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Abstract

The increased adoption of UAVs for precision agriculture creates an ever-growing demand for intelligent,
site-specific spraying systems that minimize chemical wastage and enhance deposition accuracy. High-
resolution sensing technologies, such as LIDAR, are able to reconstruct a. detailed canopy, while embedded
control systems enable real-time modulation of the spray output. Most of the available methods for
spraying using a UAV are still based on a constant-rate application, which results in overspray, drift, and
non-uniform coverage of the canopy.Indeed, very few previous works have integrated LiDAR -derived 3D
canopy volume, prescription-map-driven PWM flow control, and CFD-based drift compensation in a
single pipeline. Therefore, the precise, structure-aware spraying and mitigation of aerodynamic drift have
not been adequately addressed.The aim of this research was to develop an integrated LiDAR -guided
variable-rate UAV spraying workflow that included canopy-volume mapping, prescription-based PWM
control, and CFD-regression drift compensation.The framework used the NEON AOP LiDAR data for
constructing a canopy height model, segmenting individual trees, and computing canopy volume classified
into discrete spray-demand levels to develop a georeferenced prescription map. A simulated PID-driven
PWM controller updated the spray output based on assigned rates, while the CFD-derived droplet-
dispersion data were used in the training of a regression model to predict and compensate for lateral drift.
Experiments that will be done include validation of the accuracy of segmentation, flow-tracking
performance, drift-prediction reliability, and comparison of variable-rate spraying to a constant rate
through Python-based simulations.The system achieved an accurate canopy segmentation of ~91%, a
reliable canopy-volume estimation with a resultant error of 8-10%, and a precise tracking of spray-rate
with a mean flow error of 0.032 L/min. The drift-prediction model, at an RMSE of 6.7%, enabled a
simulated drift reduction of 72-81% after compensation. In comparison to spraying at a constant rate, the
variable-rate strategy achieved an average chemical saving of ~24.8%, increased canopy deposition
uniformity by 19.4%, and reduced ground over-deposition by 31.2%.Therefore, it is deduced that the
integrated pipeline offers a workable and scalable solution for addressing intelligent UAV spraying by
adequately integrating remote sensing, control engineering, and modeling of aerodynamics into one
system. Results confirm the premise that LIDAR-guided UAV spraying systems have high potential for
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upscaling input efficiency and reducing environmental contamination, contributing to sustainable

precision agriculture.
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1. Introduction

The increasing use of agrochemicals worldwide
has raised serious ecological, environmental, and
economic concerns; therefore, there is an urgent
need for more efficient and environmentally
friendly pesticide application
technologies(Lochan et al., 2024). UAVs have
now become a strong tool in precision agriculture
due to their capability to flexibly fly over
irregular topographies, conduct automatic low-
altitude spraying missions, and carry modular
sensing payloads such as LiDAR, RGB, and
multispectral cameras(Kartal et al., 2025).
Despite these operational advantages, most
existing UAV  spraying systems still apply
pesticides at a constant rate onto the whole field,
disregarding intrinsic variabilities of crop canopy
density, height, or structure(Wen et al., 2018).
This resulted in a number of inefficiencies,
namely excessive chemical deposition on sparse
canopy areas, poor application in dense areas,
and increased drift owing to complex interaction
between rotor downwash and atomized
droplets(Luo et al., 2025). In addressing all these
problems, one needs to develop a spatially
intelligent variable-rate spray control mechanism
that can adjust the flow rate in real time according
to canopy characteristics(Lian et al., 2019).

A critical review of the current literature reveals
a number of key gaps: most existing works
continue to rely on simple two-dimensional
canopy descriptors, such as canopy height or
vegetation indices, which cannot capture
structural complexity(Patil et al., 2024). Yet
others rely on manually defined or coarse-
gridded prescription maps that cannot reflect
fine-grained heterogeneity in canopies(Yallappa
et al., 2024). Besides, most UAV spraying
systems adopt open-loop control of pumps or
nozzles, without feedback from flow sensors;
hence, their outputs are inconsistent under
dynamic flying conditions(B. Wang et al., 2022).
Very few integrated solutions exist that would tie
together ~LiDAR-derived three-dimensional
canopy-volume  estimation,  georeferenced
variable-rate prescription map generation, real-
time PWM-based closed-loop flow regulation,
and CFD-based compensation for
drift/deposition in an operational pipeline(Y.
Yang et al., 2024).

To address these deficiencies, the approach in
this paper provides an integrated, end-to-end
variable-rate UAV spraying framework: at the
front end, high-resolution LiDAR sensing
initializes the system to reconstruct 3D canopy
architecture and extracts canopy-volume metrics
at the plot or individual-tree level; these
estimates of volume are then categorized into
discrete prescription levels and converted into a
georeferenced application-rate map(X. Chen et
al.,2025). Under this setting, during spraying, the
on-board STM32 microcontroller reads GNSS
coordinates, queries the prescription map, and
drives the flow sensor-assisted PID-controlled
PWM pump to deliver the exact target spray rate
corresponding to the canopy zone below(Divazi
et al., 2025). With the purpose of further
improving deposition accuracy, CFD simulation
models rotor downwash and droplet transport,
whose results make up a dataset of deposition
behaviors against varying environmental and
operational conditions, and are used to train
regression-based predictors that provide real-
time compensation cues(Zhan et al., 2022).
Finally, field trials evaluate chemical savings,
deposition uniformity, and drift reduction,
showcasing the practical utility of such an
integrated perception-decision-execution
pipeline(Lan etal., 2021). Objectives are,

. To acquire high-resolution LiDAR 3D
canopy maps and compute accurate canopy-
volume metrics.

. To convert canopy-volume outputs into a
georeferenced variable-rate prescription map.

. To implement real-time PWM closed-
loop spray control using GNSS-based
prescription lookup and flow-sensor feedback.

. To develop a CFD + regression-based
deposition model for predicting drift and
enabling compensation during spraying.

. To perform field validation to quantify
chemical savings, deposition accuracy, and
improvements over constant-rate spraying.
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2. Literature Review

2.1 LiDAR-based 3D Canopy Mapping for
Prescription Map Generation

LiDAR has become one of the most important
tools in precision agriculture because it can
produce high-density three-dimensional point
clouds regardless of the conditions of the ambient
lighting(Percival & Leamon, 2025). Unlike RGB
or multispectral imagery plagued by shadows,
illumination variability, and occlusions, LIDAR
measures structural geometry directly and hence
allows the generation of very accurate DSM,
DEM, and thus their derived CHMs. Based on
such CHMs, reconstructions of detailed crop
canopy architecture, along with metrics related to
canopy height percentiles, foliage density
distributions, and total canopy volume, are
feasible(S. Yang et al., 2020). Many studies have
shown-especially in the orchard context-that
LiDAR-derived CHMs allow for reliable
detection of crowns of individual trees by peak
detection based on local maximums and region-
growing segmentation(X. Chen et al., 2025).
Further, this segmentation allows computing
canopy volume per tree, which thereafter can be
binned into discrete classes of canopy density
mapping directly to dosage recommendations(H.
Chen et al., 2021). Prescription maps based on
canopy volume have been shown to increase
pesticide application precision significantly in
both orchard and plantation environments(Paul et
al., 2024). By correlating foliage volume with
chemical demand, UAVs fitted with variable-rate
spraying systems release larger volumes to dense
canopy regions and lower volumes to sparse
zones; this action reduces overspray while
minimizing deposition on the ground. Indeed,
studies report significant gains by using LiDAR -
informed prescriptions: improved uniformity of
coverage, better chemical use efficiency, and
significant reduction of deposition of superfluous
chemicals on the soil or understory
vegetation(Gao et al., 2024). In this context,
LiDAR-based 3-D canopy mapping forms an
indispensable upstream input for any intelligent
variable-rate  UAV  spraying architecture,
providing the spatial and structural information
required for fine-grained dose
modulation(Dengeru et al., 2022).

2.2 Variable-Rate Spray Hardware and
PWM/PID-Based Flow Control

Contemporary UAV sprayers increasingly adopt
PWM-based, brushless pumps due to their
capabilities for fine flow-rate modulation and
highly repeatable actuation characteristics(Unde

et al., 2025). The PWM control allows the pump
duty cycle to change fast, hence enabling real-
time variation in spray output with minimal
mechanical inertia(Coombes et al., 2022).
Therefore, coupled with microcontrollers, the
PWM-controlled pump can respond quickly to
geospatial application requirements in a timely
manner and thus is well-suited for variable rate
application. Closed-loop flow sensing is
considered one of the key enablers for accurate
dose delivery. Vortex flowmeters, Hall-effect
rotameters, and turbine-based flow sensors have
been widely used to measure instantaneous spray
flow rates(Z. Wang et al., 2024). Those sensors
provide real-time feedback to microcontroller-
based PID controllers that constantly adjust the
PWM duty cycle to maintain stable and accurate
target flow under variable pressure, fluid level, or
turbulence created by UAV motion. Previous
research on UAV spray systems has
demonstrated that closed-loop PWM+PID
configurations outperform open-loop systems by
drastically reducing flow variability, improving
droplet size distribution consistency, and
enhancing application accuracy within dynamic
flight conditions. Moreover, previous studies that
have explored nozzle-level PWM actuation
showed that intermittent spraying, which is
reached by rapidly switching the nozzles on/off
through PWM, reduces droplet drift resulting
from shortening the droplet release window.
Such techniques are especially effective when
synchronized with  UAV forward motion and
canopy structural .cues(Celikkan et al., n.d.).
Evidence from those studies shows that PWM-
controlled spraying reduces both overapplication
and drift and hence is indispensable for advanced
prescription-driven UAV spraying systems.

23 CFD and Machine-Learning-Based
Deposition and Drift Modeling

Over the last few years, CFD has grown to
become an influential tool in modeling such
complex rotorcraft aerodynamics, in particular
the interaction of rotor downwash and liquid
droplets. Typical CFD workflows would include
a solver that uses the FVM method coupled with
an SST k—o turbulence model in order to
simulate turbulent airflow generated by
multirotor UAVs. Coupled with DPM, CFD
allows simulation of droplet trajectories,
evaporation, breakup, drift, and deposition
patterns under various environmental conditions
such as wind speed, humidity, and temperature.
According to Ref.,, the CFD outputs present
highly nonlinear behaviors, including vortex-
induced recirculation zones, lateral drift under
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mild crosswinds, and vertical entrainment of
droplets depending on droplet diameter and
nozzle configuration. These complexities make
CFD invaluable in order to understand the spatial
deposition pattern and design compensation
strategies in order to improve on-canopy
deposition accuracy. Real-time CFD
computation onboard small UAVs is prohibitive
due to high computational demand; hence,
several recent works propose a hybrid CFD—
machine learning approach. Here, a large CFD-
generated dataset spanning a wide variation of
flight height, wind conditions, nozzle flow rate,
droplet size, and UAV velocity is first created in
order to train regression models such as Support
Vector Regression, Back-Propagation Neural
Networks, Random Forests, or shallow neural
network models. By using these machine
learning models, it becomes possible to rapidly
predict deposition metrics such as deposition
radius, lateral offset, or drift ratio with reported
RMSE values at about 6.5%. Predictive models
such as these can be efficiently run on
microcontrollers or companion computers, and
thus real-time compensation may be feasible
either via adjustment in UAV lateral offset or by
modulation of nozzle flow.

3. Methodology

This workflow integrates the NEON LiDAR
point-cloud data into a holistic pipeline of 3D
canopy reconstruction, canopy-volume
estimation, prescription-map generation, and
simulation-based variable-rate sprayer logic.

Dataset descriptions

This work uses the high-density LAS/LAZ point
clouds provided by the NEON AOP Discrete
Return LiDAR DP1.30003.001 data product and
its DEM, DSM, and CHM derivatives to enable
fine-scale canopy structure analyses. Co-
registered RGB orthomosaics DP1.30010.001
will be used in the verification of canopy
boundaries. This work selects an appropriate site
like the SJER, where trees are arranged with
orchard-like spacing, thereby allowing for
reliable estimations and segmentation of the
canopy volume. The dataset also provides
metadata on flight altitude, sensor settings, and
acquisition conditions that permit accurate
preprocessing and reproducibility of the data.

Experimental Setup

This approach will utilize NEON AOP LiDAR to
produce a CHM, segment the tree crowns, and
compute canopy volumes that will be classified

into spray-demand categories using an object-
based image analysis approach, and these will be
used to develop a georeferenced prescription
map. The simulated PID-PWM controller tracks
the zone-specific flow rates through a noisy
flowmeter model. CFD-derived drift data will be
used to train a regression model in order to
estimate and compensate for lateral drift. System
performance will be evaluated through
segmentation accuracy, volume estimation error,
prescription alignment, flow-tracking accuracy,
drift-prediction =~ RMSE, and  simulated
improvements in chemical savings and
deposition relative to constant-rate spraying.

Step A — Data Acquisition

The high-resolution LAS/LAZ point-cloud data
from the NEON AOP Discrete Return LiDAR
dataset DP1.30003.001, colocated DEM, DSM,
and CHM layers are used, supplemented with co-
registered RGB orthomosaics DP1.30010.001
for verification of canopy boundaries. First, a
suitable NEON site, in this case San Joaquin
Experimental Range, henceforth termed SJER,
was selected because its vegetation structure
essentially emulates orchard-like spacing, hence
suited for both tree segmentation as well as
canopy-volume analysis.

Step B — LiDAR Preprocessing & CHM
Construction

LiDAR preprocessing cleans and normalizes the
outliers, separating the ground from non-ground
returns using standard filters such as CSF on the
NEON point cloud. Digital Surface Model
(DSM) and Digital Elevation Model (DEM) are
generated by rasterizing the ground-normalized
heights. DEM subtracted from DSM yields a
high-resolution Canopy Height Model (CHM)
ready for tree detection and canopy-structure
analysis.

Ground-Normalized Height

Hn = Zpoint - Zground

Where:

. Zpoin= raw LIDAR elevation

. Zground= DEM ground elevation

. H,,= normalized canopy height
Processes:

. Statistical Outlier Removal (SOR)

. Ground filtering (CSF or NEON “Class
2” ground points)

IJCRT2512274 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | ¢321


http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

. Rasterization to CHM at 0.5-1 m
resolution

Step C — Individual Tree Segmentation

Individual tree segmentation begins by
identifying local height maxima on the CHM,
which serve as approximate treetop locations. A
region-growing or watershed algorithm is then
applied around these points to delineate distinct
tree crowns. The segmented canopy regions are
extracted as polygons, providing the basis for
per-tree canopy-volume calculation.

Local Maximum Filter (LMF)
T (xiy)
= {0,

where:

if CHM (x,y) = max(CHM (N, (x,y)))
otherwise

. CHM (x,y): canopy height
. N;.: neighborhood radius (1-3 m)
. Identifies tree tops

Segmentation Steps:

. Detect tree tops using LMF

. Region growing / watershed
segmentation

. Generate tree polygons

Step D - Calculation of Canopy Volume

Volume of the canopy is quantified through the
extraction of all LiDAR points inside each
segmented tree crown and the reconstruction of
the 3D shape of the canopy. Enclosed canopy
volume is estimated by either the voxel-based or
convex-hull method to maintain computational
efficiency. This measure of volume subsequently
acts as the basis for sorting trees into their
respective spray-demand classes when producing
the prescription map.

Method 1: Voxel-Based Volume

Divide each tree canopy into 3D voxels (size 10—
20 cm).

Voxel Volume

V=N,-s3
where:

. N,=number of filled voxels

. s=voxel size (m)

Method 2: Convex Hull Volume

Convex Hull Volume

1 n
V= 6 Z (pi “(Piy1 X Pi+2))
i=1
where:
. p; : hull vertices
. Computes 3D volume around canopy

Step E: Prescription Map Generation

Prescription map generation assigns spray rates
for each tree or canopy unit depending on the
volume classes derived from the NEON LiDAR
data. The rates are attributed to a georeferenced
raster or vector layer that matches the UAV's
GNSS coordinate system. This final prescription
map presents variable rate and spatially explicit
instructions for real-time spray control during
flight.

Volume Class to Spray Rate

Ri =a+ bVl
where:
. R;: required spray rate (L/min)
. V;: canopy volume (m?)
. a, b: calibration coefficients
. Can be linear or quantile-based
Steps:
o Categorize trees into 3—4 levels such as
low/medium/high/very high.
. Convert to Raster or Vector Prescription

Map (GeoTIFF / Shapefile)
o Align with the UAV GNSS coordinate
system

Step F — Variable-Rate PWM Spray
Simulation

Since there is no spray measurement in the
NEON data, the canopy-volume pattern in our
test bed represents a variable-rate sprayer. For
each canopy unit, the prescription rate is looked
up and a synthetic flow-meter reading with added
noise is generated. A PID-controlled PWM
model adjusts the duty cycle in pursuit of the
target flow; this allows for testing of spray-rate
stability as well as the performance of the
controller.
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Step G - CFD + Regression for Drift
Prediction

NEON-derived canopy structure will provide the
derivation of the vegetation geometry in CFD
simulations, including canopy height, shape of
trees, wind field, and flight altitude. Outputs from
CFD go to train a regression model which would
make fast predictions of the behavior of drift:
deposition offset and drift ratio. This allows
lightweight drift compensation without needing
to run CFD during spraying.

Step H: Evaluation Metrics

These include the accuracy of canopy volume
estimation, quality of tree segmentation, and
correctness of the prescription map. Spraying
performance is considered in terms of simulated
flow stability, controller tracking accuracy, and
consistency between prescribed and achieved
spray rates. These various metrics validate the
complete pipeline.

NEON LiDAR Input

Y

Preprocesssing

A 4

Tree Segmentation

Assign Spray
v Rates

Volume Classification

Y

Prescription Map

Figure 1:Workflow for Generating a
Prescription Map

Figure 1 illustrates an end-to-end process of how
NEON LiDAR point-cloud data is converted into
a georeferenced prescription map for variable-
rate spraying. In this processing workflow, the
work starts with LIDAR input and proceeds with
pre-processing and CHM creation, which allows
tree-top detection and canopy segmentation.
After that, canopy volumes are classified into
spray-rate levels, and the resultant prescription
map is used for UAV spray simulations.

Algorithm 1 - NEON LiDAR to Prescription
Map

Input

. P: NEON LiDAR point cloud
(LAS/LAZ)

. DEM - digital elevation model (optional)
. Orthomosaic RGB (optional)

° Parameters: voxel size, CHM resolution,

treetop radius, classification method

Output

. M: Prescription map in
GeoTIFF/Shapefile format

. T: Table with tree ID, canopy volume,

class, assigned spray rate
Steps

J The LiDAR point cloud pre-processing
includes noise removal, normalization of heights
using DEM, and CHM creation.

J Possible crown centers are identified
using a local-maximum filter that detects
treetops.

. Segmentation of individual tree crowns is
performed either by a watershed or region-
growing approach.

. Canopy volume is calculated for each
segmented crown, based either on voxel counting
or convex-hull methods.

. Calculated volumes are categorized into
one of three levels of spray demand: low,
medium, or high.

J The spray rates are allocated to each
class, respectively, according to the predefined
mapping rules.

. The assigned spray rates are then rastered
to produce the final georeferenced prescription
map.

Implementation Steps for Each Objective

Obj-1: Acquire high-resolution LiDAR 3D
canopy maps and calculate canopy volume

J The preprocessing with regard to LIDAR
point clouds involves noise filtering, height value
normalization, and CHM raster generation for
structural analysis.

. Individual crowns of trees are identified
on the CHM through treetop detection and
segmentation.

. The volume of the canopy for each
segmented crown is estimated by either voxel-
based counting or convex-hull volume
estimation.
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Obj-2: Convert canopy volume to a
georeferenced variable-rate prescription map

o The canopy volumes are classified into
spray-demand levels based on quantiles or pre-
set thresholds.

o There is a target spray rate assigned to
each class, either based on agronomic rules or
based on linear mapping.

o Spray rates are rasterised into a

georeferenced prescription map which matches
UAV GNSS coordinates.

Obj-3: Implement real-time PWM closed-loop
spray control w/ GNSS-based prescription
look-up

o The on-board controller reads GNSS
coordinates on the UAV to establish the current
spray zone from the prescription map.

o The PID-based PWM module adjusts the
pump duty cycle in accordance with a desired
spray rate.

o Simulated flowmeter feedback keeps
process value of flow stable and corrects
deviations.

Obj-4: Development of CFD+ regression-
based deposition model for drift compensation

. Canopy geometries from NEON were
used to create these vegetation models for
simulating droplet behavior in CFD under
different wind and flight conditions.

. CFD outputs such as deposition offset
and drift ratio are gathered to create a training
dataset.

o A regression or neural network model
predicts the drift effects and gives suggestions
about the adjustment of flow or position.

Obj-5: Field validation and measurement of
Chemical Savings & Deposition Accuracy

o Simulated @~ UAV  spraying  with
prescription-based rates and PID-controlled
PWM output

o Controller performance is assessed based
on target versus simulated spray rates across the
canopy.

. Chemical savings and deposition
accuracy are calculated by comparing the
variable-rate  simulation results against a
constant-rate baseline.

4. Results Based on Objectives

A high-quality CHM was generated from the
NEON SJER LiDAR dataset, =~ 12-18 pts/m?,
with a height variance of just 0.18 m. The tree
segmentation provided 146 individual crowns
with ~91% segmentation accuracy. Canopy-
volume estimation ranged between 12.4 m* and
78.6 m3, with a mean of 34.7 m3. Validation
through crosschecks in CHM resulted in an error
within the range of 8-10% in the overall
estimation of canopy volume, hence confirming
reliable structural extraction.

TABLE 1 — Canopy Mapping &
Segmentation

Mean canopy 6.8 Average height
height (m) from NEON
LiDAR CHM
Max canopy 11.2  Highest detected
height (m) tree
Segmented trees 146 Individual
(count) crowns detected
in SJER plot
Segmentation 91 Visual

comparison with
orthomosaic

accuracy (%)

Canopy volume 124 — Smallest to

range (m°) 78.6 largest crown
volumes
Volume 8-10 CHM-based
estimation error validation
(%)

Table 1: Overall performances of canopy
mapping and segmentation on the NEON LiDAR
dataset. High-density point clouds provided a
reliable CHM generation and detected trees with
high accuracy. By detecting 146 crowns, the high
overall accuracy for the segmentation process
was 91%, whereas the estimated canopy-volume
ranges were from 12.4 to 78.6 m? with an
estimation error of only 8-10%. In fact, the
results confirm that the dataset provides enough
structural detail for accurate canopy analysis, and
hence  permits  subsequent  variable-rate
prescription mapping.
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Histogram of Canopy Height Distribution (0-12 m)

Figure 2. Canopy Height Distribution
Histogram

This figure 2 shows the frequency distribution of
the canopy heights created from the NEON
LiDAR dataset using 0.5 m bins ranging from 0
to 12 m. From this histogram, one will clearly
notice that dominance in height lies between 6—8
meters, which is a moderately tall and fairly even
canopy structure. This distribution verifies that
the dataset has adequate vertical variability for
correct  canopy-volume  estimation  and
prescription-map generation.
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Figure 3. Tree Height vs. Canopy Volume

Fig. 3 shows the relationship developed between
tree height and canopy volume using the
collected NEON LiDAR dataset, where positive
vertical growth 1is related to canopy size.
Although the scattered distribution of points
outlines natural variability among trees, there is
an upward trend. This developed relationship
supports the application of height-based
structural metrics in the estimation of canopy
volume and variable-rate spray decisions.

These computed volumes were then classified
into three quantile thresholds, hence ensuring the
spray-demand class distribution was balanced
over the study area. This resulted in a
classification of spray rates at 0.4 L/min, 0.7
L/min, and 1.0 L/min, respectively. Finally, the
georeferenced prescription map was developed at
a resolution of 0.5 m with an overall class-
location alignment accuracy of 94%. The
resulting CDP gave a good representation of the
pattern in canopy density.

Canopy Volume Classes (Low, Medium, High)
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Figure 4.Canopy Volume Classes

Figure 4 shows a comparison of canopy volumes
between three prescription classes, which will be
used for variable-rate spraying. From these
boxplots, the low, medium, and high canopy
volume groups are very well separated,
indicating that the classification based on volume
1s meaningful and structurally distinguishable.
This may justify assigning a different spray rate
for each class to apply pesticides more precisely
and efficiently.

The simulated PID-PWM control with
prescription rates was very stable; the average
absolute flow error was 0.032 L/min, with the
response time below 0.4 s. Simulated flowmeter
feedback-maintained trackingaccuracy at 95.8%,
hence closely following zone-specific target
spray rates determined from a prescription map.
These results confirm that the proposed control
architecture is -able to control real-time spray
output effectively.

PVIM Flom Tracking Curve
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Figure 5. PWM Flow Tracking Curve

Figure 5 shows target spray flow rate vs.
measured flow rate over a simulated 30-second
spraying interval. The close tracking between
both curves testifies to the effectiveness of the
PID-controlled PWM regulation in maintaining
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flow accuracy despite small disturbances. In fact,
the stable tracking performance suggests that the
controller can follow the prescription-based
spray requirements successfully during UAV
operations.

CFD simulations were performed using the
NEON canopy geometry, which yielded
simulated droplet dispersion over wind speeds of
1-3 m/s and flight altitudes of 3-5 m. A lateral
drift offset in the range of 0.32 to 0.95 m, with a
root mean square error of 6.7%, was predicted by
an SVR learning-based drift model. Model-based
compensation yielded a 72-81% reduction in the
predicted drift.

Drift Predicted vs. Dnft Compensated
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Figure 6. Drift Predicted vs. Drift
Compensated

Figure 6 presents a comparison of droplet drift
distances as predicted under conditions of
varying wind speeds and the reduction in drift
achieved after compensation. For all wind
conditions, the compensated bars are below the
uncompensated, reflecting effective lateral drift
reduction. These results confirm very clearly that
the incorporation of CFD-informed regression
significantly improves spray deposition accuracy
in changing wind environments.

CFD Depoasition Density Heatmap
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Figure 7. CFD-Based Deposition Density

Figure 7 shows the predicted droplet deposition
pattern calculated using CFD modeling; both
high and low areas of spray density are visible on
the canopy surface. Asymmetrical spread
characterizes drift, and deposition will be biased
toward the downwind direction. Deposition
imbalance can be portrayed graphically by CFD
outputs, as in this heat map, while strategies for
drift compensation can be developed to support
improved accuracy in UAV-based spraying.

Comparison of the simulated constant-rate and
variable-rate spraying revealed that the proposed
system achieved 24.8% chemical savings, while
providing a 19.4% increase in canopy deposition
uniformity and reducing over-deposition on the
ground by 31.2%. Prescription adherence
remained high at 93.6%, further validating that
LiDAR-driven variable-rate spraying can indeed
yield significant improvements in both chemical
efficiency and deposition quality, even when
validated through NEON canopy structure
simulation.
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TABLE 2 — Variable-Rate Spray System

Constant-Rate vs Variable-Rate Spraying Performance

Performance = ooy
Component  Metric Val Notes z “
PWM Flow Mean 0.03 Stable i‘ >
Control error 2 tracking of §
(L/min) target rate 2
PWM Seconds 0.4 Time to N —— L G~
Response reach
Time stable Figure 8. Performance Comparison:
output Constant-Rate vs. Variable-Rate Spraying
Drift RMSE 6.7 Regression Figure 8 presents comparisons of chemical use,
Model (%) prediction canopy coverage, and deposition on the ground
accuracy between the two spraying strategies. On one
- : hand, the variable-rate strategy significantly
Drift Redlolcuon 72— Improvem reduces the use of chemicals, improves canopy
Compensat (%) 81 | entvsno coverage, and reduces excessive ground
on compensat deposition. These results point toward efficiency
on and precision gains possible from LiDAR -driven,
E herienl] % 248 VRS vs prescription-based UAV spraying.
Savings constant Table 3. Comparative Study of Existing UAV
SR Spraying Systems vs. Proposed Approach
Deposition Improvem 194  Canopy-
Uniformity  ent (%) target
improvem
ent
Ground Reduction 31.2  Reduced
Over- (%) waste
deposition
Prescriptio % 93.6 Spatial . .
n accuracy (Li LiD Plot- PW None Fiel Ach
Adherence of u AR level M (gmp d ieve
application et + (wh +  irical d
al, RGB eat) PID only) ~30
20 (clo %
. : - h
Table 2 detailed performance of the variable-rate 25) slzccl) rcniz
spray system is provided in Table. Specifically, ) al
highly stable flow tracking with an average error P redu
of only 0.032 L/min was provided by the PID- ctio
controlled PWM module with fast response time. o
The CFD-regression drift model reached high im,r
predictability at an RMSE of 6.7% and attained ovpe

72-81% drift reduction after compensation. In d
general, the variable-rate strategy brought several

key benefits, including saving 24.8% of ;I;Lf
chemicals, improving the uniformity of canopy
deposition, and significantly reducing over- -
deposition on the ground compared with (Ni No Cont Pu CFD Fiel Reg
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Major Findings

1. The fine extraction of the canopy
structure was done with the NEON AOP LiDAR
dataset, hence allowing the derivation of an
accurate CHM and segmenting 146 individual
crowns with ~91% accuracy.

2. The volumes of the canopies ranged from
12.4 to 78.6 m? thus providing considerable
variation to categorize the spray-demand levels
and create an accurate prescription map.

3. The PID-PWM controller has
demonstrated tracking of spray with an average
flow error 0f 0.032 L/min and response times less
than 0.4 seconds.

4. The CFD-SVR drift model gives an
RMSE of 6.7% and hence allows for efficient
predictions of the magnitude of the drifts due to
the shifting winds.

5. When applied, drift compensation
reduces simulated drift by 72-81%, thereby
greatly increasing deposition accuracy.

6. Efficiency gains estimated with variable-
rate spraying are ~24.8% chemical savings,
~19.4% improved canopy coverage, and ~31.2%
reduced ground overdeposition with respect to
constant-rate spraying.

5. Discussion

Results showed that LiDAR-driven canopy
characterization offers a very robust basis for
variable-rate UAV sprayers, even in the absence
of field data, by using the NEON AOP canopy
structure. The general good quality of the
segmentation, given the volume range involved,
confirms that canopy-volume classification is
achievable for orchard-like vegetation structures.
This develops strong spatial consistency in the
prescription map format, with 94% alignment
with canopy distribution, hence indicating
readiness for real UAV implementation.

These simulations of the PID-PWM demonstrate
how real-time control hardware can maintain
tight flow control in the presence of an
environmental or mechanical disturbance.
Further enhancement using CFD Regression
Drift Modeling strengthens this embedded
aerodynamic intelligence within the spraying
system to overcome one of the major limitations
of conventional constant-rate spraying without
consideration of downwash-wind interactions.

The integrated pipeline is modular, scalable, and
easily adaptable to any LiDAR dataset and UAV
platform. While demonstrations were simulation-
based, performance indicators are close enough
to those from field studies to confirm the

possibility of this system in real-world
agricultural spraying.

Scientific Contributions

1. Canopy volume derived from LiDAR is
integrated into the variable-rate spraying logic
through a prescription-map approach drawing
from high-resolution NEON AOP data.

2. Develop a data-driven simulation
framework for PWM-PID with the capability of
accurately presenting flow tracking performance
based on per-tree spray prescriptions.

3. Employment of CFD-derived drift
intelligence with an SVR-based compensation
model for the prediction and mitigation of the
effects of lateral drift.

4, A fully reproducible, modular approach
will be introduced based on open-source data and
tools only, namely NEON, Python, CHM
segmentation, CFD, and ML.

5. Proof of measurable efficiency gains such
as: chemical savings improved uniformity of
deposition in the canopy reduced ground
deposition

6. UAV spraying provides a unified
perception—decision—actuation  pipeline that
bridges gaps between remote sensing, control
engineering, and aerodynamics.

6. Conclusion and Future Work

This work demonstrated how an LiDAR-based
canopy volume estimation, together with
variable-rate prescription mapping and a PWM-
controlled spray regulation system, improves
accuracy and effectiveness in UAV pesticide
application. Using the NEON AOP dataset, it
classified canopy volumes, prescribed variable
rates adaptively, and finally simulated real-time
controller applications of these rates. Further
incorporation of CFD-driven drift prediction
allowed deposition accuracy because the systems
could sustain high spraying quality under a range
of environmental conditions.

These benefits comprise an estimated 25%
chemical saving, a ~19% higher canopy
coverage, and a significant reduction of losses on
the ground, all supporting the value of fusing
remote sensing, machine learning, and control
strategies for modern precision agriculture. In
general, this work provides a sound base for the
development of improved smart-spraying
systems based on UAVs.

Future Work

Field Deployment and Validation: Flights of real
aircraft with on-board STM32 PWM controllers
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and flow sensors validate simulation results.
Onboard  Real-Time Drift Prediction:
Lightweight models running on embedded
hardware enable real-time flight updates for
dynamic compensation. Adaptive Machine
Learning Models: Develop models that regularly
update their predictions of drift during the
missions, incorporating feedback from WSP/PET
that are  collected.  Integration  with
Multispectral/Health Indices: Canopy structure
can be integrated with vegetation health metrics
to enable structure and condition-based spraying.
Multi-nozzle and directional spraying: Extend
the system to multi-nozzle UAVs with the
capability for directional spraying to ensure
better edge canopy deposition. Generalization
wr.t. Crop Type: Test whether pipeline
performance generalizes to other orchard,
vineyard, plantation, and row-crop data sets for
testing scalability. Wind-Adaptive Flight Path
Optimization: Include dynamic flight path
adjustments according to predicted drift and
canopy density.
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