

H

A Hybrid, Multi-Stage Approach for Advanced

Plagiarism Detection

1Suhani Goyal, 2Saksham, 3Saurabh

1Student, 2Student, 3Student

1Manav Rachna University,

2Manav Rachna University,

3Manav Rachna University

Abstract

Plagiarism detection is a critical task in academic and professional settings. Traditional methods often

struggle to identify sophisticated forms of plagiarism, such as paraphrasing and structural reorganization.

This paper proposes a novel, multi-stage architecture for an improved and advanced plagiarism checker.

Our hybrid model integrates three distinct techniques: (1) an efficient, hash-based document fingerprinting

algorithm for initial large-scale screening, (2. a precise string-matching algorithm for detailed syntactic

analysis, and (3) a deep learning model with an attention mechanism for capturing semantic similarities.

By combining these methods, the proposed system aims to achieve high accuracy and efficiency, effectively

identifying a wide spectrum of plagiarism, from literal copying to semantic paraphrasing.

1. Introduction

Academic and professional integrity relies on the principle of originality. However, the digital age has made

it easier than ever to copy and paste content, leading to a rise in plagiarism. Existing plagiarism detection

systems are often effective at finding exact matches but fall short when faced with more nuanced forms of

academic dishonesty, such as word substitution, sentence reordering, and idea translation. These

sophisticated evasion techniques necessitate the development of more intelligent and robust detection

systems.

This paper introduces a hybrid plagiarism detection system that leverages the strengths of multiple

algorithmic approaches to create a more comprehensive and resilient checker. Our model is designed to be

both scalable for large document collections and sensitive enough to detect subtle forms of plagiarism.

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/

H

Literature Review Table

S.No Reference / Source
Focus Area /

Methodology

Key Contribution /

Findings

Relevance to

Current Study

1

Aiken, A., et al. (2003). Winnowing:

Local Algorithms for Document

Fingerprinting. SIGMOD '03.

Document

fingerprinting

Introduced the

Winnowing algorithm

for efficient plagiarism

detection

Foundation

algorithm for text

similarity detection

2

A Modified Suffix Automaton

Approach to Plagiarism Detection.

Int. J. Numerical Analysis and

Applications.

Suffix

automaton

Enhanced suffix-based

similarity for text/code

Influences suffix-

based code

plagiarism

techniques

3

An Intelligent Plagiarism Detection

Model Using Attention-Based Bi-

LSTM. MDPI Applied Sciences.

Deep learning

(Bi-LSTM)

Used neural attention

for plagiarism detection

Highlights AI-based

detection

improvement

4

A Modified Suffix Automaton

Approach to Plagiarism Detection.

Int. J. Numerical Analysis and

Applications.

String matching

automation

Fast substring

comparison for source

code

Strengthens hybrid

similarity detection

ideas

5

Kustanto, C., & Liem, I. (2009).

Automatic Source Code Plagiarism

Detection. 10th ACIS Int. Conf.

Heuristic &

token analysis

Compared syntax and

token-based methods

Core study for code

plagiarism

frameworks

6

Liu, T. et al. (2023). Design and

Implementation of Code Plagiarism

Detection System. AINIT.

Code similarity

analysis

Implemented scalable

detection system

Demonstrates

modern tool

integration

7

Marin, E.-C. et al. (2025).

Comparative Study of Source Code

Plagiarism Detection Tools. CSCS.

Comparative

analysis

Compared leading

plagiarism detection

tools

Supports selection

of effective

algorithms

8

Feng, J. et al. (2013). Code

Comparison Algorithm Based on

AST. EIDWT.

Abstract Syntax

Tree (AST)

Proposed AST-based

structural matching

Enables semantic-

level similarity

checking

9

Lu, X., & Wai, K.H. (2025).

Application of Code Plagiarism

Detection Function in a C

Programming Course. IS3C.

Academic

integration

Applied plagiarism

detection in course

grading

Demonstrates

educational use case

10

Aung, S.T. et al. (2022). Java

Programming Learning Assistant

using Node.js. ICET.

Learning

platform

Node.js-based code

assistant for students

Supports learning

platform backend

reference

11
Node.js. (2023). Official Website.

https://nodejs.org/en

Runtime

environment

Open-source JS

runtime

Backend reference

for platform system

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
https://nodejs.org/en

H

2. Literature Review & Foundational Concepts

Our proposed system is built upon the foundations laid by several key areas of research in text analysis and

plagiarism detection.

 Document Fingerprinting: A common technique for quickly finding similar documents is k-grams

fingerprinting. As detailed in the paper on Winnowing, this method involves generating hashes for

contiguous subsequences of text (k-grams). By selecting a subset of these hashes (fingerprints), one

can create a compact representation of a document. Comparing these fingerprints allows for a very

fast, albeit less granular, similarity check between documents. This is highly effective for

identifying significant copy-paste plagiarism.

 Exact String Matching: For a more detailed analysis, algorithms like suffix automatons provide

a powerful way to find all occurrences of a set of substrings within a text. A modified suffix

automaton, as suggested by the second reference, could be used to efficiently match sequences of

text between a source and a suspect document, allowing for a more fine-grained analysis of

syntactic similarities and structural plagiarism.

 Semantic Similarity and Deep Learning: The most challenging form of plagiarism to detect is

paraphrasing, where the original idea is retained but the wording and sentence structure are

completely changed. The third reference proposes an intelligent plagiarism detection model using

an Attention-Based Bidirectional Long Short-Term Memory (Bi-LSTM) network. Bi-LSTMs

can understand the context of words in a sentence from both forward and backward directions, and

the attention mechanism allows the model to focus on the most relevant parts of the text when

comparing two documents. This enables the model to look beyond keywords and syntax to capture

the underlying semantic meaning, making it ideal for detecting paraphrased content.

int sum=0;

 bool flag=false;

 for(auto it:mp)

 {

 if(it.second==k)

 {

 sum+=it.first;

 if(it.first==0)

 {

 flag=true;

 }

 }

 }

int total = 0;

bool hasZeroKey = false;

for(auto &entry : freqMap)

{

 if(entry.second == kValue)

 {

 total += entry.first;

 if(entry.first == 0)

 {

 hasZeroKey = true;

 }

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/

H

3. Proposed System Architecture

Our improved plagiarism checker uses a three-stage pipeline to maximize both efficiency and accuracy.

Stage 1: High-Speed Screening with Document Fingerprinting

When a new document is submitted, it first goes through a high-speed screening process based on the

Winnowing algorithm.

1. The document is parsed, and all k-grams are generated.

2. A hashing function is applied to each k-gram.

3. The Winnowing algorithm selects a representative subset of these hashes to create the document's

fingerprint.

4. This fingerprint is then compared against a database of fingerprints from existing documents. If the

similarity score exceeds a certain threshold (e.g., 25% overlap), the document is flagged for further

analysis. This initial step quickly filters out documents with no significant overlap, saving

computational resources.

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/

H

Stage 2: Syntactic Analysis with a Suffix Automaton

Documents flagged in Stage 1 are passed to the second stage for a more detailed syntactic check.

1. A modified suffix automaton is used to perform a more intensive string-matching analysis between

the suspect document and the potential source documents identified in the first stage.

2. This stage looks for longer, contiguous matches of text and identifies structural similarities, such as

reordered sentences or paragraphs.

3. The output is a more detailed similarity report highlighting specific sections with high syntactic

overlap.

Stage 3: Semantic Analysis with an Attention-Based Bi-LSTM

Finally, if a document shows moderate to high syntactic similarity, or if a more in-depth check is required,

it is sent to the third stage for semantic analysis.

1. The text from the suspect and source documents is converted into vector representations

(embeddings).

2. These embeddings are fed into an Attention-Based Bi-LSTM model.

3. The model analyzes the contextual meaning of the sentences and identifies passages that are

semantically equivalent, even if the wording is different.

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/

H

4. This stage is computationally intensive but is highly effective at catching paraphrased and heavily

re-written plagiarism.

4. Evaluation and Metrics

The proposed system would be evaluated on a comprehensive dataset containing various types of

plagiarism. The performance would be measured using standard metrics:

 Precision: The percentage of detected plagiarized sections that are actually plagiarized.

 Recall: The percentage of actual plagiarized sections that are correctly detected.

 F1-Score: The harmonic mean of precision and recall, providing a single metric for overall

accuracy.

5. Conclusion and Future Work

This paper presents a robust, multi-stage plagiarism detection system that combines the speed of document

fingerprinting, the precision of string matching, and the semantic understanding of deep learning. By

layering these techniques, our proposed model offers a significant improvement over single-method

detectors, providing a more accurate and comprehensive solution to the problem of plagiarism.

Future work could involve extending the model to support cross-lingual plagiarism detection and

incorporating stylistic analysis (stylometry) to identify changes in writing style within a single document.

6. References

1. Aiken, A., et al. (2003). Winnowing: Local Algorithms for Document Fingerprinting. SIGMOD '03.

2. Assumed Content A Modified Suffix Automaton Approach to Plagiarism Detection. International

Journal of Numerical Analysis and Applications.

3. Assumed Content An Intelligent Plagiarism Detection Model Using Attention-Based Bi-LSTM.

MDPI Applied Sciences.

4. C. Kustanto and I. Liem. (2009). Automatic Source Code Plagiarism Detection. 10th ACIS

International Conference on Software Engineering, Artificial Intelligences, Networking and

Parallel/Distributed Computing, Daegu, Korea (South), pp. 481–486. doi: 10.1109/SNPD.2009.62.

5. T. Liu, Z. Zhao, H. Fang, Q. Huang and W. Zhang. (2023). Design and Implementation of Code

Plagiarism Detection System. 4th International Seminar on Artificial Intelligence, Networking and

Information Technology (AINIT), Nanjing, China, pp. 188–195. doi:

10.1109/AINIT59027.2023.10212887.

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/

H

6. E.-C. Marin, A. Oţetea and A.-C. Olteanu. (2025). A Comparative Study of Source Code Plagiarism

Detection Tools for Programming Education. 25th International Conference on Control Systems

and Computer Science (CSCS), Bucharest, Romania, pp. 328–334. doi:

10.1109/CSCS66924.2025.00055.

7. J. Feng, B. Cui and K. Xia. (2013). A Code Comparison Algorithm Based on AST for Plagiarism

Detection. 4th International Conference on Emerging Intelligent Data and Web Technologies, Xi'an,

China, pp. 393–397. doi: 10.1109/EIDWT.2013.73.

8. X. Lu and K. H. Wai. (2025). The Application of Code Plagiarism Detection Function in a C

Programming University Course. 7th International Symposium on Computer, Consumer and

Control (IS3C), Taichung, Taiwan, pp. 1–4. doi: 10.1109/IS3C65361.2025.11130958.

9. Aung, S.T.; Funabiki, N.; Aung, L.H.; Htet, H.; Kyaw, H.H.S.; Sugawara, S. (2022). An

implementation of Java programming learning assistant system platform using Node.js.

International Conference on Information and Education Technology, Matsue, Japan, pp. 47–52.

10. Node.js. Available online: https://nodejs.org/en (accessed on 4 November 2023).

11. Docker. Available online: https://www.docker.com/ (accessed on 4 November 2023).

12. Wai, K.H.; Funabiki, N.; Aung, S.T.; Mon, K.T.; Kyaw, H.H.S.; Kao, W.-C. (2023). An

implementation of answer code validation program for code writing problem in java programming

learning assistant system. International Conference on Information and Education Technology,

Fujisawa, Japan, pp. 193–198.

13. Ala-Mutka, K. (2004). Problems in Learning and Teaching Programming. Tampere University of

Technology, pp. 1–13.

14. Konecki, M. (2014). Problems in programming education and means of their improvement.

DAAAM International Scientific Book, pp. 459–470.

15. Queiros, R.A.; Peixoto, L.; Paulo, J. (2012). PETCHA—A programming exercises teaching

assistant. ACM Annual Conference on Innovation and Technology in Computer Science Education,

Haifa, Israel, pp. 192–197.

16. Li, F.W.-B.; Watson, C. (2011). Game-based concept visualization for learning programming. ACM

Workshop on Multimedia Technologies for Distance Learning, Scottsdale, AZ, USA, pp. 37–42.

17. Ünal, E.; Çakir, H. (2017). Students’ views about the problem based collaborative learning

environment supported by dynamic web technologies. Malays. Online J. Edu. Tech., 5, 1–19.

18. Zinovieva, I.S., et al. (2021). The use of online coding platforms as additional distance tools in

programming education. J. Phys. Conf. Ser. 1840, 012029.

19. Denny, P., Luxton-Reilly, A., Tempero, E., Hendrickx, J. (2011). CodeWrite: Supporting student-

driven practice of Java. ACM Technical Symposium on Computer Science Education, Dallas, USA,

pp. 471–476.

20. Shamsi, F.A.; Elnagar, A. (2012). An intelligent assessment tool for student’s Java submission in

introductory programming courses. J. Intelli. Learn. Syst. Appl., 4, 59–69.

21. Edwards, S.H.; Pérez-Quiñones, M.A. (2007). Experiences using test-driven development with an

automated grader. J. Comput. Sci. Coll., 22, 44–50.

22. Tung, S.H.; Lin, T.T.; Lin, Y.H. (2013). An exercise management system for teaching programming.

J. Softw., 8, 1718–1725.

23. Rani, S.; Singh, J. (2018). Enhancing Levenshtein’s edit distance algorithm for evaluating

document similarity. International Conference on Computing, Analytics and Networks, Singapore,

pp. 72–80.

24. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O. (2010). Review of recent systems for automatic

assessment of programming assignments. 10th Koli Calling International Conference on

Computing Education Research, pp. 86–93.

25. Duric, Z.; Gasevic, D. (2013). A source code similarity system for plagiarism detection. Comput.

J., 56, 70–86.

26. Ahadi, A.; Mathieson, L. (2019). A comparison of three popular source code similarity detecting

student plagiarism. 21st Australasian Computing Education Conference, pp. 112–117.

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
https://nodejs.org/en
https://www.docker.com/

H

27. Novak, M.; Joy, M.; Keremek, D. (2019). Source-code similarity detection and detection tools used

in academia: A systematic review. ACM Trans. Comp. Educ., 19, 1–37.

28. Karnalim, S.O., et al. (2020). Choosing code segments to exclude from code similarity detection.

Working Group Reports on Innovation and Technology in Computer Science Education,

Trondheim, Norway, pp. 1–19.

29. JUnit. Available online: https://en.wikipedia.org/wiki/JUnit (accessed on 4 November 2023).

30. Bubble Sort. Available online: https://en.wikipedia.org/wiki/Bubble_sort (accessed on 4 November

2023).

31. Levenshtein Distance. Available online: https://en.wikipedia.org/wiki/Levenshtein_distance

(accessed on 4 November 2023).

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.ijcrt.org/
https://en.wikipedia.org/wiki/JUnit
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Levenshtein_distance

