

sequences. For recurrent models, sliding windows were created to enable the GRU and LSTM networks to 

learn temporal dependencies, while the DNN received feature-based input vectors. An additional feature, 

the previous SOC, was included to enhance the learning of SOC progression. 

3.2 Neural Network Architecture Design 

Three neural network architectures were designed and implemented for comparison. The DNN model 

consisted of stacked fully connected layers with ReLU activation functions, enabling it to learn nonlinear 

mappings between the battery inputs and SOC without explicitly modelling time-dependent relationships. 

The GRU and LSTM models incorporated recurrent cells capable of retaining historical information and 

learning complex temporal patterns in SOC behaviour. All models used a single linear output neuron to 

predict SOC as a continuous value. Hyperparameters such as the number of hidden units, learning rate, and 

dropout probability were tuned based on preliminary trials to achieve stable convergence. 

3.3 Model Training and Validation 

The data were split chronologically into training and testing sets, ensuring that the models were evaluated 

on unseen future data. All neural networks were trained using the Adam optimizer with Mean Squared 

Error (MSE) as the loss function. Early stopping was applied to prevent overfitting, halting training once 

validation loss no longer improved. Recurrent models were trained on batch-wise sequences, while the 

DNN operated on independently sampled feature vectors. During training, both loss and validation loss 

were monitored to ensure that the models achieved stable generalization behaviour. 
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3.4 Performance Evaluation Metrics 

Model performance was assessed using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and the coefficient of determination (R²). These metrics allowed quantitative comparison of prediction 

accuracy across all models. Maximum error values were also analyzed to evaluate the robustness of each 

architecture under conditions such as rapid current fluctuations or changes in battery temperature. 

Additionally, prediction error trends over time were examined to ensure model stability during dynamic 

load cycles. The methodological framework adopted in this study provided a systematic approach to 

comparing three neural network architectures for SOC prediction. By incorporating diverse operating 

conditions, preprocessing steps, and consistent evaluation metrics, the study ensured that the strengths and 

limitations of each model were thoroughly assessed in a controlled and reproducible manner. 

 

4. Results 

The performance of the proposed neural-network-based State of Charge (SOC) estimation framework was 

evaluated under multiple operating conditions, including temperature variation, dynamic load cycles, and 

model-specific training behaviour. The experimental SOC discharge characteristics at different 

temperatures are shown in Figure 1, where the SOC declines more rapidly at lower temperatures due to 

increased internal resistance. At 10°C, the discharge rate is the steepest, while at 40°C, the cell maintains 

a higher SOC for a longer duration. This confirms that SOC behaviour is strongly temperature-dependent 

and must be accurately modelled in data-driven estimators. The learning characteristics of the GRU and 

LSTM models are presented in Figure 2(a) and Figure 2(b). Both models converged steadily during 

training, with validation losses remaining stable throughout 300 epochs. The final validation loss remained 

below 0.002, indicating that both architectures were able to capture the underlying time-series patterns 

present in the SOC dataset. However, despite good convergence, their predictive performance differed from 

the DNN model. 

 

Figure 1: SoC variation under different temperature conditions (10°C, 20°C, 30°C, and 40°C). 
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(a) (b) 

Figure 2: Training and validation loss curves 

A comparative performance analysis showed that the Deep Neural Network (DNN) achieved the highest 

accuracy among all models evaluated. On the experimental dataset, the DNN reached an RMSE of 0.463%, 

MAE of 0.341%, and an R² of 0.9999, demonstrating excellent agreement between estimated and actual 

SOC values. Performance improved further in simulation-based evaluation, where the DNN yielded an 

RMSE of 0.107%, MAE of 0.040%, and an R² of 0.9999. The maximum estimation error for the DNN 

remained below 0.8%, even under rapid load and temperature fluctuations, confirming its robustness. In 

contrast, the recurrent models exhibited higher errors. The GRU model recorded MAE values of 0.862% 

(experimental) and 1.517% (simulation), while the LSTM model resulted in MAE values of 1.085% 

(experimental) and 0.774% (simulation). Maximum error magnitudes reached 4.6% for GRU and 5.5% for 

LSTM, reflecting their sensitivity to nonlinear variations in the SOC trajectory. Despite this, both GRU 

and LSTM maintained mean errors below 2.4% under battery-aging conditions, demonstrating reasonable 

stability as cell characteristics changed over time. 

The dynamic response analysis in Figure 3 illustrates the SOC estimation error of all three models under 

real-time load conditions. The DNN error remained tightly bounded around zero, while GRU and LSTM 

showed wider fluctuations and larger positive-negative excursions. This behaviour further supports the 

superior generalization ability of the DNN model. Finally, Figure 4 presents the DNN-based SOC 

prediction against the reference SOC. The two curves overlap closely across the entire test window, and 

the corresponding error plot shows deviations mostly within ±5×10⁻³, confirming the high fidelity of the 

proposed estimation method. Overall, the results show that the DNN architecture offers the most accurate, 

stable, and robust performance for SOC estimation across all operating conditions, making it well-suited 

for real-time battery-management applications. 
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Figure 3: SOC estimation error comparison for all models under dynamic load conditions 

 

Figure 4: Comparison between estimated SOC and reference SOC 

5. Conclusion 

This study evaluated the performance of three neural network architectures DNN, GRU, and LSTM for 

accurate State of Charge estimation in lithium-ion batteries under varying temperatures, dynamic load 

cycles, and ageing effects. Across all test scenarios, the Deep Neural Network consistently demonstrated 

the highest accuracy, achieving an MAE of 0.341% and an RMSE of 0.463% for experimental data, as well 

as an R² value of 0.9999. The model also maintained a maximum error below 0.8% during rapid load 

variations, confirming its robustness and suitability for real-time deployment. While GRU and LSTM 

models showed acceptable performance with errors below 2.4% under ageing conditions, their prediction 

consistency and dynamic response were weaker compared to the DNN. These recurrent models exhibited 

larger error fluctuations and higher maximum deviations, making them less ideal for applications requiring 

high-frequency SOC updates. The comparative analysis therefore suggests that the DNN offers the best 

balance between accuracy, stability, and computational simplicity. 
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In summary, the results confirm that deep feedforward neural networks are capable of delivering highly 

reliable SOC estimation under realistic battery operating conditions. For practical battery management 

systems, such models can significantly enhance prediction accuracy, enable improved energy utilisation, 

and support safer EV operation. Future work may explore hybrid physics–ML models, integration with real 

EV datasets, and transfer-learning approaches to further strengthen model adaptability across different cell 

chemistries and usage environments. 
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