www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

DISTRIBUTED COMPUTING
FRAMEWORKS: AN
ANALYTICAL OVERVIEW
FOR MODERN
APPLICATIONS

Ms.S.ABIKAYILAARTHI
Ass. Prof/CSE,
Kings College of Engineering.

RAMAKAVI.S SRIHARINI.C

Student/CSE, Student/CSE,

Kings College of Engineering . Kings College of Engineering
SWATHI.R

VIGNESHWARI. R Student/CSE,

Student/CSE,
Kings College of Engineering.

Kings College of Engineering

ABSTRACT
Decrease in hardware costs and advances in computer networking technologies have led to increased interest in the use of
large-scale parallel and distributed computing systems. Distributed computing systems offer the potential for improved
performance and resource sharing. In this paper we have made an overview ondistributed computing. In this paper we
studied the difference between parallel and distributed computing,terminologies used in distributed computing, task
allocation in distributed computing and performance parameters in distributed computing system, parallel distributed

algorithm models, and advantages of distributed computing and scope of distributed computing.
Keywords — Distributed computing, execution time, heterogeneity, shared memory, throughput.

1. Introduction

Distributed computing refers to two or more computers
networked together sharing the same computing work. The
objective of distributed computing is to sharing the job
between multiple computers.

Distributed network is mainly heterogeneous in nature in
the sense that the processing nodes, network topology,
communication medium, operating system etc. In order to
get the maximum efficiency of a system the overall work
load has to be distributed among the nodes over the
network. So the issue of load balancing became popular due
to the existence of distributed memory multiprocessor
computing systems Thus load balancing strategies balance
the loads across the nodes by preventing the nodes to be
idle and the other nodes to be overwhelmed. Furthermore,
load balancing strategies removes the idleness of any node
at run time.

This plays an important role to introduce the element of
“distribution” in a system and takes the responsibility to
provide inherent asynchrony amongst the processors. In
distributed network the nodes do not share common
physical clock.

2. Differences between Parallel and Distributed
Computing

There are many similarities between parallel and
distributed computing but there are some differences also

exist that are very important in respect of computing, cost
and- time. -Parallel computing actually subdivides an
application into small enough tasks that can be executed at
the concurrently while distributed computing divides an
application into tasks that can be executed at different sites
using the available networks connected together. In parallel
computing multiple processing elements exist within one
machine in which every processing element being
dedicated to the overall system at the same time. But in
distributed computing a group of separate nodes possibly
different in nature that each one contributes processing
cycles to the overall system over a network.

Parallel computing needs expensive parallel hardware to
coordinate many processors within the same machine but
distributed computing uses already available individual
machines which are cheap enough in today’s market.

3. Terminologies Used in Distributed Computing

There are some basic terms usedindistributed computing
and ideas that will be defined first to
understand the concept of distributed computing.

3.1Job

A job is defined as the overall computing entity that’s need
to be executed to solve the problem at hand . There are
different types of jobs depending upon the nature of

IJCRT 2512257 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

[c167

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

computation or algorithm itself. Some jobs are completely
parallel in nature and some are partially parallel.
Completely parallel jobs are known as embarrassingly
parallel problem. In embarrassingly parallel problem
communication among different entities is minimum but in
case of partially parallel problem communication becomes
high due to the communication among different processes
running on different nodes to finish the job.

3.2 Granularity

as the granularity of parallelism. The grain size of a
parallelSimply the size of tasks is expressed instruction is a
measure of how much work each processor does compared
to an elementary instruction execution time . It is equal to
the number of serial instructions done within a task by one
processor. There are mainly three types of grain size exists:
fine, medium and coarse grain.

3.3 Node

A node is an entity that is capable of executing the
computing tasks. In traditional parallel system this refers
mostly to a physical processor unit within the computer
system. But in distributed computing a computer is
generally considered as a computing node in a network .
But in reality trends have been changed. A computer may
have more than one core like dual core or multi core
processors. Both the terms node and processor have been
used interchangeably in Overheads measure the frequency
of communication among processors during execution.
During the execution, processors communicate to each
other for the completion of the job as early as possible, so
3.4 Task

A task is a logically discrete part of the overall processing
job. Each task is distributed over different processors or
nodes connected through a network to work on each task to
complete the job at the aim of minimized task idle time. In
the literature, tasks are sometimes referred to as jobs and
vice-versa.

3.5 Topology

The way of arranging the nodes in a network or the
geometrical structure of a network is known as topology.
Network topology is the most important part of the
distributed computing. Actually topology defines how
the nodes will contribute theircomputational power
towards the task

4. Performance Parametersin
DistributedComputing
There are many performance parameters which are mostly

used for measuring parallel computing
performance. Some of them are listed as follows:

4.1 Execution Time

Execution time is defined as the time taken to complete an
application after submission to a machine till finish. When
the application is submitted to a serial computer, the
execution time is called serial execution time and denoted

obviously communication overheads take place. There are
three types of overheads mainly bandwidth, latency and
response time. First two are mostly influenced by the
network underlying the distributed computer system and the
last one is the administrative time taken for the systemto
respond.
3.6 Bandwidth
It measures the amount of data that can be transferred over a
communication channel in a finite period of time .It always
plays a critical role for the system efficiency. Bandwidth is a
crucial factor especially in case of fine grain problem where
more communication takes place. The bandwidth is often far
more critical than the speed of the processing nodes. The
slow data rate obviously will restrict the speed of the
processor and ultimately will cause poor performance
efficiency.

3.7 Latency

It refers to the interval between an action being initiated and
the action actually having some effect Latency specifies
different meanings in different situations. Latency is the time
between the data being sent and the data actually being
received in case of underlying network called network
latency. In case of task, latency is the time between a task
being submitted to a node and the node actually begins the
execution of the task called response time. Network latency
is closely related with the bandwidth of the underlying
network and both are critical to the performance of a
distributed computing system. Response time and the
network latency together are often called parallel overhead.

by TS and when application is submitted to a parallel
computer, the execution time is called parallel execution
time and denoted by TP.

4.2 Throughput

It is defined as the number of jobs completed per unit time
Throughput depends on the size of jobs. Throughput may be
one process per hour for large process

while it may be twenty processes per seconds for small
processes. It is fully dependent on the underlying
architecture and the size of the running processes on that
architecture.

4.3 Speed Up

Speed up of a parallel algorithm is the ratio of execution
time when the algorithm is executed sequentially to the
execution time when the same algorithm is executed by
more than one processor in parallel. Speed up can be
mathematically represented as: Sp=Ts/Tp, where Tsis the
sequential execution time, Tpis the parallel execution time.
In ideal situation, the speed up is equal to the number of
processor in parallel but it is always less than the ideal one
because the other important factors in a cluster like
communication delay, memory access delay reduces the
speed up.

IJCRT 2512257 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

[ci68

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

4.4 Efficiency

It is the measure of the contribution by the processors to an
algorithm in parallel. Efficiency can be measured as Ep=
Sp/p (0>Ep<1) where Spis the speed up and p is the number
of processors in parallel. The Value of Ep is closure to 1
indicates an efficient algorithm.

4.5 System Utilization

This is a very important parameter. System utilization
measures the involvement of resources present in a

system. It may fluctuate between zero to 100 percent. 4.6
Turnaround Time

It is defined as the time elapsed by the job from its
submission to completion. Turnaround time is the
summation of the time to get into memory, waiting in ready
queue, executing on the processor and spending time for
input/output operations .

4.7 Waiting Time

| tis the total time spent by a processor waiting in ready
queue for getting a resource. In other words, waiting time is
the duration waited by a process to get the resource
attention. Waiting time depends upon the parameters similar
as turnaround time .

4.8 Response Time

Time between submission of requests and first response to
the request is known as response time. This time can be
restricted by the output devices of computing system .

4.9 Overheads
The overheads offered by a parallel program are expressed
by a single function known as overhead function . We
denote the overhead function of a parallel system by the
symbol To. The total over heads in solving a problem
summed over all processing elements is pTP. Therefore, the
overhead function (To) is given by (1) where TS time is free
from overhead.
:To = pTP-TS.
4.10 Reliability

Reliability ensures operations without fail under any
specified conditions for a definite period of time .

5. Parallel Distributed Algorithm Models

In this section we have stated parallel distributed algorithm
models. An algorithm model is classically a method of
forming a parallel algorithm by picking proper
decomposition and mapping technique and applying the
appropriate strategy to minimize overheads.

5.1 The Data-Parallel Model

The data-parallel model is shown in Fig. . This is a simplest
algorithm model. In this model, the tasks are generally
statically mapped onto computing elements and each task
does the similar operations on different data [16]. Data
parallelism occurs as the processors operate similar
operations but the operations may be executed in phases
having different data. Uniform partitioning technique and
static mapping are followed for load balancing as the
processors operate on same . Data-parallel algorithms follow
either shared- address-space or message passing paradigms
technique. However, message passing offers better
performance for partitioned address space memory structure.
Overheads can be minimized in the data-parallel model by
selecting a locality preserving . The most attracting feature
of data-parallel problems is that the degree of data

parallelism grows with the size of the problem and can be
effectively solve by adding more number of processors.

»:atmy.‘ﬁ |

/
do i=1,28 do i=26,50 do i=m,n
A()=B(i)"delta A()=B(i)"delta A()=B(i)"delta
end do end do end do
task 1 task 2 task n

Figure 1 data parallel model

5.2TheTaskGraph Model

Task dependency graph is an important way of representing
the computations in any parallel algorithm [11, 14, 15].The
task-dependency graph has two varieties: trivial and
nontrivial. However, task dependency graph is also used in
mapping of tasks on to the processors. This model is useful
for solving problems which has the volume of data
associated with the tasks islarge in comparison to the
amount of computation associated with them. Generally,
static mapping technique is used to

optimize the cost of data movement among tasks. Even a
decentralized dynamic mapping uses the information about
the task-dependency graph structure for minimizing
interaction overhead.

5.3 The Work Pool Model

In this model the tasks may be assigned to anyprocessor by a
dynamic mapping technique for loadbalancing either by
centralized or decentralized fashion.This model does not
follow any pre-mapping scheme. The work already maybe
statically available before computation orcan be created
dynamically. Whatever the process available or generated
will be added to the global (possibly distributed) work pool.
It is necessary to use termination detection algorithm for
notifying the other processes to understand the completion
of entire work when dynamic and decentralized mapping is
used so that the processor can stop finding more jobs.

5.4 The Master-Slave Model

The larger granularity may take longer time to fill up the
pipeline and the first process may take longer time to pass
the data to the next step so the next process may have to
wait longer and too fine granularity may cause more over
heads so this model uses overlapping interaction with
computation to reduce the overheads.

5.6 Hybrid Models

Sometimes, one or two models are combined to form hybrid
model shown in Fig. 2 to solve the current problem in hand.
Many times, an algorithm design may need features of more
than one algorithm model. For example, pipeline model is
combined with a task dependency graph in which data
passed through the pipeline model lead by the dependency
graph

IJCRT 2512257 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

[169

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

OpenMP
CPU

OponMP

| _CPU

node collects that result. The master node may allocate tasks
to the worker nodes depending on the priori information
about the worker nodes or on random basis which is more
preferred approach. If the master node takes more time to
generate works, the worker nodes can work in phases so that
the next phase may start after the completion of previous
phase .This model resembles to the hierarchical model in
which the root nodes acts as master nodes and the leaf nodes
acts as slave nodes. Both shared- address-space and
message-passing paradigms are suitable for this model .

A large number of communications over heads generated
at the master node may crash the whole system [15, 19,
20].Thus it is necessary to choose such granularity of tasks
so that the system may have more dominance on
computation rather than communication.

5.5 ThePipelineorProducer-ConsumerModel
In this model, the data is passed through pipeline which has
several stages and each stage (process) does some work on
the data and passed to the next stage. This concurrent
execution on a data stream by different programs is called
stream parallelism. The pipelines may be in the form of
linear or multidimensional arrays, trees or general graphs. A
pipeline is a chain of producers and consumers because in
this model each process generates result for next process. In
general, static mapping is used in this model.
6.Advantages of Distributed Computing
Followings are the main advantages of distributed
computing:

6.1 Inherently Distributed Computations The applications
which are distributed over the globe like money transfer in
banking, reservations in flight journey which involves
consensus among parties are inherently distributed in nature

6.2 Resource Sharing

As the replication of resources at all the sites is neither cost-
effective nor practical for performance improvement, the
resources are distributed across the system. It is also
impractical to place all the resources at a single site as it can
degrade significant performance. For quick access as well as
higher reliability distributed database like DB2 partition the
data sets across a number of servers along with replication at
a few sites .

6.3 Access to Geographically Remote Data

and Resources

In many instances data cannot be replicated at each site due
to its heavy size and it also may be risky to keep the vital
data in each site . For example, banking system’s data
cannot be replicated everywhere due to its sensitivity. So it
is rather stored in central server which can be accessed by
the branch offices through remote log in. Advances in
mobile communication through which the central server can

be accessed which needs distributed protocols and
middleware .

6.4 Enhanced Reliability

Enhanced reliability is provided by the distributed system
as it has inherent potential by replicating resources .
Further, in general the distributed resources do not crash
or malfunction. Reliability involves several points:

6.4.1 Availability

The resources are always available and can be accessed
any time.

6.4.2 Integrity

The resources or the data should always be in correct state as
the data or resources are accessed concurrently by multiple
processors.

6.4.3 Fault-Tolerance
Distributed system is fully fault tolerant because worksit
properly even some of its resources stop to work.

6.5 Increased Performance/Cost Ratio The
performance/cost ratio is improved by resource sharing
and accessing geographically remote data and resources
[10, 11, 15].In fact, any job can be partitioned and can
be distributed over numbers of computer in a distributed
system rather than to allocate whole job to the parallel
machines.

6.6 Scalability

More numbers of nodes may be connected to the wide-
area network which. ‘does not directly affect in
communication performance.

6.7 Modularity and Incremental Expandability
Heterogeneous processorsrunningthesamemiddleware
algorithm may be simply included into the system without
altering the performance and the existing nodes can be easily
replaced by other nodes.

7. ScopeofDistributedComputing

Distributed computing has changed the scenario of
computation. Distributed computing is involved in almost
every field of computation. The cost benefit analysis of
distributed computing is always higher than the other
dedicated computing. Distributed computing is being highly
applied in the fields such as engineering and design,
scientific applications, commercial applications and
applications in computer systems.

Distributing computing is widely being used to design
applications like airfoils, internal ~ combustion
engines,high-speed circuits, micro-electromechanical and
nano- electromechanical systems in engineering and
design. These types of applications need mainly
optimization. Algorithms like Genetic programming for
discrete optimization Branch-and-bound, Simplex, Interior

IJCRT 2512257 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

[170

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Point Method for linear optimization which are being
mostly used in optimization are parallelized and computed
by distributed computing.

High performance computing is being highly used in
scientific applications like sequencing of the human genome,
examining biological sequences to develop new medicines
and treatments for diseases, analyzing extremely large dataset
in bioinformatics and astrophysics, understanding quantum
phenomena and macromolecular structures in computational
physics and chemistry computing is extensively being used in
commercial
applications. As the applications frequently used web and
database servers, it is indispensible to make optimization
for queering and taking quick decisions for better business
processes. The huge volume of data and geographically
distributed nature of this data need the use of effective parallel
and distributed algorithms for the issues like classification,
time-series analysis, association rule mining
and clustering

Since the computer systems become widespread in
every field of computer science applications itself, the parallel
distributed computing embedded in a diverse field of
computer applications like computer security analysis,
network intrusion detection, cryptography analysis,
computations in ad-hoc mobile etc..

8. Conclusion

This paper focuses on distributed computing. In this paper
we studied the difference between parallel and distributed
computing, terminologies used in distributed computing,
task allocation in distributed computing and performance
parameters in distributed computing system, parallel
distributed algorithm models and advantages of
distributed computing and scope of distributed computing.

References

[1] A Chhabra, G Singh, S SWaraich, B Sidhu and G
Kumar, Qualitative Parametric Comparison of Load
Balancing Algorithms in parallel and Distributed
Computing Environment, Word Academy of Science,
Engineering and Technology, 2006, 39-42.

D Z Gu, L Yang and L R Welch, A Predictive,
in:Decentralized Load Balancing Approach, Proceedings
of the 19th IEEE International Parallel and Distributed
Processing Symposium, Denver, Colorado, April 2005,
04-08.

M F Ali and R Z Khan, The Study on Load

Balancing Strategies in Distributed Computing

System, International Journal of Computer Science &
Engineering Survey (IJCSES) Wol.3, No.2, April 2012,

R Z Khan and M F Ali, An Efficient Diffusion Load
Balancing Algorithm in Distributed System, 1.J.
Information Technology and Computer Science, Vol.

08, July 2014, 65-71.

[2]

[3]

[4]

[5]1 R Z Khan and M F Ali, An Efficient Local Hierarchical
Load Balancing Algorithm (ELHLBA) in Distributed
Computing, IJCSET, Vol 3, Issue 11, , November, 2013,
427-430.
R Z Khan and M F Ali, An Improved Local
Hierarchical Load Balancing Algorithm (ILHLBA) in

Distributed Computing, International Journal of Advance
Research in Science and Engineering

(NJARSE), Vol. No.2, Issue No.11, November, 2013. M
F Ali and R Z Khan, A New Distributed Load Balancing
Algorithm, International Journal on Recent and
Innovation Trends in Computing and Communication
(URITCC), vol: 2, Issue: 9, September 2014, 2556 —
2559.

(6]

[7]

IJCRT 2512257 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

[c171

http://www.ijcrt.org/

