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Abstract 

The increased adoption of UAVs for precision agriculture creates an ever-growing demand for intelligent, 

site-specific spraying systems that minimize chemical wastage and enhance deposition accuracy. High-

resolution sensing technologies, such as LiDAR, are able to reconstruct a detailed canopy, while embedded 

control systems enable real-time modulation of the spray output. Most of the available methods for 

spraying using a UAV are still based on a constant-rate application, which results in overspray, drift, and 

non-uniform coverage of the canopy.Indeed, very few previous works have integrated LiDAR-derived 3D 

canopy volume, prescription-map-driven PWM flow control, and CFD-based drift compensation in a 

single pipeline. Therefore, the precise, structure-aware spraying and mitigation of aerodynamic drift have 

not been adequately addressed.The aim of this research was to develop an integrated LiDAR-guided 

variable-rate UAV spraying workflow that included canopy-volume mapping, prescription-based PWM 

control, and CFD-regression drift compensation.The framework used the NEON AOP LiDAR data for 

constructing a canopy height model, segmenting individual trees, and computing canopy volume classified 

into discrete spray-demand levels to develop a georeferenced prescription map. A simulated PID-driven 

PWM controller updated the spray output based on assigned rates, while the CFD-derived droplet-

dispersion data were used in the training of a regression model to predict and compensate for lateral drift. 

Experiments that will be done include validation of the accuracy of segmentation, flow-tracking 

performance, drift-prediction reliability, and comparison of variable-rate spraying to a constant rate 

through Python-based simulations.The system achieved an accurate canopy segmentation of ~91%, a 

reliable canopy-volume estimation with a resultant error of 8-10%, and a precise tracking of spray-rate 

with a mean flow error of 0.032 L/min. The drift-prediction model, at an RMSE of 6.7%, enabled a 

simulated drift reduction of 72-81% after compensation. In comparison to spraying at a constant rate, the 

variable-rate strategy achieved an average chemical saving of ~24.8%, increased canopy deposition 

uniformity by 19.4%, and reduced ground over-deposition by 31.2%.Therefore, it is deduced that the 

integrated pipeline offers a workable and scalable solution for addressing intelligent UAV spraying by 

adequately integrating remote sensing, control engineering, and modeling of aerodynamics into one 

system. Results confirm the premise that LiDAR-guided UAV spraying systems have high potential for 
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upscaling input efficiency and reducing environmental contamination, contributing to sustainable 

precision agriculture. 

Keywords: 
Variable-Rate Spraying; UAV; LiDAR; Canopy Volume; PWM Control; CFD Drift Modelling; 

Prescription Mapping; Precision Agriculture.

1. Introduction 

The increasing use of agrochemicals worldwide 

has raised serious ecological, environmental, and 

economic concerns; therefore, there is an urgent 

need for more efficient and environmentally 

friendly pesticide application 

technologies(Lochan et al., 2024). UAVs have 

now become a strong tool in precision agriculture 

due to their capability to flexibly fly over 

irregular topographies, conduct automatic low-

altitude spraying missions, and carry modular 

sensing payloads such as LiDAR, RGB, and 

multispectral cameras(Kartal et al., 2025). 

Despite these operational advantages, most 

existing UAV spraying systems still apply 

pesticides at a constant rate onto the whole field, 

disregarding intrinsic variabilities of crop canopy 

density, height, or structure(Wen et al., 2018). 

This resulted in a number of inefficiencies, 

namely excessive chemical deposition on sparse 

canopy areas, poor application in dense areas, 

and increased drift owing to complex interaction 

between rotor downwash and atomized 

droplets(Luo et al., 2025). In addressing all these 

problems, one needs to develop a spatially 

intelligent variable-rate spray control mechanism 

that can adjust the flow rate in real time according 

to canopy characteristics(Lian et al., 2019). 

A critical review of the current literature reveals 

a number of key gaps: most existing works 

continue to rely on simple two-dimensional 

canopy descriptors, such as canopy height or 

vegetation indices, which cannot capture 

structural complexity(Patil et al., 2024). Yet 

others rely on manually defined or coarse-

gridded prescription maps that cannot reflect 

fine-grained heterogeneity in canopies(Yallappa 

et al., 2024). Besides, most UAV spraying 

systems adopt open-loop control of pumps or 

nozzles, without feedback from flow sensors; 

hence, their outputs are inconsistent under 

dynamic flying conditions(B. Wang et al., 2022). 

Very few integrated solutions exist that would tie 

together LiDAR-derived three-dimensional 

canopy-volume estimation, georeferenced 

variable-rate prescription map generation, real-

time PWM-based closed-loop flow regulation, 

and CFD-based compensation for 

drift/deposition in an operational pipeline(Y. 

Yang et al., 2024). 

To address these deficiencies, the approach in 

this paper provides an integrated, end-to-end 

variable-rate UAV spraying framework: at the 

front end, high-resolution LiDAR sensing 

initializes the system to reconstruct 3D canopy 

architecture and extracts canopy-volume metrics 

at the plot or individual-tree level; these 

estimates of volume are then categorized into 

discrete prescription levels and converted into a 

georeferenced application-rate map(X. Chen et 

al., 2025). Under this setting, during spraying, the 

on-board STM32 microcontroller reads GNSS 

coordinates, queries the prescription map, and 

drives the flow sensor-assisted PID-controlled 

PWM pump to deliver the exact target spray rate 

corresponding to the canopy zone below(Divazi 

et al., 2025). With the purpose of further 

improving deposition accuracy, CFD simulation 

models rotor downwash and droplet transport, 

whose results make up a dataset of deposition 

behaviors against varying environmental and 

operational conditions, and are used to train 

regression-based predictors that provide real-

time compensation cues(Zhan et al., 2022). 

Finally, field trials evaluate chemical savings, 

deposition uniformity, and drift reduction, 

showcasing the practical utility of such an 

integrated perception-decision-execution 

pipeline(Lan et al., 2021). Objectives are,  

 To acquire high-resolution LiDAR 3D 

canopy maps and compute accurate canopy-

volume metrics. 

 To convert canopy-volume outputs into a 

georeferenced variable-rate prescription map. 

 To implement real-time PWM closed-

loop spray control using GNSS-based 

prescription lookup and flow-sensor feedback. 

 To develop a CFD + regression-based 

deposition model for predicting drift and 

enabling compensation during spraying. 

 To perform field validation to quantify 

chemical savings, deposition accuracy, and 

improvements over constant-rate spraying. 
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2. Literature Review 

2.1 LiDAR-based 3D Canopy Mapping for 

Prescription Map Generation 

LiDAR has become one of the most important 

tools in precision agriculture because it can 

produce high-density three-dimensional point 

clouds regardless of the conditions of the ambient 

lighting(Percival & Leamon, 2025). Unlike RGB 

or multispectral imagery plagued by shadows, 

illumination variability, and occlusions, LiDAR 

measures structural geometry directly and hence 

allows the generation of very accurate DSM, 

DEM, and thus their derived CHMs. Based on 

such CHMs, reconstructions of detailed crop 

canopy architecture, along with metrics related to 

canopy height percentiles, foliage density 

distributions, and total canopy volume, are 

feasible(S. Yang et al., 2020). Many studies have 

shown-especially in the orchard context-that 

LiDAR-derived CHMs allow for reliable 

detection of crowns of individual trees by peak 

detection based on local maximums and region-

growing segmentation(X. Chen et al., 2025). 

Further, this segmentation allows computing 

canopy volume per tree, which thereafter can be 

binned into discrete classes of canopy density 

mapping directly to dosage recommendations(H. 

Chen et al., 2021). Prescription maps based on 

canopy volume have been shown to increase 

pesticide application precision significantly in 

both orchard and plantation environments(Paul et 

al., 2024). By correlating foliage volume with 

chemical demand, UAVs fitted with variable-rate 

spraying systems release larger volumes to dense 

canopy regions and lower volumes to sparse 

zones; this action reduces overspray while 

minimizing deposition on the ground. Indeed, 

studies report significant gains by using LiDAR-

informed prescriptions: improved uniformity of 

coverage, better chemical use efficiency, and 

significant reduction of deposition of superfluous 

chemicals on the soil or understory 

vegetation(Gao et al., 2024). In this context, 

LiDAR-based 3-D canopy mapping forms an 

indispensable upstream input for any intelligent 

variable-rate UAV spraying architecture, 

providing the spatial and structural information 

required for fine-grained dose 

modulation(Dengeru et al., 2022). 

2.2 Variable-Rate Spray Hardware and 

PWM/PID-Based Flow Control 

Contemporary UAV sprayers increasingly adopt 

PWM-based, brushless pumps due to their 

capabilities for fine flow-rate modulation and 

highly repeatable actuation characteristics(Unde 

et al., 2025). The PWM control allows the pump 

duty cycle to change fast, hence enabling real-

time variation in spray output with minimal 

mechanical inertia(Coombes et al., 2022). 

Therefore, coupled with microcontrollers, the 

PWM-controlled pump can respond quickly to 

geospatial application requirements in a timely 

manner and thus is well-suited for variable rate 

application. Closed-loop flow sensing is 

considered one of the key enablers for accurate 

dose delivery. Vortex flowmeters, Hall-effect 

rotameters, and turbine-based flow sensors have 

been widely used to measure instantaneous spray 

flow rates(Z. Wang et al., 2024). Those sensors 

provide real-time feedback to microcontroller-

based PID controllers that constantly adjust the 

PWM duty cycle to maintain stable and accurate 

target flow under variable pressure, fluid level, or 

turbulence created by UAV motion. Previous 

research on UAV spray systems has 

demonstrated that closed-loop PWM+PID 

configurations outperform open-loop systems by 

drastically reducing flow variability, improving 

droplet size distribution consistency, and 

enhancing application accuracy within dynamic 

flight conditions. Moreover, previous studies that 

have explored nozzle-level PWM actuation 

showed that intermittent spraying, which is 

reached by rapidly switching the nozzles on/off 

through PWM, reduces droplet drift resulting 

from shortening the droplet release window. 

Such techniques are especially effective when 

synchronized with UAV forward motion and 

canopy structural cues(Celikkan et al., n.d.). 

Evidence from those studies shows that PWM-

controlled spraying reduces both overapplication 

and drift and hence is indispensable for advanced 

prescription-driven UAV spraying systems. 

2.3 CFD and Machine-Learning-Based 

Deposition and Drift Modeling 

Over the last few years, CFD has grown to 

become an influential tool in modeling such 

complex rotorcraft aerodynamics, in particular 

the interaction of rotor downwash and liquid 

droplets. Typical CFD workflows would include 

a solver that uses the FVM method coupled with 

an SST k–ω turbulence model in order to 

simulate turbulent airflow generated by 

multirotor UAVs. Coupled with DPM, CFD 

allows simulation of droplet trajectories, 

evaporation, breakup, drift, and deposition 

patterns under various environmental conditions 

such as wind speed, humidity, and temperature. 

According to Ref., the CFD outputs present 

highly nonlinear behaviors, including vortex-

induced recirculation zones, lateral drift under 
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mild crosswinds, and vertical entrainment of 

droplets depending on droplet diameter and 

nozzle configuration. These complexities make 

CFD invaluable in order to understand the spatial 

deposition pattern and design compensation 

strategies in order to improve on-canopy 

deposition accuracy. Real-time CFD 

computation onboard small UAVs is prohibitive 

due to high computational demand; hence, 

several recent works propose a hybrid CFD–

machine learning approach. Here, a large CFD-

generated dataset spanning a wide variation of 

flight height, wind conditions, nozzle flow rate, 

droplet size, and UAV velocity is first created in 

order to train regression models such as Support 

Vector Regression, Back-Propagation Neural 

Networks, Random Forests, or shallow neural 

network models. By using these machine 

learning models, it becomes possible to rapidly 

predict deposition metrics such as deposition 

radius, lateral offset, or drift ratio with reported 

RMSE values at about 6.5%. Predictive models 

such as these can be efficiently run on 

microcontrollers or companion computers, and 

thus real-time compensation may be feasible 

either via adjustment in UAV lateral offset or by 

modulation of nozzle flow. 

3. Methodology 

This workflow integrates the NEON LiDAR 

point-cloud data into a holistic pipeline of 3D 

canopy reconstruction, canopy-volume 

estimation, prescription-map generation, and 

simulation-based variable-rate sprayer logic. 

Dataset descriptions 

This work uses the high-density LAS/LAZ point 

clouds provided by the NEON AOP Discrete 

Return LiDAR DP1.30003.001 data product and 

its DEM, DSM, and CHM derivatives to enable 

fine-scale canopy structure analyses. Co-

registered RGB orthomosaics DP1.30010.001 

will be used in the verification of canopy 

boundaries. This work selects an appropriate site 

like the SJER, where trees are arranged with 

orchard-like spacing, thereby allowing for 

reliable estimations and segmentation of the 

canopy volume. The dataset also provides 

metadata on flight altitude, sensor settings, and 

acquisition conditions that permit accurate 

preprocessing and reproducibility of the data. 

Experimental Setup 

This approach will utilize NEON AOP LiDAR to 

produce a CHM, segment the tree crowns, and 

compute canopy volumes that will be classified 

into spray-demand categories using an object-

based image analysis approach, and these will be 

used to develop a georeferenced prescription 

map. The simulated PID-PWM controller tracks 

the zone-specific flow rates through a noisy 

flowmeter model. CFD-derived drift data will be 

used to train a regression model in order to 

estimate and compensate for lateral drift. System 

performance will be evaluated through 

segmentation accuracy, volume estimation error, 

prescription alignment, flow-tracking accuracy, 

drift-prediction RMSE, and simulated 

improvements in chemical savings and 

deposition relative to constant-rate spraying. 

Step A — Data Acquisition 

The high-resolution LAS/LAZ point-cloud data 

from the NEON AOP Discrete Return LiDAR 

dataset DP1.30003.001, colocated DEM, DSM, 

and CHM layers are used, supplemented with co-

registered RGB orthomosaics DP1.30010.001 

for verification of canopy boundaries. First, a 

suitable NEON site, in this case San Joaquin 

Experimental Range, henceforth termed SJER, 

was selected because its vegetation structure 

essentially emulates orchard-like spacing, hence 

suited for both tree segmentation as well as 

canopy-volume analysis. 

Step B — LiDAR Preprocessing & CHM 

Construction 

LiDAR preprocessing cleans and normalizes the 

outliers, separating the ground from non-ground 

returns using standard filters such as CSF on the 

NEON point cloud. Digital Surface Model 

(DSM) and Digital Elevation Model (DEM) are 

generated by rasterizing the ground-normalized 

heights. DEM subtracted from DSM yields a 

high-resolution Canopy Height Model (CHM) 

ready for tree detection and canopy-structure 

analysis. 

Ground-Normalized Height 

Hn = Zpoint − Zground 

Where: 

 Zpoint= raw LiDAR elevation 

 Zground= DEM ground elevation 

 Hn= normalized canopy height 

Processes: 

 Statistical Outlier Removal (SOR) 

 Ground filtering (CSF or NEON “Class 

2” ground points) 
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 Rasterization to CHM at 0.5–1 m 

resolution 

Step C — Individual Tree Segmentation 

Individual tree segmentation begins by 

identifying local height maxima on the CHM, 

which serve as approximate treetop locations. A 

region-growing or watershed algorithm is then 

applied around these points to delineate distinct 

tree crowns. The segmented canopy regions are 

extracted as polygons, providing the basis for 

per-tree canopy-volume calculation. 

Local Maximum Filter (LMF) 

𝑇(𝑥, 𝑦)

= {
1, if 𝐶𝐻𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥⁡(𝐶𝐻𝑀(𝑁𝑟(𝑥, 𝑦)))

0, otherwise
 

where: 

 𝐶𝐻𝑀(𝑥, 𝑦): canopy height 

 𝑁𝑟: neighborhood radius (1–3 m) 

 Identifies tree tops 

Segmentation Steps: 

 Detect tree tops using LMF 

 Region growing / watershed 

segmentation 

 Generate tree polygons 

Step D - Calculation of Canopy Volume 

Volume of the canopy is quantified through the 

extraction of all LiDAR points inside each 

segmented tree crown and the reconstruction of 

the 3D shape of the canopy. Enclosed canopy 

volume is estimated by either the voxel-based or 

convex-hull method to maintain computational 

efficiency. This measure of volume subsequently 

acts as the basis for sorting trees into their 

respective spray-demand classes when producing 

the prescription map. 

Method 1: Voxel-Based Volume 

Divide each tree canopy into 3D voxels (size 10–

20 cm). 

Voxel Volume 

𝑉 = 𝑁𝑣 ⋅ 𝑠
3 

where: 

 𝑁𝑣= number of filled voxels 

 𝑠= voxel size (m) 

 

 

Method 2: Convex Hull Volume 

Convex Hull Volume 

𝑉 =
1

6
|∑  

𝑛

𝑖=1

  (𝑝𝑖 ⋅ (𝑝𝑖+1 × 𝑝𝑖+2))| 

where: 

 𝑝𝑖  : hull vertices 

 Computes 3D volume around canopy 

Step E: Prescription Map Generation 

Prescription map generation assigns spray rates 

for each tree or canopy unit depending on the 

volume classes derived from the NEON LiDAR 

data. The rates are attributed to a georeferenced 

raster or vector layer that matches the UAV's 

GNSS coordinate system. This final prescription 

map presents variable rate and spatially explicit 

instructions for real-time spray control during 

flight. 

Volume Class to Spray Rate 

𝑅𝑖 = 𝑎 + 𝑏𝑉𝑖  
where: 

 𝑅𝑖: required spray rate (L/min) 

 𝑉𝑖: canopy volume (m³) 

 𝑎, 𝑏: calibration coefficients 

 Can be linear or quantile-based 

Steps: 

 Categorize trees into 3–4 levels such as 

low/medium/high/very high. 

 Convert to Raster or Vector Prescription 

Map (GeoTIFF / Shapefile) 

 Align with the UAV GNSS coordinate 

system 

Step F — Variable-Rate PWM Spray 

Simulation  

Since there is no spray measurement in the 

NEON data, the canopy-volume pattern in our 

test bed represents a variable-rate sprayer. For 

each canopy unit, the prescription rate is looked 

up and a synthetic flow-meter reading with added 

noise is generated. A PID-controlled PWM 

model adjusts the duty cycle in pursuit of the 

target flow; this allows for testing of spray-rate 

stability as well as the performance of the 

controller. 
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Step G - CFD + Regression for Drift 

Prediction 

NEON-derived canopy structure will provide the 

derivation of the vegetation geometry in CFD 

simulations, including canopy height, shape of 

trees, wind field, and flight altitude. Outputs from 

CFD go to train a regression model which would 

make fast predictions of the behavior of drift: 

deposition offset and drift ratio. This allows 

lightweight drift compensation without needing 

to run CFD during spraying. 

Step H: Evaluation Metrics 

These include the accuracy of canopy volume 

estimation, quality of tree segmentation, and 

correctness of the prescription map. Spraying 

performance is considered in terms of simulated 

flow stability, controller tracking accuracy, and 

consistency between prescribed and achieved 

spray rates. These various metrics validate the 

complete pipeline. 

 

Figure 1:Workflow for Generating a 

Prescription Map 

Figure 1 illustrates an end-to-end process of how 

NEON LiDAR point-cloud data is converted into 

a georeferenced prescription map for variable-

rate spraying. In this processing workflow, the 

work starts with LiDAR input and proceeds with 

pre-processing and CHM creation, which allows 

tree-top detection and canopy segmentation. 

After that, canopy volumes are classified into 

spray-rate levels, and the resultant prescription 

map is used for UAV spray simulations. 

 

Algorithm 1 - NEON LiDAR to Prescription 

Map 

Input 

 P: NEON LiDAR point cloud 

(LAS/LAZ) 

 DEM - digital elevation model (optional) 

 Orthomosaic RGB (optional) 

 Parameters: voxel size, CHM resolution, 

treetop radius, classification method 

Output 

 M: Prescription map in 

GeoTIFF/Shapefile format 

 T: Table with tree ID, canopy volume, 

class, assigned spray rate 

Steps 

 The LiDAR point cloud pre-processing 

includes noise removal, normalization of heights 

using DEM, and CHM creation. 

 Possible crown centers are identified 

using a local-maximum filter that detects 

treetops. 

 Segmentation of individual tree crowns is 

performed either by a watershed or region-

growing approach. 

 Canopy volume is calculated for each 

segmented crown, based either on voxel counting 

or convex-hull methods. 

 Calculated volumes are categorized into 

one of three levels of spray demand: low, 

medium, or high. 

 The spray rates are allocated to each 

class, respectively, according to the predefined 

mapping rules. 

 The assigned spray rates are then rastered 

to produce the final georeferenced prescription 

map. 

Implementation Steps for Each Objective 

Obj-1: Acquire high-resolution LiDAR 3D 

canopy maps and calculate canopy volume 

 The preprocessing with regard to LiDAR 

point clouds involves noise filtering, height value 

normalization, and CHM raster generation for 

structural analysis. 

 Individual crowns of trees are identified 

on the CHM through treetop detection and 

segmentation. 

 The volume of the canopy for each 

segmented crown is estimated by either voxel-

based counting or convex-hull volume 

estimation. 
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Obj-2: Convert canopy volume to a 

georeferenced variable-rate prescription map 

 The canopy volumes are classified into 

spray-demand levels based on quantiles or pre-

set thresholds. 

 There is a target spray rate assigned to 

each class, either based on agronomic rules or 

based on linear mapping. 

 Spray rates are rasterised into a 

georeferenced prescription map which matches 

UAV GNSS coordinates. 

Obj-3: Implement real-time PWM closed-loop 

spray control w/ GNSS-based prescription 

look-up 

 The on-board controller reads GNSS 

coordinates on the UAV to establish the current 

spray zone from the prescription map. 

 The PID-based PWM module adjusts the 

pump duty cycle in accordance with a desired 

spray rate. 

 Simulated flowmeter feedback keeps 

process value of flow stable and corrects 

deviations. 

Obj-4: Development of CFD+ regression-

based deposition model for drift compensation 

 Canopy geometries from NEON were 

used to create these vegetation models for 

simulating droplet behavior in CFD under 

different wind and flight conditions. 

 CFD outputs such as deposition offset 

and drift ratio are gathered to create a training 

dataset. 

 A regression or neural network model 

predicts the drift effects and gives suggestions 

about the adjustment of flow or position. 

Obj-5: Field validation and measurement of 

Chemical Savings & Deposition Accuracy 

 Simulated UAV spraying with 

prescription-based rates and PID-controlled 

PWM output 

 Controller performance is assessed based 

on target versus simulated spray rates across the 

canopy. 

 Chemical savings and deposition 

accuracy are calculated by comparing the 

variable-rate simulation results against a 

constant-rate baseline. 

 

 

 

4. Results Based on Objectives 

A high-quality CHM was generated from the 

NEON SJER LiDAR dataset, ≈ 12-18 pts/m², 

with a height variance of just 0.18 m. The tree 

segmentation provided 146 individual crowns 

with ~91% segmentation accuracy. Canopy-

volume estimation ranged between 12.4 m³ and 

78.6 m³, with a mean of 34.7 m³. Validation 

through crosschecks in CHM resulted in an error 

within the range of 8-10% in the overall 

estimation of canopy volume, hence confirming 

reliable structural extraction. 

TABLE 1 — Canopy Mapping & 

Segmentation 

Metric Value Description 

Mean canopy 

height (m) 

6.8 Average height 

from NEON 

LiDAR CHM 

Max canopy 

height (m) 

11.2 Highest detected 

tree 

Segmented trees 

(count) 

146 Individual 

crowns detected 

in SJER plot 

Segmentation 

accuracy (%) 

91 Visual 

comparison with 

orthomosaic 

Canopy volume 

range (m³) 

12.4 – 

78.6 

Smallest to 

largest crown 

volumes 

Volume 

estimation error 

(%) 

8–10 CHM-based 

validation 

 

Table 1: Overall performances of canopy 

mapping and segmentation on the NEON LiDAR 

dataset. High-density point clouds provided a 

reliable CHM generation and detected trees with 

high accuracy. By detecting 146 crowns, the high 

overall accuracy for the segmentation process 

was 91%, whereas the estimated canopy-volume 

ranges were from 12.4 to 78.6 m³, with an 

estimation error of only 8-10%. In fact, the 

results confirm that the dataset provides enough 

structural detail for accurate canopy analysis, and 

hence permits subsequent variable-rate 

prescription mapping. 
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Figure 2. Canopy Height Distribution 

Histogram 

This figure 2 shows the frequency distribution of 

the canopy heights created from the NEON 

LiDAR dataset using 0.5 m bins ranging from 0 

to 12 m. From this histogram, one will clearly 

notice that dominance in height lies between 6–8 

meters, which is a moderately tall and fairly even 

canopy structure. This distribution verifies that 

the dataset has adequate vertical variability for 

correct canopy-volume estimation and 

prescription-map generation. 

 

Figure 3. Tree Height vs. Canopy Volume  

Fig. 3 shows the relationship developed between 

tree height and canopy volume using the 

collected NEON LiDAR dataset, where positive 

vertical growth is related to canopy size. 

Although the scattered distribution of points 

outlines natural variability among trees, there is 

an upward trend. This developed relationship 

supports the application of height-based 

structural metrics in the estimation of canopy 

volume and variable-rate spray decisions. 

These computed volumes were then classified 

into three quantile thresholds, hence ensuring the 

spray-demand class distribution was balanced 

over the study area. This resulted in a 

classification of spray rates at 0.4 L/min, 0.7 

L/min, and 1.0 L/min, respectively. Finally, the 

georeferenced prescription map was developed at 

a resolution of 0.5 m with an overall class-

location alignment accuracy of 94%. The 

resulting CDP gave a good representation of the 

pattern in canopy density. 

 

Figure 4.Canopy Volume Classes 

Figure 4 shows a comparison of canopy volumes 

between three prescription classes, which will be 

used for variable-rate spraying. From these 

boxplots, the low, medium, and high canopy 

volume groups are very well separated, 

indicating that the classification based on volume 

is meaningful and structurally distinguishable. 

This may justify assigning a different spray rate 

for each class to apply pesticides more precisely 

and efficiently. 

The simulated PID-PWM control with 

prescription rates was very stable; the average 

absolute flow error was 0.032 L/min, with the 

response time below 0.4 s. Simulated flowmeter 

feedback-maintained tracking accuracy at 95.8%, 

hence closely following zone-specific target 

spray rates determined from a prescription map. 

These results confirm that the proposed control 

architecture is able to control real-time spray 

output effectively. 

 

Figure 5. PWM Flow Tracking Curve 

Figure 5 shows target spray flow rate vs. 

measured flow rate over a simulated 30-second 

spraying interval. The close tracking between 

both curves testifies to the effectiveness of the 

PID-controlled PWM regulation in maintaining 
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flow accuracy despite small disturbances. In fact, 

the stable tracking performance suggests that the 

controller can follow the prescription-based 

spray requirements successfully during UAV 

operations. 

CFD simulations were performed using the 

NEON canopy geometry, which yielded 

simulated droplet dispersion over wind speeds of 

1-3 m/s and flight altitudes of 3-5 m. A lateral 

drift offset in the range of 0.32 to 0.95 m, with a 

root mean square error of 6.7%, was predicted by 

an SVR learning-based drift model. Model-based 

compensation yielded a 72-81% reduction in the 

predicted drift. 

 

Figure 6. Drift Predicted vs. Drift 

Compensated 

Figure 6 presents a comparison of droplet drift 

distances as predicted under conditions of 

varying wind speeds and the reduction in drift 

achieved after compensation. For all wind 

conditions, the compensated bars are below the 

uncompensated, reflecting effective lateral drift 

reduction. These results confirm very clearly that 

the incorporation of CFD-informed regression 

significantly improves spray deposition accuracy 

in changing wind environments. 

 

Figure 7. CFD-Based Deposition Density 

Figure 7 shows the predicted droplet deposition 

pattern calculated using CFD modeling; both 

high and low areas of spray density are visible on 

the canopy surface. Asymmetrical spread 

characterizes drift, and deposition will be biased 

toward the downwind direction. Deposition 

imbalance can be portrayed graphically by CFD 

outputs, as in this heat map, while strategies for 

drift compensation can be developed to support 

improved accuracy in UAV-based spraying. 

Comparison of the simulated constant-rate and 

variable-rate spraying revealed that the proposed 

system achieved 24.8% chemical savings, while 

providing a 19.4% increase in canopy deposition 

uniformity and reducing over-deposition on the 

ground by 31.2%. Prescription adherence 

remained high at 93.6%, further validating that 

LiDAR-driven variable-rate spraying can indeed 

yield significant improvements in both chemical 

efficiency and deposition quality, even when 

validated through NEON canopy structure 

simulation. 
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TABLE 2 — Variable-Rate Spray System 

Performance 

Component Metric Val

ue 

Notes 

PWM Flow 

Control 

Mean 

error 

(L/min) 

0.03

2 

Stable 

tracking of 

target rate 

PWM 

Response 

Time 

Seconds 0.4 Time to 

reach 

stable 

output 

Drift 

Model 

RMSE 

(%) 

6.7 Regression 

prediction 

accuracy 

Drift 

Compensat

ion 

Reduction 

(%) 

72–

81 

Improvem

ent vs no 

compensat

ion 

Chemical 

Savings 

% 24.8 VRS vs 

constant 

spray 

Deposition 

Uniformity 

Improvem

ent (%) 

19.4 Canopy-

target 

improvem

ent 

Ground 

Over-

deposition 

Reduction 

(%) 

31.2 Reduced 

waste 

Prescriptio

n 

Adherence 

% 93.6 Spatial 

accuracy 

of 

application 

 

Table 2 detailed performance of the variable-rate 

spray system is provided in Table. Specifically, 

highly stable flow tracking with an average error 

of only 0.032 L/min was provided by the PID-

controlled PWM module with fast response time. 

The CFD-regression drift model reached high 

predictability at an RMSE of 6.7% and attained 

72-81% drift reduction after compensation. In 

general, the variable-rate strategy brought several 

key benefits, including saving 24.8% of 

chemicals, improving the uniformity of canopy 

deposition, and significantly reducing over-

deposition on the ground compared with 

constant-rate spraying. 

 

Figure 8. Performance Comparison: 

Constant-Rate vs. Variable-Rate Spraying 

Figure 8 presents comparisons of chemical use, 

canopy coverage, and deposition on the ground 

between the two spraying strategies. On one 

hand, the variable-rate strategy significantly 

reduces the use of chemicals, improves canopy 

coverage, and reduces excessive ground 

deposition. These results point toward efficiency 

and precision gains possible from LiDAR-driven, 

prescription-based UAV spraying. 

Table 3. Comparative Study of Existing UAV 

Spraying Systems vs. Proposed Approach 

Stu

dy 

/ 

Wo

rk 

Sens

ing 

Mod

ality 

Pres

crip

tion 

Unit 

Co

ntr

ol 

Me

tho

d 

Depo

sitio

n / 

Drift 

Mod

ellin

g 

Fiel

d / 

Sim

ulat

ion 

Vali

dati

on 

Key 

Fin

ding

s 

(Li

u 

et 

al., 

20

25) 

LiD

AR 

+ 

RGB 

Plot-

level 

(wh

eat) 

PW

M 

+ 

PID 

(clo

sed-

loo

p) 

None 

(emp

irical 

only) 

Fiel

d 

Ach

ieve

d 

~30

% 

che

mic

al 

redu

ctio

n; 

impr

ove

d 

unif

ormi

ty. 

(Ni 

et 

al., 

No 

LiD

AR 

(CF

D-

Cont

inuo

us 

spra

y 

Pu

mp 

reg

ulat

ion 

CFD 

+ 

Regr

Fiel

d 

Reg

ressi

on 

drift 

mod
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20

21) 

base

d) 

zone

s 

+ 

UA

V 

offs

et 

essio

n 

el 

RM

SE 

≈ 

6.5

%; 

impr

ove

d 

dep

ositi

on 

cont

rol. 

(P. 

Ch

en 

et 

al., 

20

25) 

LiD

AR 

Indi

vidu

al 

tree 

(orc

hard

s) 

Mu

lti-

poi

nt 

deli

ver

y 

stra

teg

y 

None Fiel

d 

Up 

to 

90.4

% 

redu

ctio

n in 

grou

nd 

loss 

for 

dens

e 

cano

py 

trees

. 

(Bi

gli

a 

et 

al., 

20

22) 

Mult

ispec

tral + 

DS

M 

Pixe

l-

level 

zone

s 

Ope

n-

loo

p 

pu

mp 

con

trol 

No 

aerod

ynam

ic 

mode

lling 

Sim

ulat

ion 

Imp

rove

d 

spati

al 

map

ping 

but 

lack

ed 

flow 

accu

racy. 

(B

yer

s et 

al., 

20

24) 

RGB 

+ 

Man

ual 

cano

py 

mark

ers 

Plot-

level 

Co

nsta

nt-

rate 

app

lica

tion 

None Fiel

d 

Larg

e 

over

-

dep

ositi

on 

obse

rved 

in 

spar

se 

cano

py 

area

s. 

Pr

op

ose

d 

Me

tho

d 

(T

his 

Stu

dy) 

LiD

AR 

(NE

ON 

AOP

) + 

CH

M + 

Seg

men

tatio

n 

Per-

tree 

can

opy 

volu

me 

PW

M 

+ 

PI

D 

(si

mu

late

d 

clos

ed-

loo

p) 

CFD 

+ 

SVR 

Drift 

Com

pens

ation 

Dat

aset 

+ 

Sim

ulat

ion 

~25

% 

che

mic

al 

savi

ngs, 

19

% 

bett

er 

can

opy 

cove

rage

, 

31

% 

red

uce

d 

gro

und 

dep

ositi

on; 

high 

pres

crip

tion 

adh

eren

ce 

(93.

6%)

. 

 

This comparative analysis therefore shows that 

while previous spraying systems each focused 

either on LiDAR-based mapping or CFD-based 

drift modeling, none used the integration of 

canopy-volume segmentation with variable-rate 

prescription mapping, PWM closed-loop control, 

and drift compensation within a common 

workflow. On the other hand, the proposed 

system makes use of the NEON LiDAR data to 

bridge this gap in all components and hence 

ensures higher chemical efficiency due to 

increased canopy depositions with reduced 

ground losses compared to the past methods. 
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Major Findings 

1. The fine extraction of the canopy 

structure was done with the NEON AOP LiDAR 

dataset, hence allowing the derivation of an 

accurate CHM and segmenting 146 individual 

crowns with ~91% accuracy. 

2. The volumes of the canopies ranged from 

12.4 to 78.6 m³, thus providing considerable 

variation to categorize the spray-demand levels 

and create an accurate prescription map. 

3. The PID-PWM controller has 

demonstrated tracking of spray with an average 

flow error of 0.032 L/min and response times less 

than 0.4 seconds. 

4. The CFD-SVR drift model gives an 

RMSE of 6.7% and hence allows for efficient 

predictions of the magnitude of the drifts due to 

the shifting winds. 

5. When applied, drift compensation 

reduces simulated drift by 72–81%, thereby 

greatly increasing deposition accuracy. 

6. Efficiency gains estimated with variable-

rate spraying are ~24.8% chemical savings, 

~19.4% improved canopy coverage, and ~31.2% 

reduced ground overdeposition with respect to 

constant-rate spraying. 

5. Discussion 

Results showed that LiDAR-driven canopy 

characterization offers a very robust basis for 

variable-rate UAV sprayers, even in the absence 

of field data, by using the NEON AOP canopy 

structure. The general good quality of the 

segmentation, given the volume range involved, 

confirms that canopy-volume classification is 

achievable for orchard-like vegetation structures. 

This develops strong spatial consistency in the 

prescription map format, with 94% alignment 

with canopy distribution, hence indicating 

readiness for real UAV implementation. 

These simulations of the PID-PWM demonstrate 

how real-time control hardware can maintain 

tight flow control in the presence of an 

environmental or mechanical disturbance. 

Further enhancement using CFD Regression 

Drift Modeling strengthens this embedded 

aerodynamic intelligence within the spraying 

system to overcome one of the major limitations 

of conventional constant-rate spraying without 

consideration of downwash-wind interactions. 

The integrated pipeline is modular, scalable, and 

easily adaptable to any LiDAR dataset and UAV 

platform. While demonstrations were simulation-

based, performance indicators are close enough 

to those from field studies to confirm the 

possibility of this system in real-world 

agricultural spraying. 

Scientific Contributions 

1. Canopy volume derived from LiDAR is 

integrated into the variable-rate spraying logic 

through a prescription-map approach drawing 

from high-resolution NEON AOP data. 

2. Develop a data-driven simulation 

framework for PWM-PID with the capability of 

accurately presenting flow tracking performance 

based on per-tree spray prescriptions. 

3. Employment of CFD-derived drift 

intelligence with an SVR-based compensation 

model for the prediction and mitigation of the 

effects of lateral drift. 

4. A fully reproducible, modular approach 

will be introduced based on open-source data and 

tools only, namely NEON, Python, CHM 

segmentation, CFD, and ML. 

5. Proof of measurable efficiency gains such 

as: chemical savings improved uniformity of 

deposition in the canopy reduced ground 

deposition 

6. UAV spraying provides a unified 

perception–decision–actuation pipeline that 

bridges gaps between remote sensing, control 

engineering, and aerodynamics. 

6. Conclusion and Future Work 

This work demonstrated how an LiDAR-based 

canopy volume estimation, together with 

variable-rate prescription mapping and a PWM-

controlled spray regulation system, improves 

accuracy and effectiveness in UAV pesticide 

application. Using the NEON AOP dataset, it 

classified canopy volumes, prescribed variable 

rates adaptively, and finally simulated real-time 

controller applications of these rates. Further 

incorporation of CFD-driven drift prediction 

allowed deposition accuracy because the systems 

could sustain high spraying quality under a range 

of environmental conditions. 

These benefits comprise an estimated 25% 

chemical saving, a ~19% higher canopy 

coverage, and a significant reduction of losses on 

the ground, all supporting the value of fusing 

remote sensing, machine learning, and control 

strategies for modern precision agriculture. In 

general, this work provides a sound base for the 

development of improved smart-spraying 

systems based on UAVs. 

Future Work 

Field Deployment and Validation: Flights of real 

aircraft with on-board STM32 PWM controllers 

http://www.ijcrt.org/


www.ijcrt.org                                        © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882 

IJCRT2512274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c330 
 

and flow sensors validate simulation results. 

Onboard Real-Time Drift Prediction: 

Lightweight models running on embedded 

hardware enable real-time flight updates for 

dynamic compensation. Adaptive Machine 

Learning Models: Develop models that regularly 

update their predictions of drift during the 

missions, incorporating feedback from WSP/PET 

that are collected. Integration with 

Multispectral/Health Indices: Canopy structure 

can be integrated with vegetation health metrics 

to enable structure and condition-based spraying. 

Multi-nozzle and directional spraying: Extend 

the system to multi-nozzle UAVs with the 

capability for directional spraying to ensure 

better edge canopy deposition. Generalization 

w.r.t. Crop Type: Test whether pipeline 

performance generalizes to other orchard, 

vineyard, plantation, and row-crop data sets for 

testing scalability. Wind-Adaptive Flight Path 

Optimization: Include dynamic flight path 

adjustments according to predicted drift and 

canopy density. 
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