

Role Of Probiotics And Prebiotics In Gut Health And Immunity

Author's Name: Aqusa nayyer*, Manshi jaiswal*, Anchal saroj*, Shifa khan*, Suraj kannaujiya
Nirmala Devi Pharmacy College, jaunpur

Abstract

The human gastrointestinal microbiome, made up of trillions of microorganisms, acts as a metabolically active organ that plays a crucial role in host physiology, immune development, and susceptibility to disease. Dysbiosis, which refers to an imbalance in microbial community composition and diversity, has been linked to various health issues, including inflammatory bowel diseases, metabolic disorders, neuropsychiatric conditions, and immune dysfunction. Probiotics, defined as live microorganisms that provide health benefits when taken in appropriate amounts, and prebiotics, which are non-digestible food components that stimulate the growth of beneficial microbiota, are effective methods for modifying the microbiome. This review summarizes the mechanisms and clinical evidence supporting the use of probiotics and prebiotics in maintaining gastrointestinal health and regulating the immune system. We explore major probiotic genera like *Lactobacillus*, *Bifidobacterium*, and *Saccharomyces*, their specific effects, categories of prebiotics such as inulin-type fructans and galacto-oligosaccharides, and symbiotic combinations. Strong clinical evidence shows these interventions can prevent antibiotic-associated diarrhea, manage symptoms of irritable bowel syndrome, maintain remission in ulcerative colitis, and shorten the duration of acute infectious diarrhea. Immunological mechanisms include strengthening the epithelial barrier, producing antimicrobial peptides, excluding pathogens, generating short-chain fatty acids, modulating dendritic cell maturation, and inducing regulatory T-cells. While generally considered safe, it's important to pay attention to strain-specific issues, the number of viable organisms, storage conditions, and possible adverse effects in immunocompromised individuals. Global regulations differ, with changing requirements for proving health claims. Future research will focus on next-generation probiotics like *Akkermansia muciniphila* and *Faecalibacterium prausnitzii*, postbiotic metabolites, personalized microbiome interventions based on individual profiles, and broader applications in metabolic health, mental wellness, and immune regulation.

Keywords: Probiotics; Prebiotics; Gut Microbiome; Immunity; Dysbiosis; Short-Chain Fatty Acids; *Lactobacillus*; *Bifidobacterium*; Irritable Bowel Syndrome; Intestinal Barrier

1. INTRODUCTION

The human gastrointestinal tract contains a complex microbial ecosystem known as the gut microbiota, comprising approximately 100 trillion microorganisms, which outnumber human cells by a factor of ten. This community is composed of over 1,000 bacterial species, along with archaea, viruses, fungi, and protozoa, collectively encoding a metagenome rich in genes relative to the human genome. Key bacterial groups in healthy adults include Firmicutes and Bacteroidetes, among others. Recent findings reveal that the gut microbiome functions as a metabolically active "virtual organ," influencing host physiology through nutrient metabolism, immune regulation, and pathogen resistance. Dysbiosis in this microbial community has been linked to numerous health issues, including inflammatory bowel diseases and metabolic disorders. The practice of modifying gut microbiota for health benefits began with Elie Metchnikoff's early 20th-century proposals of using fermented products to enhance longevity. This evolved into the modern

definitions of probiotics live microorganisms providing health benefits and prebiotics substances that promote beneficial microorganisms. The global probiotics market exceeded USD 50 billion in 2023, driven by increased awareness of gut health and ongoing research, though scientific consensus on strain efficacy and dosage remains varied. This review collates existing knowledge and clinical evidence regarding the efficacy and safety of probiotics and prebiotics in promoting gastrointestinal health and immune regulation, while suggesting avenues for future research.

THE GUT MICROBIOME: COMPOSITION, DEVELOPMENT, AND FUNCTIONAL SIGNIFICANCE

2. Microbiome Establishment and Development

Microbial colonization of the intestine begins at birth. The delivery method significantly impacts which microorganisms a newborn is exposed to. Vaginal births primarily introduce the baby to maternal vaginal and fecal microbiota, such as *Lactobacillus*, *Prevotella*, and *Sneathia*. In contrast, cesarean births lead to exposure to bacteria from the skin and the environment, including *Staphylococcus*, *Corynebacterium*, and *Propionibacterium*. The colonization continues through different phases influenced by feeding modes (breast milk versus formula), environmental factors, antibiotic use, and dietary changes, stabilizing into a relatively consistent adult-like microbiome by about 2-3 years of age.

2.1 Microbiome Functions in Health

The intestinal microbiome carries out important physiological functions:

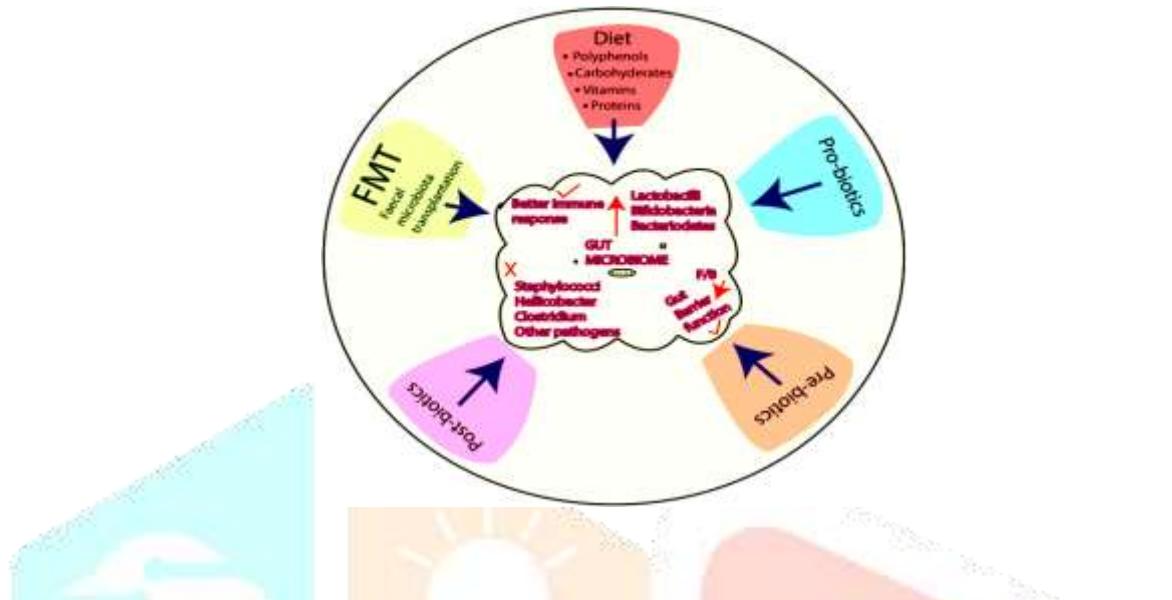
Metabolic Functions: It ferments non-digestible dietary components (like resistant starch and fibers), producing short-chain fatty acids (SCFAs) primarily acetate, propionate, and butyrate. These SCFAs serve as key energy sources for colon cells and act as signaling molecules that can modify host metabolism. Other metabolic roles include vitamin synthesis (such as B-vitamins and vitamin K), modifying bile acids, and metabolizing substances.

Barrier Function: The microbiome supports the integrity of the intestinal barrier by competing for nutrients, producing antimicrobial compounds, enhancing the mucus layer, and regulating tight junction proteins.

Immune Education and Modulation: Beneficial microbiota provide signals necessary for proper immune system development and balance. These signals include supporting lymphoid tissue formation, enabling the production of immunoglobulin A, promoting regulatory T-cell differentiation, and balancing immune responses.

PROBIOTICS: DEFINITION, MAJOR GENERA, AND STRAIN SPECIFICITY

3. Probiotic Microorganisms


While many microbial species are considered to have probiotic potential, the most extensively researched and commercially used genera include:

Lactobacillus: This group of lactic acid bacteria includes several species known for their health benefits, such as *L. rhamnosus* (notably strain GG), *L. acidophilus*, *L. plantarum*, *L. casei*, *L. paracasei*, *L. reuteri*, and *L. johnsonii*. These Gram-positive organisms mainly inhabit the small intestine and produce lactic acid, bacteriocins, and other antimicrobial substances.

Bifidobacterium: These are obligate aerobic Gram-positive bacteria, prominent in the gut of infants and remaining prevalent throughout life. Key species include *B. longum*, *B. breve*, *B. infantis*, *B. bifidum*, *B. lactis*, and *B. animalis*. Bifidobacteria ferment oligosaccharides, producing acetate and lactate, which contribute to intestinal barriers and have immune-modulatory effects.

Saccharomyces boulardii: This probiotic yeast is resistant to stomach acid and antibiotics, making it particularly effective for preventing antibiotic-associated diarrhea and managing *Clostridium difficile* infections. It works by damaging toxins, promoting enteric health, and modifying immune responses.

Emerging Probiotics: Other strains like *Escherichia coli* Nissle 1917, spore-forming *Bacillus* species, *Enterococcus faecium*, and *Streptococcus thermophilus* also have clinical applications.

Strain Specificity and Functional Heterogeneity

It is vital to understand that the beneficial effects of probiotics can vary significantly between strains. Many probiotics may have different adhesion properties, metabolic functions, and immune responses, even if they are of the same species. For example, *L. rhamnosus* GG is well-supported for preventing antibiotic-associated diarrhea, while other strains of *L. rhamnosus* might not show the same effectiveness. This differentiation highlights the importance of identifying and validating specific strains in clinical settings rather than assuming that all members of a genus behave the same way.

4. MECHANISMS OF PROBIOTIC ACTION

Probiotics provide benefits through several complementary mechanisms:

4.1 Competitive Pathogen Exclusion

Probiotics compete with harmful organisms for adhesion sites on the intestinal lining and mucus. They achieve this using their own adhesion molecules and surface proteins. Additionally, they compete for nutrients, limiting the ability of pathogens to establish themselves. Some probiotic strains produce antimicrobial substances, such as bacteriocins and organic acids, which lower the pH of the intestines, creating an environment hostile to sensitive pathogens.

4.2 Epithelial Barrier Enhancement

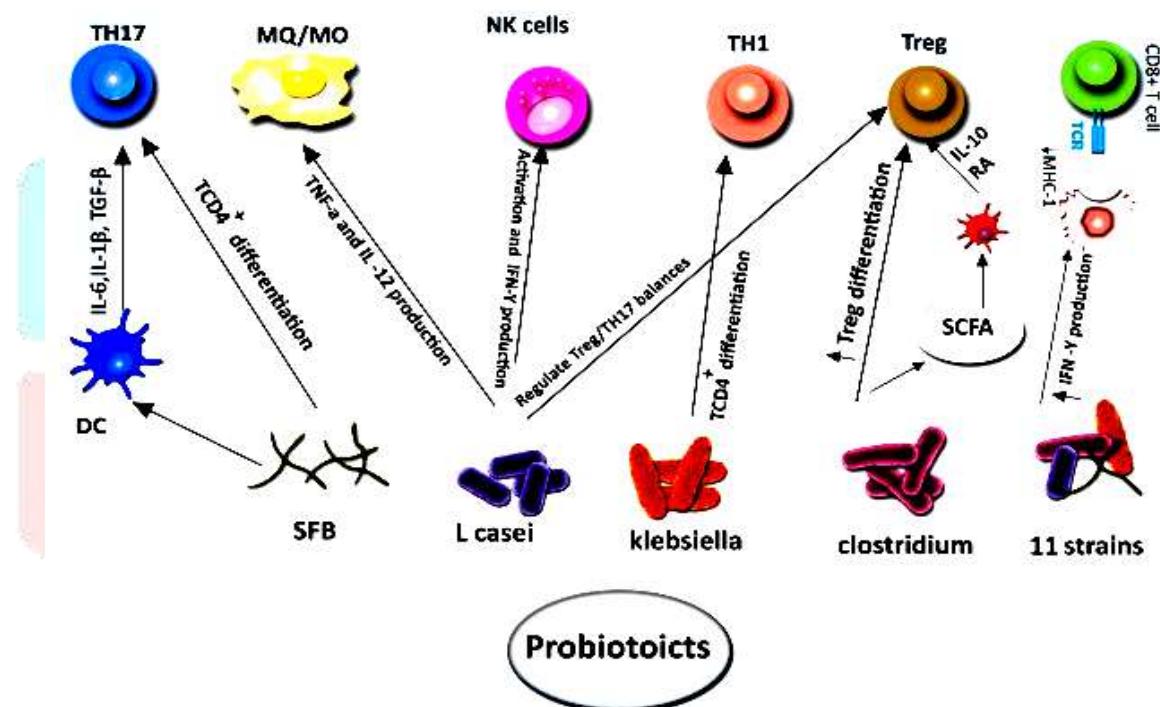
Probiotics improve the intestinal barrier in several ways, including increasing mucin production, boosting tight junction protein expression, and encouraging the secretion of antimicrobial peptides. These actions help decrease the movement of bacteria into the bloodstream and reduce systemic exposure to harmful substances.

4.3 Immunomodulation

Probiotics interact with the immune system on several levels:

Innate Immunity: Probiotic molecules activate pattern recognition receptors on intestinal epithelial and dendritic cells, influencing cytokine production and shaping downstream immune responses. Different

probiotic strains create varying cytokine profiles, with some encouraging anti-inflammatory responses and others promoting pro-inflammatory pathways.


Adaptive Immunity: Probiotics can affect dendritic cell maturation and function, which in turn influences T-cell differentiation. Specific strains promote the growth of regulatory T-cells, which are essential for maintaining tolerance to commensal bacteria and food antigens. They can also enhance the production of secretory IgA, contributing to specific immunity at mucosal surfaces.

4.4 Metabolite Production

Probiotic metabolic activities lead to the production of bioactive compounds:

Short-Chain Fatty Acids: While prebiotics mainly drive SCFA production, certain probiotics also contribute to these pools, particularly butyrate. Butyrate serves as an energy source for colonocytes, induces regulatory T-cells, and has anti-inflammatory effects.

Vitamins and Other Metabolites: Some probiotics can synthesize B-complex vitamins and vitamin K, along with bioactive peptides that have antimicrobial or immune-modulating effects. They may also produce neurotransmitter precursors, which could influence the gut-brain connection.

PREBIOTICS: DEFINITION, TYPES, AND MECHANISMS

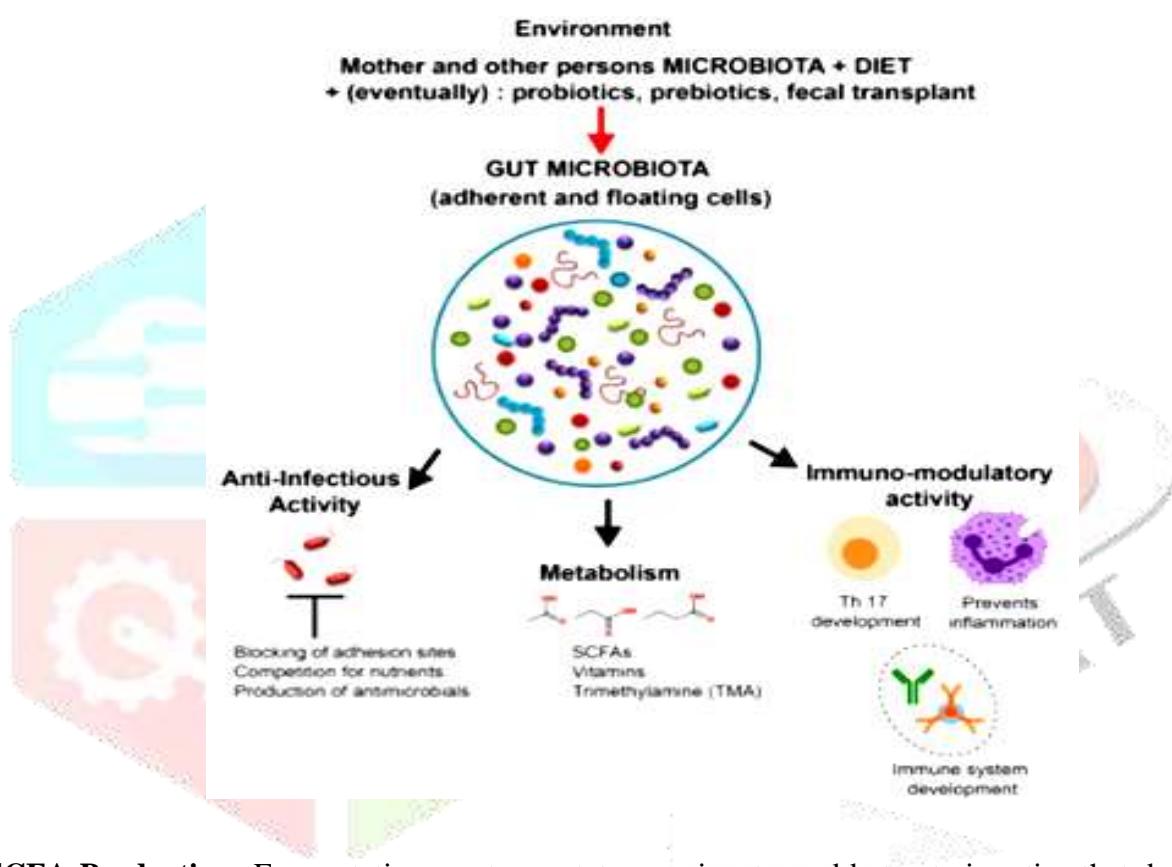
5. Prebiotic Definition and Criteria

ISAPP defines prebiotics as “substances that are selectively used by host microorganisms to confer a health benefit.” This definition focuses on the targeted fermentation by beneficial microbes and the necessity of demonstrating positive health outcomes.

5.1 Major Prebiotic Categories

Inulin-Type Fructans: These fructose polymers have (21) linkages and include inulin from chicory root and fructo-oligosaccharides (FOS). They resist digestion in the small intestine and reach the colon, where beneficial bacteria like *Bifidobacterium* and *Lactobacillus* ferment them to produce SCFAs.

Galacto-Oligosaccharides (GOS): Created from lactose, GOS consists of -linked galactose chains with a glucose end. Human milk oligosaccharides, which are similar, promote *Bifidobacterium* growth in breastfed infants. Commercial GOS is effective for digestive health in adults and infants.


Resistant Starch: This type of starch escapes digestion in the small intestine due to factors like physical structure or chemical modification. When it reaches the colon, fermentation produces beneficial butyrate.

Other Prebiotics: Additional substances such as polydextrose, xylo-oligosaccharides, isomaltoligosaccharides, lactulose, and some pectins also exhibit prebiotic effects through selective fermentation.

5.2 Prebiotic Mechanisms of Action

Prebiotics benefit health mainly through:

Microbiota Modulation: Selective fermentation boosts the amounts of helpful genera like *Bifidobacterium*, *Lactobacillus*, and *Faecalibacterium*, while possibly reducing harmful pathogens.

SCFA Production: Fermentation creates acetate, propionate, and butyrate in ratios that depend on the substrates features and the composition of the fermenting community. Butyrate supplies 60-70% of the energy needs of colon cells, improves barrier function, has anti-inflammatory effects, and may lower the risk of colorectal cancer. Propionate is metabolized in the liver, affecting gluconeogenesis and lipogenesis, while acetate enters the bloodstream, influencing metabolism outside the gut.

Mineral Absorption Enhancement: The production of organic acids in the colon makes calcium, magnesium, and iron more soluble and easier to absorb. This is especially important for people with weak upper gastrointestinal absorption.

Immune Modulation: SCFA impacts include the induction of regulatory T-cells through inhibiting histone deacetylase and activating G-protein coupled receptor signaling, which aids in regulating the immune system beyond the gut lining.

SYNBIOTICS: RATIONALE AND APPLICATIONS

Synbiotics combine probiotics with complementary prebiotics to potentially create synergistic benefits by supplying both helpful organisms and the substrates they prefer. Design strategies include:

Complementary Synbiotics: Pairing a prebiotic with a probiotic from a different lineage that does not specifically utilize that substrate, aiming for separate additive effects.

Synergistic Synbiotics: Mixing a prebiotic that is selectively fermented by a co-administered probiotic strain, which may improve the probiotics survival, colonization, and activity.

Clinical studies on synbiotic formulations show benefits in managing hepatic encephalopathy, preventing infections in certain surgical situations, and possible advantages in metabolic syndrome, although the quality of evidence varies across these applications.

CLINICAL APPLICATIONS IN GASTROINTESTINAL DISORDERS

6. Antibiotic-Associated Diarrhea (AAD) Prevention

Antibiotic treatment disrupts the gut microbiota, lowering its resistance to colonization and allowing harmful bacteria to thrive, especially *Clostridioides difficile*. Strong evidence from meta-analyses shows that taking probiotics significantly cuts down the chance of AAD. A detailed meta-analysis of 82 randomized controlled trials with 11,811 participants found that probiotics lowered AAD risk by 42%, with *Lactobacillus rhamnosus GG* and *Saccharomyces boulardii* showing particularly strong benefits. The number needed to treat is about 13, meaning that for every 13 patients taking probiotics with antibiotics, one fewer case of diarrhea occurs.

6.1 Acute Infectious Diarrhea

Giving probiotics during acute infectious diarrhea, mostly viral gastroenteritis in kids, proves moderately effective in reducing the duration and severity of symptoms. Meta-analyses show about a 25-hour decrease in diarrhea duration with early probiotic use, with *Lactobacillus rhamnosus GG* and *Saccharomyces boulardii* providing the strongest evidence. Mechanisms include blocking pathogen growth, binding toxins, enhancing immunity, and protecting the gut barrier.

6.2 Irritable Bowel Syndrome (IBS)

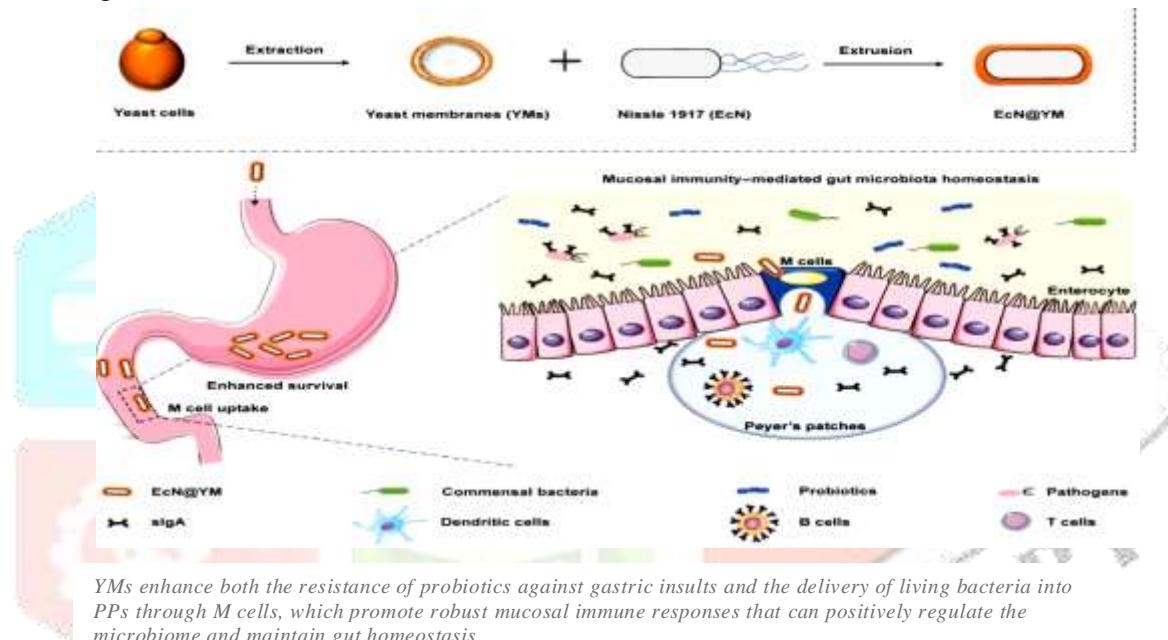
IBS is a gastrointestinal disorder marked by abdominal pain and changes in bowel habits. It shows microbiota changes like reduced diversity and specific composition shifts. Probiotic treatments typically show variable but mostly positive effects. A meta-analysis of 53 randomized controlled trials involving 5,545 participants found that probiotics significantly improved overall IBS symptoms, abdominal pain, bloating, and quality of life compared to placebo. Multi-strain formulations and *Bifidobacterium* species appear especially effective, although the best strain selection is still not fully understood. Prebiotics show milder benefits, with some trials indicating that they can worsen symptoms due to gas produced during fermentation in certain IBS subgroups.

6.3 Inflammatory Bowel Disease (IBD)

Ulcerative Colitis: The probiotic formulation VSL#3, which includes eight bacterial strains like *Lactobacillus*, *Bifidobacterium*, and *Streptococcus thermophilus*, has been shown to help maintain remission in ulcerative colitis, performing similarly to standard aminosalicylate therapy in some studies. For preventing pouchitis after ileal pouch-anal anastomosis surgery, VSL#3 cuts pouchitis rates from about 40% to 10% in randomized trials.

Crohn's Disease: Evidence for probiotics helping in Crohn's disease is limited and unclear, with most studies not showing significant benefits for maintaining remission. This varied response may reflect different underlying mechanisms between ulcerative colitis and Crohn's disease.

6.4 Necrotizing Enterocolitis (NEC) Prevention


In preterm infants, using probiotics greatly reduces the risk of necrotizing enterocolitis, a severe intestinal inflammation. Meta-analyses of randomized controlled trials indicate that probiotics lower NEC rates by about 50% and decrease overall mortality. Multi-strain formulations including *Lactobacillus* and *Bifidobacterium* species provide consistent benefits, leading to routine probiotic use in many neonatal intensive care units worldwide.

IMMUNOLOGICAL MECHANISMS AND SYSTEMIC EFFECTS

7. Mucosal Immune System Modulation

The gut mucosa houses about 70% of the body's immune cells, making it the largest immunological organ. Probiotic interactions at this level greatly influence local and systemic immunity:

Epithelial Cell Signaling: Probiotics interact with epithelial cell receptors (TLR2, TLR4, NOD2), affecting nuclear factor-kappa B activation and cytokine production. Different strains promote the production of anti-inflammatory or pro-inflammatory cytokines based on the context and characteristics of the organisms.

Dendritic Cell Modulation: Gut dendritic cells capture luminal antigens and can be influenced by probiotics. Exposure to probiotics affects dendritic cell maturity, co-stimulatory molecule expression, and cytokine output, ultimately shaping T-cell differentiation. Some specific strains induce dendritic cell types that promote regulatory T-cell development instead of effector responses.

Regulatory T-Cell Induction: Various probiotic strains boost the presence of regulatory T-cells in the gut, helping maintain tolerance to dietary substances and the microbiota while possibly affecting immune responses in other body areas.

7.1 Systemic Immune Effects

Probiotic effects reach beyond local gut immunity:

Respiratory Tract Infections: Meta-analyses show that consuming probiotics lessens upper respiratory infections, their duration, and the need for antibiotics, especially in children and older adults. Possible mechanisms include enhanced immunity, better mucosal barrier function in the respiratory tract, and reduced colonization by pathogens.

Allergic Diseases: Taking probiotics during pregnancy and early childhood seems to have some protective effects against developing atopic dermatitis in high-risk infants, although the effects vary depending on strain and timing. Mechanisms might include balancing immune responses and enhancing IgA production. Evidence for preventing or treating food allergies is less strong.

Vaccine Response Enhancement: Some studies suggest that probiotic use may boost antibody responses to vaccines, but results can vary and depend on the strain.

EMERGING APPLICATIONS AND FUTURE DIRECTIONS

8. Metabolic Health

Growing evidence links gut microbiota to metabolic syndrome through mechanisms like the effects of short-chain fatty acids on energy use, gut hormone release, inflammation from lipopolysaccharide movement, and changes to bile acid metabolism. Probiotic and prebiotic interventions show modest improvements in glycemic control, lipid levels, and body weight in those with metabolic syndrome, though the results are typically small and clinical relevance is debated.

8.1 Mental Health and Gut-Brain Axis

The bidirectional gut-brain axis, involving signals from the nervous system, hormones, and the immune system, positions the microbiome as a possible influence on mental health. “Psychobiotic” formulations show anxiety and depression-like effects in animal studies, with early human evidence suggesting improvements in mood and anxiety. Possible mechanisms include producing neurotransmitter precursors, enhancing vagal nerve signaling, modulating immunity to reduce neuroinflammation, and regulating the hypothalamic-pituitary-adrenal axis.

8.2 Next-Generation Probiotics

New probiotic candidates beyond traditional *Lactobacillus* and *Bifidobacterium* species include:

***Akkermansia muciniphila*:** This mucin-eating bacterium shows positive metabolic effects like improved blood sugar control and reduced weight gain in early studies. Human trials indicate that heat-killed *A. muciniphila* is safe and improves metabolism.

***Faecalibacterium prausnitzii*:** A significant producer of butyrate, this bacterium is often low in inflammatory bowel disease and shows anti-inflammatory properties in research models. However, it has strict growth requirements that can complicate commercial use.

Engineered Probiotics: Genetically altered organisms created to deliver therapeutic substances represent future options, though they will need thorough safety testing.

8.3 Postbiotics

Postbiotics, which are non-living bacterial products or their metabolites that offer health benefits, are becoming a focus. They bypass the need for viable microorganisms and related regulatory issues. Examples include components from bacterial cell walls, secreted proteins, organic acids, and bacteriocins. Heat-killed probiotics can still have some immunomodulatory effects while being more stable and safer.

SAFETY, QUALITY, AND REGULATORY CONSIDERATIONS

9. Safety Profile

Probiotics are generally very safe for healthy people, with side effects usually limited to mild, short-lived gastrointestinal issues when starting. However, rare serious complications, such as blood infections, have been recorded mainly in severely immunocompromised individuals or critically ill patients.

Specific groups that should be cautious include:

- Severely immunocompromised individuals
- Critically ill patients with central lines
- Preterm infants weighing under 1000 grams
- Patients with short bowel syndrome or intestinal problems

9.1 Quality Considerations

The quality of probiotic products varies widely. Key quality factors include:

Strain Identification: Accurate identification to the species and strain level using genetic techniques ensures consistency and supports clinical evidence.

Viable Count: Products should have the stated number of colony-forming units (CFU) at the end of their shelf life, not just at production. Typical therapeutic doses range from 10⁸ to 10¹¹ CFU daily, depending on strain and purpose. Probiotic viability during storage relies on temperature, humidity, and exposure to air. Refrigeration, blister packaging, and enteric coatings can improve stability.

Absence of Contamination: Products must be free from harmful organisms and undeclared species.

9.2 Regulatory Landscape

Regulatory requirements for probiotics differ worldwide:

Food/Dietary Supplement: Most regions classify probiotics as foods or dietary supplements when health claims are general rather than specific. This requires a safety assurance but not proof of effectiveness before marketing.

Drug Classification: Claims focused on treating diseases may lead to probiotic classification as drugs, requiring extensive clinical trials.

Health Claims: The European Food Safety Authority has dismissed many health claims regarding probiotics due to insufficient evidence, complicating communication in European markets. Some other areas allow structure-function claims with varied requirements for evidence.

PRACTICAL RECOMMENDATIONS

10. When using probiotics and prebiotics based on evidence, consider:

Strain Selection: Opt for products that feature strains with proven clinical effectiveness for the specific intended use instead of relying on general effectiveness.

Adequate Dosing: Ensure the products provide clinically established doses, usually between 10⁹ and 10¹¹ CFU daily for most uses.

Quality Verification: Choose products from trustworthy manufacturers that offer third-party tests confirming strain identity and viable counts.

Timing and Duration: For preventing antibiotic-associated diarrhea, start probiotics at the same time as or

right after beginning antibiotics and continue during treatment and for several additional days. For ongoing conditions, long-term use is often necessary.

Dietary Prebiotics: Promote fiber intake of 25-35 grams daily from whole grains, legumes, vegetables, and fruits to naturally supply prebiotic materials that support beneficial gut bacteria.

CONCLUSION

Probiotics and prebiotics are well-supported, evidence-based approaches to change gut microbiota composition and activity. They show clinical benefits across various gastrointestinal and immune-related situations. Strong evidence backs probiotics for preventing antibiotic-associated diarrhea, reducing the duration of acute infectious diarrhea, managing IBS symptoms, maintaining ulcerative colitis remission, and preventing necrotizing enterocolitis in preterm infants. The mechanisms involve blocking harmful pathogens, enhancing the gut barrier, producing antimicrobials, and regulating immune responses through their effects on dendritic cells and regulatory T-cells.

Prebiotics specifically feed beneficial gut bacteria, promoting the production of short-chain fatty acids, which lead to metabolic and immune benefits. Synbiotics, which combine probiotics and prebiotics, may offer complementary advantages, though clinical evidence is still developing. For optimal use, recognizing strain-specific effects is crucial and demands precise identification and validation rather than assuming efficacy based on genus. Key quality aspects such as viable counts, product stability, and contamination prevention significantly affect clinical results. Although probiotics are typically safe for healthy individuals, specific considerations should be taken for those who are severely immunocompromised.

Future developments include next-generation probiotics like *Akkermansia muciniphila* and *Faecalibacterium prausnitzii*, applications of postbiotic metabolites, tailored microbiome interventions based on individual profiles, and broader use in metabolic health, mental health conditions, and personalized nutrition. As understanding of the mechanisms improves and more clinical evidence surfaces, probiotics and prebiotics are likely to become integral to evidence-based medical practices that promote digestive health and immune balance.

REFERENCES:

1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. *PLoS Biol.* 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
2. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature.* 2010;464(7285):59-65. doi: 10.1038/nature08821
3. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. *Nature.* 2011;473(7346):174-180. doi: 10.1038/nature09944
4. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. *Cell.* 2012;148(6):1258-1270. doi: 10.1016/j.cell.2012.01.035
5. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. *N Engl J Med.* 2016;375(24):2369-2379. doi: 10.1056/NEJMra1600266
6. Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. *Front Public Health.* 2013;1:52. doi: 10.3389/fpubh.2013.00052
7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat Rev Gastroenterol Hepatol.* 2014;11(8):506-514. doi: 10.1038/nrgastro.2014.66

8. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. *Nat Rev Gastroenterol Hepatol*. 2017;14(8):491-502. doi: 10.1038/nrgastro.2017.75

9. Grand View Research. Probiotics market size, share & trends analysis report. Market Analysis Report. 2023.

10. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. *Nat Rev Gastroenterol Hepatol*. 2019;16(10):605-616. doi: 10.1038/s41575-019-0173-3

11. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. *Proc Natl Acad Sci U S A*. 2010;107(26):11971-11975. doi: 10.1073/pnas.1002601107

12. Yatsunenko Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. *Nature*. 2012;486(7402):222-227. doi: 10.1038/nature11053

13. Koh A, De Vadder F, Kovatcheva-Datchary P, Baeckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. *Cell*. 2016;165(6):1332-1345. doi: 10.1016/j.cell.2016.05.041

14. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. *Curr Opin Biotechnol*. 2013;24(2):160-168. doi: 10.1016/j.copbio.2012.08.005

15. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. *Nat Rev Immunol*. 2013;13(11):790-801. doi: 10.1038/nri3535

16. Hooper LV, Littman DR, Macphn AJ. Interactions between the microbiota and the immune system. *Science*. 2012;336(6086):1268-1273. doi: 10.1126/science.1223490

17. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. *Nat Rev Immunol*. 2009;9(5):313-323. doi: 10.1038/nri2515

18. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanan J, Partanen P, et al. Comparative genomic analysis of *Lactobacillus rhamnosus* GG reveals pili containing a human-mucus binding protein. *Proc Natl Acad Sci U S A*. 2009;106(40):17193-17198. doi: 10.1073/pnas.0908876106

19. Lebeer S, Vanderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. *Microbiol Mol Biol Rev*. 2008;72(4):728-764. doi: 10.1128/MMBR.00017-08

20. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. Diversity of bifidobacteria within the infant gut microbiota. *PLoS One*. 2012;7(36):e36957. doi: 10.1371/journal.pone.0036957

21. O'Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. *Front Microbiol*. 2016;7:925. doi: 10.3389/fmicb.2016.00925

22. McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, et al. A randomized placebo-controlled trial of *Saccharomyces boulardii* in combination with standard antibiotics for *Clostridium difficile* disease. *JAMA*. 1994;271(24):1913-1918.

23. Pothoulakis C. Review article: anti-inflammatory mechanisms of action of *Saccharomyces boulardii*. *Aliment Pharmacol Ther*. 2009;30(8):826-833. doi: 10.1111/j.1365-2036.2009.04102.x

24. Szajewska H, Koodziej M. Systematic review with meta-analysis: *Lactobacillus rhamnosus* GG in the prevention of antibiotic-associated diarrhoea in children and adults. *Aliment Pharmacol Ther*. 2015;42(10):1149-1157. doi: 10.1111/apt.13404

25. Coconnier MH, Lievin V, Hemery E, Servin AL. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human *Lactobacillus acidophilus* strain LB. *Appl Environ Microbiol.* 1998;64(11):4573-4580. doi: 10.1128/AEM.64.11.4573-4580.1998

26. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. Bacteriocin production as a mechanism for the antiinfective activity of *Lactobacillus salivarius* UCC118. *Proc Natl Acad Sci U S A.* 2007;104(18):7617-7621. doi: 10.1073/pnas.0700440104

27. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. *Front Immunol.* 2019;10:277. doi: 10.3389/fimmu.2019.00277

28. Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, et al. *Lactobacillus plantarum* MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. *BMC Microbiol.* 2010;10:316. doi: 10.1186/1471-2180-10-316

