



# Cosmeceuticals: A Comprehensive Review On Ingredients, Mechanisms And Dermatological Applications

Author's Name: Shakti chaurasiya\*, Priyanshu maurya\*, Abhishek\*, Rajkumar pal\*, Karishma yadav  
Nirmala Devi Pharmacy College, jaunpur

## Abstract

Cosmeceuticals are a fast-growing group of topical products that sit at the intersection of cosmetics and pharmaceuticals. They contain biologically active ingredients that provide therapeutic benefits to skin structure and function, going beyond just superficial enhancement. This shift from cosmetic-only to functionally active formulations shows the rising demand from consumers for skincare backed by scientific research. The global cosmeceutical market reached around USD 60 billion in 2023, with an expected compound annual growth rate of over 7%. It includes various bioactive categories like retinoids, vitamin C derivatives, hydroxy acids, peptides, growth factors, botanical antioxidants, niacinamide, and sunscreen actives. This review explores key cosmeceutical ingredient classes, detailing their molecular mechanisms, cellular targets, formulation science, clinical evidence of effectiveness, and dermatological uses in areas like photoaging, hyperpigmentation, acne vulgaris, rosacea, and barrier dysfunction. Retinoids impact gene transcription through retinoic acid receptors, boosting collagen production and normalizing the skin's outer layer. Ascorbic acid helps in collagen maturation while also acting as an antioxidant and reducing melanin production. Alpha-hydroxy acids increase skin cell turnover. Peptides activate fibroblasts and stimulate protein production. Careful formulation design, focusing on pH balance, light stability, vehicle choice, and penetration improvement, is essential for translating *in vitro* activity to clinical use. Regulatory standards differ worldwide. Cosmeceuticals often occupy unclear spaces between cosmetics, which must ensure safety without proving effectiveness, and drugs that need extensive clinical trials. However, strong evidence from randomized controlled trials confirms the effectiveness of many cosmeceutical groups for specific purposes. Future trends may include personalized formulas based on genetics that influence ingredient processing, designs compatible with the microbiome, advanced delivery methods, and the use of digital dermatology to assess outcomes objectively.

**Keywords:** Cosmeceuticals , Retinoids , Vitamin C, Alpha-Hydroxy Acids, Hyperpigmentation, Dermatology, Skin Barrier.

## INTRODUCTION

The term “cosmeceutical,” introduced by Dr. Albert Kligman in 1984, refers to topical products that contain active ingredients with biological effects on the skin, exceeding traditional cosmetics but not fitting the pharmaceutical classification. This category occupies a unique regulatory and commercial space. These products deliver real physiological benefits while being marketed as cosmetics in most areas. The lack of a clear definition arises from regulatory systems that typically recognize only two categories: cosmetics, which are meant to cleanse, beautify, or change appearance without affecting structure or function, and drugs, which aim to treat, prevent, or manage disease.

The cosmeceutical idea came about because science showed that certain topical agents, especially vitamin A derivatives, could lead to measurable improvements in skin affected by aging. This is achieved through mechanisms like enhanced collagen production, normalized keratinization, and antioxidant actions. The FDA's approval of tretinoin (all-trans retinoic acid) for photoaging in 1995 confirmed that topical agents could tackle biological issues related to visible aging, spurring further research into other bioactive ingredients.

Todays cosmeceuticals cover varied molecular groups linked by proven biological activity verified through in vitro studies, animal testing, and increasingly, human clinical trials. Major groups include:

- Retinoids (retinol, retinaldehyde, retinyl esters, synthetic retinoids)
- Antioxidants (vitamins C and E, polyphenols, coenzyme Q10)
- Alpha-hydroxy acids (glycolic, lactic, mandelic acids)
- Peptides (signal peptides, carrier peptides, neurotransmitter-inhibiting peptides)
- Growth factors and cytokines
- Botanical extracts with known bioactivity
- Niacinamide (vitamin B3)
- Sunscreen ingredients

The global cosmeceutical market surpassed USD 60 billion in 2023. This growth reflects aging populations, increasing scientific backing, greater consumer awareness of ingredient effectiveness, and easy access to information about those ingredients. The Asia-Pacific region is growing the fastest, while North America and Europe hold significant market shares with strong regulatory frameworks. This review looks closely at key cosmeceutical ingredient groups, their mechanisms, formulation factors, clinical evidence, dermatological uses, regulations, and future research possibilities.

## REGULATORY FRAMEWORK AND DEFINITIONAL CHALLENGES

### 2.1 Global Regulatory Variability

**United States:** The FDA only recognizes cosmetics and drugs; “cosmeceutical” has no legal definition. Products making claims about structure or function, like “reduces wrinkles” or “increases collagen,” technically fall under the drug category, requiring New Drug Applications. However, many cosmetic products make such claims under self-regulation.

**European Union:** Similar dual classification exists under Regulation (EC) No 1223/2009, though the European Commission has provided guidance on borderline products. Functional claims must be backed up, but comprehensive clinical trials are not needed for cosmetics.

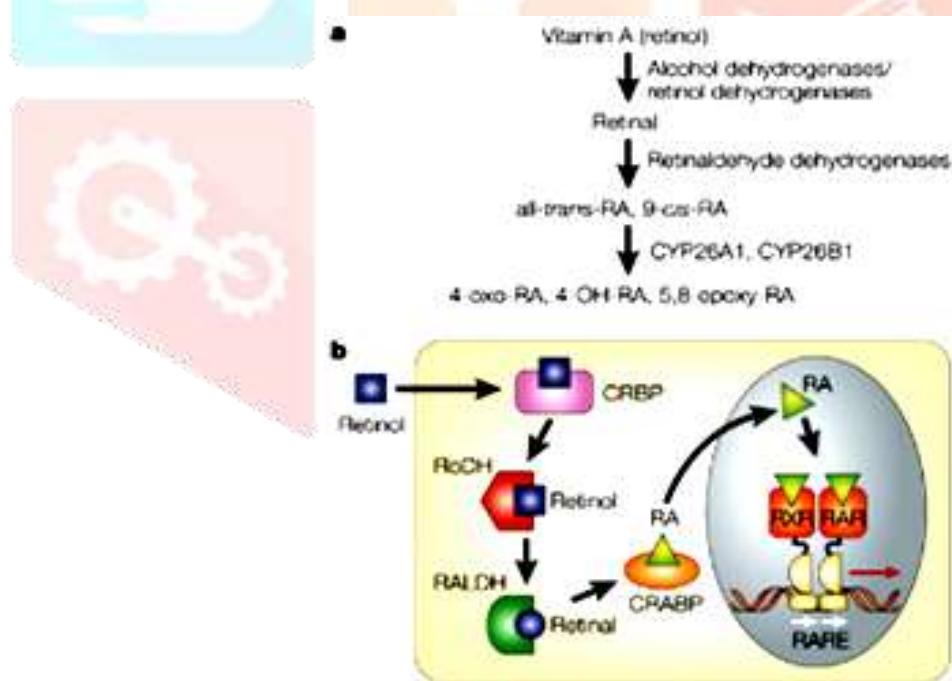
**India:** The Drugs and Cosmetics Act of 1940 is being revised to explicitly address cosmeceuticals, with plans for a separate regulatory pathway that requires safety and some efficacy evidence.

**Japan:** “Quasi-drugs” (部外品) occupy between cosmetics and pharmaceuticals. Some cosmeceutical products with approved active ingredients and claims fit into this category.

## 2.2 Claim Substantiation Requirements

While the FDA does not require pre-market approval, responsible marketing of cosmeceuticals demands scientific support through:

- In vitro cellular tests (collagen production, tyrosinase inhibition, antioxidant activity)
- Ex vivo human skin models (3D tissue cultures, organ culture)
- Clinical trials (ideally randomized, vehicle-controlled, evaluator-blinded) with objective measures (skin biopsies, non-invasive imaging, standardized grading systems)


## RETINOIDS: MOLECULAR MECHANISMS AND CLINICAL APPLICATIONS

### 3.1 Retinoid Classes and Metabolism

Retinoids are derivatives of vitamin A with different chemical structures but similar biological activities through retinoic acid receptors (RARs, , ) and retinoid X receptors (RXRs , , ).

Prescription Retinoids (Drugs):

- Tretinoin (all-trans retinoic acid): direct RAR agonist
- Isotretinoin (13-cis retinoic acid): isomer with unique effects
- Tazarotene and adapalene: synthetic receptor-selective retinoids

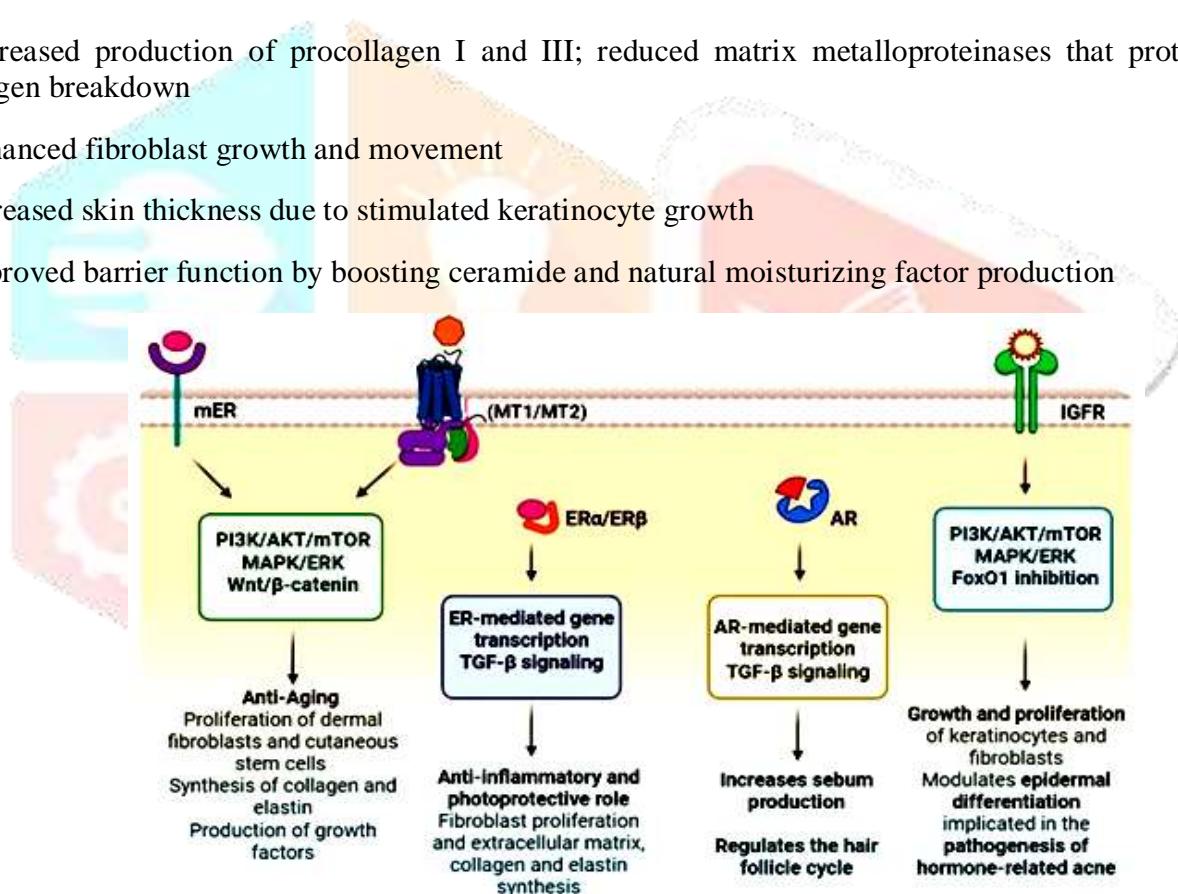


Pathways for retinoic acid (RA) synthesis involve the conversion of vitamin A (retinol) through enzymes. Retinol is bound by cellular retinol-binding protein (CRBP) and converted to retinal by retinol dehydrogenase (RoDH). Retinal is further metabolized to RA by retinaldehyde dehydrogenases (RALDHs) and bound to cellular RA-binding protein (CRABP). RA then enters the nucleus, binds to retinoic acid receptors (RARs) and retinoid X receptors (RXRs), leading to the activation of target gene transcription at the RA-response element (RARE).

## Cosmeceutical Retinoids:

**Retinol (vitamin A alcohol):** needs two-step enzymatic conversion (retinol → retinaldehyde → retinoic acid) via retinol and retinaldehyde dehydrogenases

**Retinaldehyde (retinal):** requires a single oxidation step; more potent than retinol but better tolerated than tretinoin


**Retinyl esters (retinyl palmitate, propionate, acetate):** need three conversion steps; mildest but least potent

## 3.2 Molecular Mechanisms

Once converted to all-trans retinoic acid, retinoids attach to nuclear RARs, forming pairs with RXRs and binding retinoic acid response elements (RAREs) in gene promoters. This modulates the expression of many genes involved in:

### Anti-Aging Effects:

- Increased production of procollagen I and III; reduced matrix metalloproteinases that protect against collagen breakdown
- Enhanced fibroblast growth and movement
- Increased skin thickness due to stimulated keratinocyte growth
- Improved barrier function by boosting ceramide and natural moisturizing factor production



*Intracellular pathways influenced by melatonin, estrogens, androgens, and IGF-1 contribute significantly to dermatological effects. Melatonin and estrogen activate membrane receptors, boosting antioxidant defense and regeneration via pathways including PI3K/AKT, MAPK/ERK, and Wnt/β-catenin. Estrogens also enhance collagen synthesis and anti-inflammatory responses through nuclear receptors. Androgens regulate sebum*

## Anti-Acne Mechanisms:

- Normalized follicular keratinization, which helps prevent microcomedone formation
- Reduced sebocyte differentiation and oil production (at pharmacological doses)
- Anti-inflammatory actions by inhibiting the AP-1 transcription factor and toll-like receptor 2

### Melanogenesis Modulation:

- Altered melanosome distribution and reduced transfer to keratinocytes
- Increased turnover of skin cells to aid in pigment removal

### 3.3 Clinical Evidence and Applications

Numerous randomized controlled trials confirm the effectiveness of retinol for photoaging. A key study found significant improvements in fine wrinkles, pigmentation, and roughness after 12 weeks of using 0.4% retinol compared to a control. Histological analysis showed increased skin thickness and improved collagen levels.

Retinaldehyde displayed greater effectiveness than retinol at similar concentrations with lower irritation in split-face trials. Retinyl esters had modest benefits at higher concentrations but needed consistent use over several months.

### Clinical Indications:

- Photoaging (fine wrinkles, roughness, irregular pigmentation)
- Acne vulgaris (both comedonal and inflammatory)
- Post-inflammatory hyperpigmentation
- Melasma (when used alongside hydroquinone or other lightening agents)

### 3.4 Formulation and Tolerability

Retinoid irritation, like redness, scaling, and dryness, arises from increased cell turnover and disrupted barriers. To manage this:

- Start with low concentrations (0.10.25% retinol) and use every 23 nights, gradually increasing
- Use liposomes, microsponges, or polymeric systems for controlled release
- Combine with barrier-supporting ingredients like ceramides and glycerin
- Protect from light and oxygen using airless, opaque packaging

## VITAMIN C: FORMULATION SCIENCE AND PHOTOPROTECTION

### 4.1 Biochemical Functions

#### L-ascorbic acid (vitamin C) acts as:

- A strong water-soluble antioxidant that neutralizes superoxide, hydroxyl radicals, and singlet oxygen
- A cofactor for enzymes that stabilize collagen
- A reducing agent that helps restore oxidized vitamin E
- A tyrosinase inhibitor, reducing melanogenesis

## 4.2 The Formulation Challenge

### L-ascorbic acid has notable formulation difficulties:

- It has poor stability in aqueous solutions and quickly oxidizes to dehydroascorbic acid, leading to irreversible degradation recognized by discoloration
- Low pH (<3.5) is optimal for skin penetration, as ionization occurs at physiological pH
- Light, heat, and metal ions accelerate its breakdown

### Solutions:

- Use anhydrous formulations (silicone bases)
- Add stabilizers like ferulic acid, which also enhances vitamin E stability and photoprotection
- Use chelators like EDTA to bind metal ions
- Implement airless, opaque packaging
- Consider refrigeration

## 4.3 Vitamin C Derivatives

To address stability issues, researchers developed derivative forms:

- Magnesium ascorbyl phosphate (MAP): water-soluble, stable at neutral pH, needs enzymatic cleavage
- Sodium ascorbyl phosphate (SAP): similar benefits, plus added antimicrobial effects for acne
- Ascorbyl-6-palmitate: lipophilic, stable in oil but requires enzymatic cleavage
- 3-O-ethyl ascorbic acid: stable, directly active without conversion, provides superior photoprotection

## 4.4 Clinical Evidence

The gold-standard formulation of 15% L-ascorbic acid, 1% vitamin E, and 0.5% ferulic acid shows:

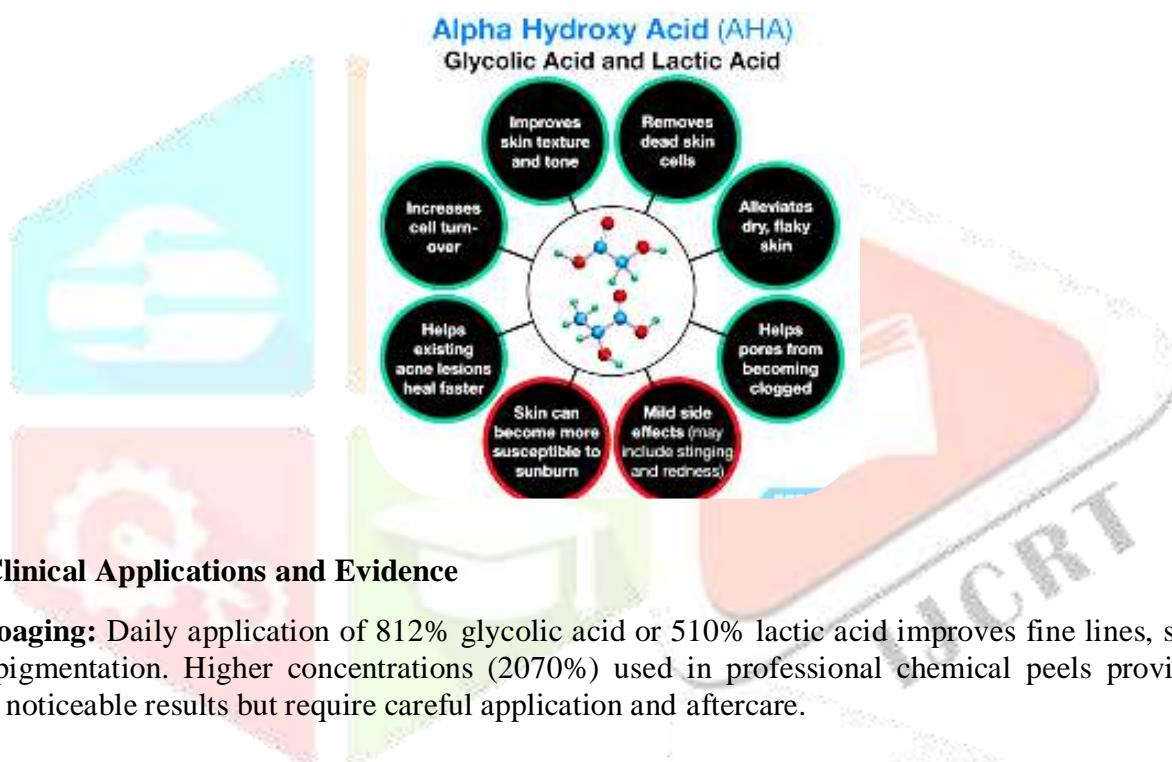
- About four times reduction in UV-induced redness and sunburn cell formation compared to a control
- 75% reduction in thymine dimer DNA damage after UV exposure
- Notable improvements in fine wrinkles, roughness, and pigmentation after 12 weeks among photoaged individuals
- Long-term use (36 months) results in increased collagen levels in the skin and improved structure

## ALPHA-HYDROXY ACIDS (AHAs): CHEMICAL EXFOLIATION AND DERMAL EFFECTS

### 5.1 Chemical Classes

AHAs are short-chain carboxylic acids sourced from nature:

- Glycolic acid (from sugarcane): the smallest molecule with the deepest penetration
- Lactic acid (from milk): larger and gentler with moisturizing properties
- Mandelic acid (from bitter almonds): larger and slower penetrating, suitable for sensitive or darker skin
- Citric acid, malic acid, tartaric acid: often used in mixtures or as pH adjusters


## 5.2 Mechanisms of Action

### Epidermal Effects:

- Disruption of strong bonds between skin cells, facilitating shedding and increasing cell turnover
- Increased keratinocyte growth in the lower skin layers to offset surface cell loss
- Improved skin organization with a tighter and more structured outer layer

### Dermal Effects:

- Direct stimulation of fibroblasts boosts collagen, elastin, and glycosaminoglycan production
- Using AHAs regularly enhances skin thickness and the arrangement of elastic fibers
- Increased skin hydration through higher glycosaminoglycan levels



## 5.3 Clinical Applications and Evidence

**Photoaging:** Daily application of 812% glycolic acid or 510% lactic acid improves fine lines, skin texture, and pigmentation. Higher concentrations (2070%) used in professional chemical peels provide quicker, more noticeable results but require careful application and aftercare.

**Hyperpigmentation:** AHAs speed up skin cell turnover, which helps clear pigmented cells. Combining glycolic acid (1015%) with hydroquinone or kojic acid has shown better effectiveness for melasma and post-inflammatory pigmentation than using either alone.

**Acne:** Glycolic and salicylic acid reduce comedones and inflammatory lesions by preventing the buildup of skin cells in follicles.

**Photoprotection:** Long-term AHA use (6 months) slightly heightens photosensitivity (around 18% reduction in minimum erythema dose), so diligent sun protection is necessary during use.

## 5.4 Formulation Considerations

pH is key: the free acid form (protonated) penetrates skin effectively; activity peaks at pH 3-4.

Concentration and pH determine the “free acid value” the amount that actually penetrates.

Using buffer to adjust pH above 4 improves tolerance but may reduce effectiveness.

Introducing AHAs gradually (every other day) and using moisturizers can help lessen irritation.

## PEPTIDES: SIGNALING MOLECULES FOR DERMAL REMODELING

### 6.1 Peptide Categories

**Signal Peptides:** These mimic fragments of ECM proteins or growth factors and stimulate fibroblast activity and matrix production .

- **Palmitoyl pentapeptide-4 (Matrixyl):** Stimulates collagen I, III, IV, and fibronectin production
- **Palmitoyl tripeptide-1:** Enhances collagen production
- **Copper peptides (GHK-Cu):** Support wound healing, modulate metalloproteinase activity, and provide antioxidant benefits

**Carrier Peptides:** These deliver trace elements like copper and manganese, which are essential for enzymatic processes .

**Neurotransmitter-Inhibitor Peptides:** These affect the release of acetylcholine at neuromuscular junctions, leading to mild muscle relaxation that can reduce expression lines .

- **Acetyl hexapeptide-8 (Argireline):** Competes with SNAP-25 for forming the SNARE complex, which reduces muscle contractions

**Enzyme-Inhibitor Peptides:** These aim at proteases such as MMPs, elastases, and tyrosinase .

### 6.2 Mechanisms and Evidence

Palmitoyl peptides enter the skin through passive diffusion, aided by fatty acid parts. They bind to fibroblast receptors, likely integrin or growth factor receptors, activate MAP kinase pathways, and increase TGF- signaling. This leads to greater procollagen mRNA and protein synthesis .

**Clinical evidence:** Split-face trials using 310 ppm palmitoyl pentapeptide-4 show modest but statistically significant improvements in fine wrinkles and skin roughness after 12 weeks . Copper tripeptide-1 speeds up wound healing and shows anti-inflammatory effects in controlled studies .

### Limitations: Peptides face challenges, including:

- Limited penetration due to large molecular size
- Susceptibility to breakdown by skin peptidases
- Modest effects compared to retinoids or vitamin C in direct comparisons
- High cost relative to clinical benefits

## NIACINAMIDE: MULTIFUNCTIONAL VITAMIN B3 DERIVATIVE

### 7.1 Diverse Biological Effects

#### Niacinamide (nicotinamide) shows various biological effects:

- It serves as a precursor for NAD+/NADP+, supporting cellular energy metabolism and DNA repair (PARP enzymes)
- It boosts ceramide and free fatty acid production, which strengthens the stratum corneum barrier and reduces water loss
- It inhibits melanosome transfer from melanocytes to keratinocytes, helping to improve dyschromia
- It has anti-inflammatory properties by reducing pro-inflammatory cytokines (IL-1, IL-6, TNF-)
- It lowers sebum production in oily or acne-prone skin
- It provides antioxidant support by maintaining NAD(P)H levels

### 7.2 Clinical Evidence Across Indications

**Photoaging:** Randomized trials with 5% niacinamide show improvements in fine wrinkles, dark spots, redness, and skin elasticity after 12 weeks

**Barrier Function:** Using 25% niacinamide increases ceramide and protein levels in the stratum corneum, reduces transepidermal water loss, and improves tolerance to irritants in sensitive skin

**Pigmentation:** A concentration of 45% niacinamide shows effectiveness similar to 4% hydroquinone for melasma and post-inflammatory hyperpigmentation, with better tolerability in comparative trials

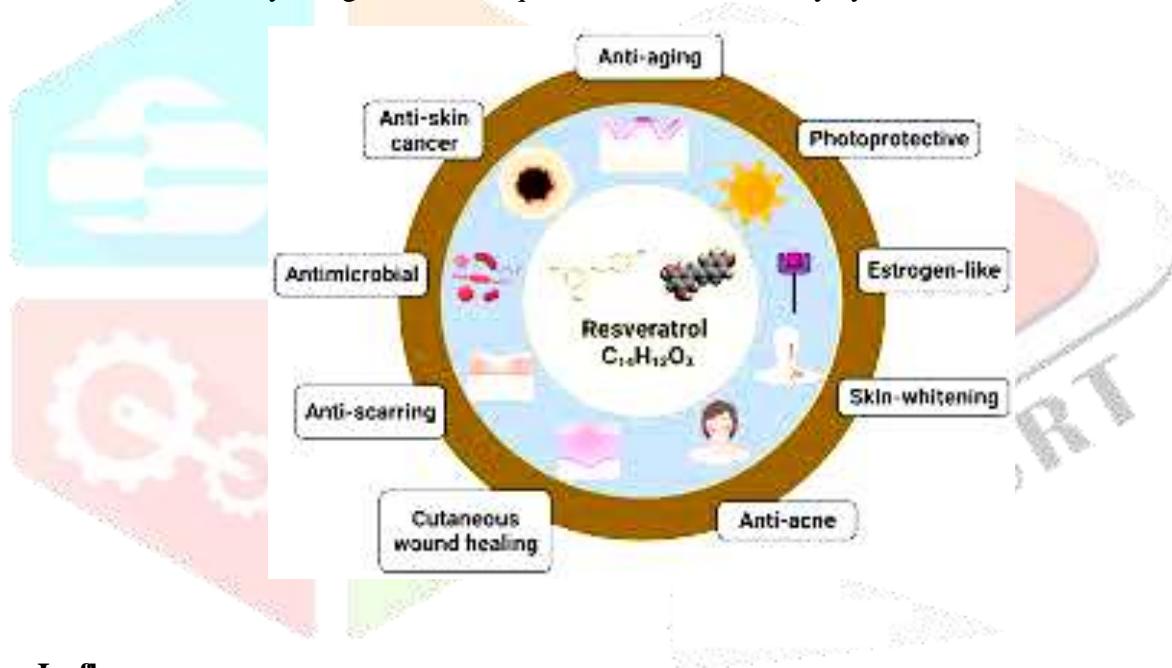
**Acne:** A 4% niacinamide gel is as effective as a 1% clindamycin gel in treating inflammatory acne through its anti-inflammatory and sebum-regulating properties

### 7.3 Practical Advantages

Niacinamide is stable across a broad pH range (pH 5-7) and works well with most formulations. It is generally well-tolerated across all skin types, causing minimal irritation. It increases tolerability when combined with other potentially irritating actives, like retinoids and AHAs. It remains stable when exposed to light and oxygen, and it can be combined with vitamin C despite common misconceptions.

## BOTANICAL ANTIOXIDANTS AND POLYPHENOLS

### 8.1 Green Tea Polyphenols (EGCG)


**Epigallocatechin-3-gallate (EGCG) from *Camellia sinensis* shows:**

- Strong ROS scavenging ability
- Inhibition of UV-induced AP-1 activation and MMP production
- Improved DNA repair capacity
- Anti-inflammatory effects through NF-B modulation

Clinical studies indicate that topical green tea polyphenol preparations (310% extracts) can reduce UV-induced redness and DNA damage

### 8.2 Resveratrol

This stilbene from grape skins activates sirtuin-1, which plays a role in longevity. It shows antioxidant properties and provides photoprotection in experimental models. However, clinical evidence remains limited due to its instability in light, which requires advanced delivery systems.



### 8.3 Soy Isoflavones

Genistein and daidzein help inhibit melanosome transfer to keratinocytes by acting on protease-activated receptor-2 (PAR-2), improving hyperpigmentation and photoaging in clinical trials.

### 8.4 Coffeeberry Extract

This polyphenol-rich extract from coffee fruit has a high ORAC (oxygen radical absorbance capacity) and demonstrates improvements in fine wrinkles, pigmentation, and overall facial appearance in trials.

## HYDROXY ACIDS BEYOND AHAs

### 9.1 Beta-Hydroxy Acids (BHAs): Salicylic Acid

Salicylic acid's fat-soluble nature allows it to penetrate sebaceous follicles, providing specific benefits for acne and oily skin:

- It works as a comedolytic agent by promoting keratolysis within the follicles

- It has anti-inflammatory effects through COX inhibition, similar to aspirin

- It displays antimicrobial properties against *Cutibacterium acnes*

**Clinical use:** Salicylic acid is used at 0.52% in leave-on products for acne, seborrheic dermatitis, and rough skin. Professional peels use it at 20-30% for acne and photoaging.

## 9.2 Polyhydroxy Acids (PHAs)

Gluconolactone and lactobionic acid are larger molecules that penetrate more slowly, offering milder exfoliation along with added moisture and antioxidant benefits (84). Clinical trials indicate that they are effective for photoaging and have better tolerance in sensitive and rosacea-prone skin than glycolic acid.

## GROWTH FACTORS AND CYTOKINES

### 10.1 Concept and Sources

Growth factors are proteins that bind to cell surface receptors, activating signals that lead to cell growth, differentiation, and matrix production

#### Sources include:

- Recombinant human growth factors (EGF, TGF-, KGF)
- Conditioned media from cultured fibroblasts or stem cells
- Plant-derived growth factor analogs

### 10.2 Evidence and Challenges

TGF- application increases collagen production and speeds up wound healing. EGF improves skin renewal and barrier repair.

#### Limitations include:

- They are large proteins (20-50 kDa) that poorly penetrate the stratum corneum
- Stability issues
- Potential concerns about chronic signaling for proliferation, although there is no clinical evidence of harm in cosmetic use
- High costs

Split-face trials show mild improvements in skin texture and firmness with long-term use, but effect sizes are generally smaller than those of retinoids.

## SUNSCREEN ACTIVES: PHOTOPROTECTION AS ANTI-AGING

Daily broad-spectrum sunscreen (SPF 30) is the most supported preventive measure against aging.

#### UV Filters:

**- Inorganic (physical):** Zinc oxide and titanium dioxide are broad-spectrum, stable under sunlight, and absorb minimally.

**- Organic (chemical):** Avobenzene, oxybenzone, octinoxate, octocrylene, and others absorb UV light and convert it to heat.

**Anti-Aging Evidence:** An important Australian study showed that daily sunscreen use over 4.5 years significantly lessens the progression of photoaging compared to sporadic use, leading to visible improvements in skin texture and pigmentation.

**Beyond UV:** Modern formulations frequently add protection against visible and blue light (iron oxides) and include antioxidants to tackle non-UV oxidative stressors .

## FORMULATION SYNERGY AND LAYERING STRATEGIES

**The best cosmeceutical regimens use complementary mechanisms:**

### **Morning (Protect):**

- Antioxidant serum (vitamin C/E/ferulic or niacinamide + polyphenols)
- Broad-spectrum sunscreen SPF 3050

### **Evening (Repair):**

- Retinoid (0.251% retinol, retinaldehyde, or prescription tretinoin)
- Niacinamide or peptide serum
- Moisturizer that supports the skin barrier

### **Considerations:**

Vitamin C (acidic) followed by niacinamide (neutral pH): Allow 510 min between applications or use in separate morning and evening routines to avoid potential pH-related inactivation, although modern formulations are often compatible .

Retinoids + AHAs: Avoid using them together to prevent excessive irritation; alternate nights or use retinoids at night and AHAs in the morning.

Niacinamide + retinoids: These work well together; niacinamide can lessen irritation from retinoids while providing additional benefits

## EVIDENCE HIERARCHY AND CLINICAL TRIAL DESIGN

### 13.1 Study Design Considerations

#### **Strong cosmeceutical trials use:**

- A randomized, vehicle-controlled, double-blind design
- Split-face methodology when possible for individual control
- Objective endpoints:
  - Skin biopsies that measure collagen, elastin, and MMP expression
  - Non-invasive imaging such as 3D profiling for wrinkles, colorimetry for pigmentation, and TEWL for barrier function
  - Validated grading scales, like the Griffiths photoaging scale
  - Adequate sample sizes and durations (minimum of 812 weeks for anti-aging goals and 612 months for significant changes)

## 13.2 Evidence Strength

**Level I (Strong):** Multiple randomized controlled trials show consistent results for vitamin C/E/ferulic for photoprotection, retinol for photoaging, niacinamide for barrier and pigmentation issues, and glycolic acid for texture improvement.

**Level II (Moderate):** Fewer or smaller studies exist for peptides for wrinkles, green tea for photoprotection, and PHAs for sensitive skin.

**Level III (Preliminary):** Though promising, there is limited human trial data for growth factors, certain botanical extracts, and new peptides.

## SAFETY PROFILE AND ADVERSE EFFECTS

### 14.1 Common Adverse Events

Retinoids can cause redness, scaling, dryness, and sensitivity to light, which can be managed by gradually introducing them and using moisturizers.

Vitamin C (L-ascorbic acid) may cause stinging or tingling at low pH levels, and rare cases of sensitization occur.

AHAs may cause reaction rates that depend on dosage, and they increase sunlight sensitivity, requiring sun protection.

Niacinamide is very well-tolerated, with only a rare chance of flushing at very high concentrations.

Peptides are generally well received with minimal side effects.

### 14.2 Special Populations

**Pregnancy/Lactation:** High doses of vitamin A should be avoided; retinol cosmetic doses are likely safe, but many choose to avoid them. Vitamin C, niacinamide, and AHAs at cosmetic concentrations are typically considered safe.

**Sensitive/Rosacea-Prone Skin:** Start with gentler ingredients like niacinamide, PHAs, or low-concentration retinaldehyde before progressing to stronger retinoids or AHAs.

**Darker Skin Types:** There is a risk of post-inflammatory hyperpigmentation from severe chemical exfoliation; opt for gradual introduction, gentler AHAs like mandelic acid, and niacinamide.

## FUTURE DIRECTIONS AND EMERGING TECHNOLOGIES

### 15.1 Personalized Cosmeceuticals

Genetic differences in MMP genes, antioxidant enzymes (SOD, catalase), vitamin D receptors, and drug metabolism enzymes (CYP450s that affect retinoid processing) may guide personalized ingredient choices and dosages.

### 15.2 Microbiome-Modulating Cosmeceuticals

Growing awareness of the skin microbiome's role in barrier function, inflammation, and aging has led to new products containing prebiotics, probiotics, and postbiotics in skincare.

### 15.3 Advanced Delivery Systems

Using nanotechnology (like liposomes, niosomes, solid lipid nanoparticles, and polymeric carriers) can improve the penetration, stability, and controlled release of unstable active ingredients.

### 15.4 Digital Dermatology Integration

Smartphone-based imaging, AI analysis, and telemedicine now allow tracking of outcomes, personalized suggestions, and collection of real-world evidence on a large scale.

### 15.5 Epigenetic Modulators

New ingredients that target histone deacetylases, DNA methyltransferases, or microRNAs aim to reverse signs of epigenetic aging through advanced research.

## CONCLUSION

Cosmeceuticals have transitioned from marketing strategies to scientifically backed interventions that genuinely enhance skin structure and function. Solid mechanistic understanding and clinical evidence back several ingredient categories, particularly retinoids, vitamins C and E, alpha-hydroxy acids, niacinamide, and broad-spectrum sunscreens, as effective for preventing and reversing photoaging, managing hyperpigmentation, treating acne, and optimizing the skin barrier. Achieving the best results requires expertise in formulating products that address issues of stability, pH, penetration, and individual tolerance. While peptides, growth factors, and many botanical extracts show potential, their evidence base is less solid than that of established actives.

Careful scrutiny of marketing claims, focusing on evidence-backed ingredients, managing expectations, and integrating these elements into a complete skincare routine (cleansing, active ingredients, moisturization, photoprotection) shape best practices. As regulations evolve to clearly define the cosmeceutical category, setting standardized effectiveness measures and conducting post-market monitoring will help align consumer expectations with clinical outcomes. Future advances in personalized formulas, microbiome research, delivery methods, and digital outcome monitoring will likely expand the evidence base and improve targeted treatments, solidifying the role of cosmeceuticals in preventive and therapeutic dermatology.

## REFERENCES

1. Kligman AM. Cosmeceuticals: a broadspectrum category between cosmetics and drugs. In: Elsner P, Maibach HI, editors. Cosmeceuticals and Active Cosmetics. 2nd ed. New York: Taylor & Francis; 2005. p. 18.
2. Draehos ZD. The cosmeceutical realm. Clin Dermatol. 2008;26(6):627-632. doi: 10.1016/j.clindermatol.2007.09.005
3. US. Food and Drug Administration. Is it a cosmetic, a drug, or both? FDA.gov; 2021.
4. Kligman AM, Grove GL, Hirose R, Leyden JJ. Topical tretinoin for photoaged skin. J Am Acad Dermatol. 1986;15(4 Pt 2):836-859. doi: 10.1016/s0190-9622(86)70242-9
5. U.S. Food and Drug Administration. Renova (tretinoin) cream 0.02% approval letter. NDA 20475. 1995.
6. Baumann L. Cosmeceuticals and cosmetic ingredients. New York: McGrawHill Medical; 2014.
7. Grand View Research. Cosmeceuticals market size, share & trends analysis report 2023-2030. Market Report. 2023

8. Future Market Insights. Cosmeceuticals market outlook. Industry Analysis 20232033. 2023.
9. U.S. Food and Drug Administration. Federal Food, Drug, and Cosmetic Act. 21 U.S.C. 321 et seq.
10. Draelos ZD. The art and science of new advances in cosmeceuticals. *Clin Plast Surg.* 2016;43(3):475487. doi: 10.1016/j.cps.2016.03.009
11. European Commission. Regulation (EC) No 1223/2009 on cosmetic products. *Off J Eur Union.* 2009;L342:59209.
12. European Commission. Working document on cosmetic claims. Guidelines. 2017.
13. Ministry of Health and Family Welfare, India. Draft Drugs and Cosmetics (Amendment) Rules, 2020.
14. Japanese Ministry of Health, Labour and Welfare. Pharmaceutical and Medical Device Act: quasidrugs category. MHLW; 2014.
15. Aust MC, Fernandes D, Kolokythas P, Kaplan HM, Vogt PM. Percutaneous collagen induction therapy: an alternative treatment for scars, wrinkles, and skin laxity. *Plast Reconstr Surg.* 2008;121(4):14211429. doi: 10.1097/01.prs.0000304612.72899.02
16. Chambon P. A decade of molecular biology of retinoic acid receptors. *FASEB J.* 1996;10(9):940954. doi: 10.1096/fasebj.10.9.8801176
17. Kang S, Duell EA, Fisher GJ, Datta SC, Wang ZQ, Reddy AP, et al. Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid binding proteins characteristic of retinoic acid. *J Invest Dermatol.* 1995;105(4):549556. doi: 10.1111/15231747.ep12323445
18. Creidi P, Vienne MP, Ochonisky S, Lauze C, Turlier V, Lagarde JM, et al. Profilometric evaluation of photodamage after topical retinaldehyde and retinoic acid treatment. *J Am Acad Dermatol.* 1998;39(6):960965. doi: 10.1016/s01909622(98)702721
19. Varani J, Warner RL, GharaeeKermani M, Phan SH, Kang S, Chung JH, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. *J Invest Dermatol.* 2000;114(3):480486. doi: 10.1046/j.15231747.2000.00902.x
20. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. *Nature.* 1996;379(6563):335339. doi: 10.1038/379335a0
21. Fluhr JW, Vienne MP, Lauze C, Dupuy P, Gehring W, Gloor M. Tolerance profile of retinol, retinaldehyde and retinoic acid under maximized and longterm clinical conditions. *Dermatology.* 1999;199 Suppl 1:5760. doi: 10.1159/000051382
22. Dispenza MC, Wolpert EB, Gilliland KL, Dai JP, Cong Z, Nelson AM, et al. Systemic isotretinoin therapy normalizes exaggerated TLR2mediated innate immune responses in acne patients. *J Invest Dermatol.* 2012;132(9):21982205. doi: 10.1038/jid.2012.111
23. Yoshimura K, Momosawa A, Aiba E, Sato K, Matsumoto D, Mitoma Y, et al. Clinical trial of bleaching treatment with 10% alltrans retinol gel. *Dermatol Surg.* 2003;29(2):155160. doi: 10.1046/j.15244725.2003.29041.x
- 24 Kafi R, Kwak HSR, Schumacher WE, Cho S, Hanft VN, Hamilton TA, et al. Improvement of naturally aged skin with vitamin A (retinol). *Arch Dermatol.* 2007;143(5):606612. doi: 10.1001/archderm.143.5.606
25. Rossetti D, Kielmanowicz MG, Vigodman S, Hu YP, Chen N, Nkengne A, et al. A novel antiageing mechanism for retinol: induction of dermal elastin synthesis and elastic fibre formation. *Int J Cosmet Sci.* 2011;33(1):6269. doi: 10.1111/j.14682494.2010.00588.x
26. Leyden JJ, Grove GL, Grove MJ, Thorne EG, Lufrano L. Treatment of photoaged facial skin with topical tretinoin. *J Am Acad Dermatol.* 1989;21(3 Pt 2):638644. doi: