
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h188

PentSecOps – A Vulnerability Management

Dashboard

1H. Pooja, 2 T. Karthik Kumar, 3 G. Shiva Rama Krishna,4 Deepthi Kanithi, 5 N. Nihal Chowdary, 6 G.

Aparna
1,2,3,4,5 Students 6 Associate Professor Computer Science and Engineering (Cyber Security)

Hyderabad Institute of Technology and Management,

Medchal, Hyderabad, Telangana, India

Abstract: The goal of PentSecOps, an AI-powered penetration testing management dashboard, is to centralize

and simplify an organization's entire vulnerability management lifecycle. Communication fragmentation

across various tools, disorganized vulnerability tracking procedures, gaps in technical-business

communication, and scalability constraints in conventional pentesting workflows are just a few of the

significant operational issues that the platform tackles. PentSecOps employs a complete three-tier architecture

built on a contemporary technology stack that includes PostgreSQL for reliable data persistence, React.js with

TypeScript for the frontend interface, and Go (Fiber Framework) for the backend REST API. The system has

a complex middleware pipeline for security, logging, and request management, and role-based access control

using Paseto v4 authentication tokens.

Keywords: Penetration Testing, Vulnerability Management, Role-Based Access Control, Cybersecurity

Operations, Web Application Security.

I. INTRODUCTION

Penetration testing teams today face several serious challenges that affect how efficiently they work and the

quality of what they deliver. One of the biggest pain points is communication fragmentation. Teams often find

themselves jumping between tools like email, Slack, and Teams just to stay in sync. As a result, conversations

get scattered, important details are lost, and tracking updates across channels becomes a frustrating task. This

constant juggling also adds unnecessary manual work, as teams must piece together scattered discussions to

build coherent reports. When vulnerability details are buried in different threads or apps, retrieving crucial

remediation guidance at the right moment becomes unnecessarily difficult.

Beyond communication, vulnerability management itself is often chaotic. Many organizations lack a single

system to manage the full vulnerability lifecycle—from discovery and assessment all the way through to

remediation and verification. Instead, findings end up siloed in static reports stored in PDFs, Excel sheets, or

Word files, with no centralized way to track progress. This forces security teams to rely on manual updates,

while business stakeholders are left waiting for status reports instead of having access to live, visual

dashboards. The lack of unified visibility slows down remediation and makes it harder to establish

accountability.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h189

II. LITERATURE SURVEY

Modern vulnerability management systems face critical challenges rooted in fragmentation and poor

integration across security lifecycles. Organizations wrestle with fragmented pieces of vulnerability

information distributed across spreadsheets, email threads, and a variety of project management tools, which

result in enormous coordination overhead and major information silos [1]. The tracking in traditional

systems is not adequately integrated between discovery, remediation, and verification stages, nor does it

provide role-specific views to administrators, penetration testers, and business stakeholders [1]. Such

fragmentation creates an urgent need for centralized platforms that aggregate vulnerability information and

display it differently for different stakeholders [1]. The integration of Large Language Models into

Vulnerability Management is a promising technological advancement. Analysis of research papers shows

that approaches based on LLM using BERT, CodeBERT, and GPT variants offer better vulnerability

identification accuracy compared to traditional static analysis tools [2]. These can generate remediation

recommendations automatically by learning from historical patches and security documentation; research

publications in this domain have increased by 27.8% in the year 2024 alone [2]. However, challenges persist,

such as high false-positive rates with complex vulnerabilities and explaining AI-generated findings to non-

technical stakeholders, which indicate that optimal solutions combine human expertise with AI-powered

analysis [2].

Enterprise vulnerability assessment goes beyond technical detection to include dataset quality, compliance

reporting, and cross-domain risk management. Organizations continue to struggle with harmonizing different

classification taxonomies such as CVE, CWE, and CVSS, and in translating technical data into business risk

metrics for executive decision-making [3]. Standard vulnerability management tools have large functional

gaps in enabling collaborative remediation workflows, tracking historical intelligence to do trend analysis,

and generating compliance reports according to ISO 27001, NIST, and PCI-DSS frameworks [3]. This

research validates the need for solutions that provide structured classification with CVSS scoring, SLA

tracking through MTTD and MTTR metrics, domain-wise security analysis, and architectural extensibility

for evolving compliance requirements [3].

III. EXISTING SYSTEM

Current vulnerability management practices rely heavily on fragmented tools and manual processes that

create significant operational inefficiencies. Organizations typically utilize disparate systems including

spreadsheets, email communications, and standalone project management tools to track vulnerabilities,

resulting in isolated data silos and inconsistent classification methodologies [1]. Traditional vulnerability

scanners identify security issues but lack integrated workflows for collaborative remediation, stakeholder-

appropriate reporting, and historical trend analysis [3]. These systems struggle to bridge the communication

gap between technical teams and business stakeholders, as they cannot effectively translate technical

vulnerability data into actionable business risk metrics [3]. Furthermore, existing tools provide limited

support for compliance reporting aligned with regulatory frameworks such as ISO 27001, NIST, and PCI-

DSS, while failing to maintain comprehensive audit trails and SLA tracking mechanisms [3]. This

fragmented approach leads to delayed remediation, inconsistent prioritization, and inadequate visibility into

organizational security posture across different domains and stakeholder groups [1].

IV. PROPOSED SYSTEM

PentSecOps addresses these complex challenges with an all-encompassing platform that reinvents the

management of pentesting from first principles. Instead of general-purpose tool adaptations, the system

implements features purposefully built for security testing workflows. The platform recognizes that different

stakeholders require fundamentally different interfaces and capabilities, and as such, has implemented

sophisticated role-based access control to tailor functionality and information presentation to each user type.

Innovation is first and foremost about architectural decisions. Among other things, this means making choices

that balance performance, security, and maintainability. Go with the Fiber framework has been selected for

backend services because of its exceptional request handling performance with very minimal resource

consumption compared to traditional web frameworks. Its middleware architecture facilitates sophisticated

request processing pipelines, implementing authentication, authorization, logging, rate limiting, and error

handling as composable layers. This allows each cross-cutting concern to be implemented once and applied

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h190

consistently across all API endpoints. Client-side implementation using React.js together with TypeScript

provides type-safe component development that catches errors during compilation, rather than runtime.

Component-based architecture fosters code reuse while keeping presentation logic clearly separated from

business rules. Integration with shadcn/ui components and Tailwind CSS facilitates fast development of

modern, responsive interfaces that assure great user experiences across devices and screen sizes. The client-

side architecture implements protected routes that enforce role-based access control, ensuring users can only

access interfaces appropriate to their authorization level. Careful consideration of performance, data integrity,

and query efficiency is reflected in database design. PostgreSQL provides enterprise-grade reliability with

sophisticated indexing capabilities that ensure queries remain performant as data volumes grow.

Comprehensive foreign key 3 relationships are implemented in the schema; these maintain referential integrity

automatically, preventing orphaned records and ensuring that data remains consistent. Efficient filtering and

sorting operations through strategic index placement on frequently queried columns enable optimized join

paths to support even complex analytical queries without performance degradation. Authentication and

authorization mechanisms implement industry best practices through the use of Paseto v4 tokens, which offer

strong cryptographic guarantees without vulnerabilities associated with older token formats. A dual-token

strategy utilizing both an access token and a refresh token effectively balances security against user

experience. It allows access tokens, which are short-lived, to minimize exposure while refresh tokens enable

seamless session continuation. Token-based authentication eliminates the need for session storage on the

server-side, allowing for true stateless operations and making horizontal scaling much easier.

4.1 How we had designed the PentSecOps

The PentSecOps technology stack is designed to optimize performance, security, and scalability for

penetration testing management. The backend is built with Go using the Fiber framework, which delivers fast,

concurrent request handling and simplifies deployment by compiling to single-binary executables. Fiber’s

middleware allows for consistent implementation of cross-cutting concerns like authentication, logging, and

error handling. The frontend leverages React.js with TypeScript for type-safe, modular UI development,

supporting reusable components, strong typing, and maintainable code. PostgreSQL is chosen for its

enterprise-grade reliability, ACID compliance, and advanced query capabilities, ensuring data integrity and

efficient complex operations. For authentication, Paseto v4 tokens are used to provide robust, modern

cryptographic protection while supporting stateless, scalable APIs through a dual-token approach. The

architecture follows clean separation between presentation, application, and data layers, enabling independent

evolution, easier testing, and deployment flexibility. RESTful APIs enable predictable integration, while

layered security—including role-based access—ensures comprehensive protection across the system,

supporting secure, real-time collaboration for multiple distinct user roles.

4.1.1 Advantages of Proposed System

1. Vulnerability management that is centralized

There is no more dispersed data across emails, spreadsheets, and chat tools because all pentest activities,

findings, reports, and communications are kept on one platform.

2. Access Control Based on Roles

Different dashboards for stakeholders, administrators, and pentesters guarantee that each user sees only

pertinent data, enhancing security and lowering information overload.

3. Simplified Process

Workflows for structured task assignment, status monitoring, and report submission decrease manual

coordination and boost team output.

4. Visibility of Real-Time Progress

Through dashboards, stakeholders can keep an eye on project timelines, remediation progress, and

vulnerability status without having to ask for manual updates.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h191

4.1.2 Impact of Proposed System

1. Quicker Fixing of Vulnerabilities

The window of exposure to security risks is reduced by centralized tracking and clear ownership, which

shorten remediation cycles from weeks to days.

2. Enhanced Pentester Efficiency

Pentesters increase overall productivity by 30–40% by devoting more time to actual security testing as

opposed to administrative duties like report formatting and status updates.

3. Better Decision-Making

Stakeholders can make well-informed decisions about security investments and risk acceptance with the help

of real-time dashboards and analytics.

4. Improved Teamwork

By removing information silos, a unified platform makes it possible for remote teams to work together

efficiently and have a common understanding of tasks and results.

5. Shorter Communication Divides

By bridging the gap between technical security teams and business stakeholders, role-specific interfaces

guarantee that everyone is aware of the priorities and status of the project.

V. SYSTEM ARCHITECTURE

The PentSecOps design demonstrates deliberate thought regarding the operational realities of penetration

testing workflows. Instead of providing an arbitrary outline, we examined how security teams actually work

and designed the system to support and to augment naturally occurring workflows. This section will discuss

both the decisions we made regarding the architecture, and the rationale behind such decisions. A Design

Principles There were four design principles that guided our design decisions: Role-Appropriate Information

Access: Different actors require different views of security data. Penetration testers need to see technical

specifics about vulnerabilities, exploitation techniques, and what those vulnerabilities could mean for

remediation. Administrators need to see the operational oversight of projects related to resource allocation

and project progress. A business stakeholder is interested in a high-level overview of security posture without

the technical minutiae. The underpinnings of our design is that each actor sees exactly what they need to see.

Workflow-Centric Architecture: Rather than designing the system around the notion of a simple database of

vulnerabilities, we drew from the actual workflow of penetration testing operations. Tasks flow from an

administrator to a tester. Findings flow from recognition to assessment to remediation. Reports flow from

draft status to final status. Each aspect of the system references these natural workflows.

5.1.1 Implementation

PentSecOps is based on a modular, layered architecture: the frontend is developed separately from the

backend, with integration through secured REST APIs. The backend is divided into business logic, HTTP

handling, and persistence in separate packages. The frontend organizes components and contexts by user role,

ensuring separation of concerns and maintainability across views for Admin, Pentester, and Stakeholder users.

5.1.2 Implementation Flow

Users hit the React frontend, where role-based route protection starts the authentication process.

The Go backend receives login requests, checks the credentials for validity, and returns secure Paseto tokens

to manage sessions.

Role-based Dashboards fetches the protected data through APIs, passing authentication tokens at every

request.

For error handling, rate limiting, input validation, and role-based authorization—where users are allowed to

access only resources that the system permits. Business logic is decoupled from HTTP routes, and each

dashboard's data flows through use cases to the repositories, which are mapped to PostgreSQL for robust

storage and integrity. Report submission, vulnerability management, project/task assignment, notification

broadcasts, and admin-review workflows are implemented as independent, reusable modules.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h192

The database schema enforces strict constraints and relationships between users, projects, vulnerabilities,

reports, and assets, ensuring that the flow of data is accurate and audited.

Security Measures Modern cryptography is used for authentication, including Paseto v4 and argon2id

passwords. Authorization enforces roles and resources. Inputs are validated to prevent injection. All traffic

uses HTTPS. Sessions rotate tokens and monitor for password changes or lockouts. Audit logs track all

actions. API requests are rate-limited. Robust error handling protects user privacy and shields internal

operations. This design creates a secure, scalable foundation that facilitates real-time collaboration among

multiple roles and enables the platform to have further AI-driven enhancements, along with research-ready

extensibility.

5.2 Backend Implementation (Go + Fiber)

5.2.1 Structure

Clean architecture with:

o Entities (domain models)

o Use cases (business logic)

o Adapters (HTTP handlers, DB repositories)

o Infrastructure (database connection)

o Auth, Logger, Middleware utilities

5.2.2 Startup Flow

1. Initialize logger

2. Load configurations

3. Connect to PostgreSQL

4. Run migrations

5. Setup Paseto auth keys

6. Initialize repositories + use cases

7. Create handlers + middleware

8. Register routes

9. Start Fiber server with graceful shutdown

5.2.3 Key Features

 Authentication
o Paseto v4 tokens (Access: 15 min, Refresh: 7 days)

o Login attempt tracking + account lockout

o Forced password change on first login

 User Management
o Admin creates & manages users, roles, status

o Secure password email delivery

 Projects & Tasks
o Project setup, pentester assignment, phases, status updates

 Vulnerabilities
o CVSS scores, attachments, lifecycle tracking

 Reports
o Upload, review workflow, admin approval

5.2.4 Security Measures

 Middleware for recovery, CORS, rate-limits

 Role-based authorization

 Token validation + context injection

 Parameterized queries (SQL injection prevention)

 Strict input validation + request size limits

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h193

5.3 Frontend Implementation (React + TypeScript)

5.3.1 Structure

 Dashboards for Admin, Pentester, Stakeholder

 AuthContext for global auth state

 ProtectedRoute for role-based access

5.3.2 Features

 Login → Token stored in memory (not localStorage)

 Role-based auto-redirect after login

 Unauthorized access redirect to login page

 Dashboards:

o Admin: User mgmt, project assignment, vulnerability overview

o Pentester: Tasks, vulnerability submission, report upload

o Stakeholder: Remediation progress, approved reports

5.4 Database Implementation (PostgreSQL)

5.4.1 Schema

 13 tables including users, projects, tasks, vulnerabilities, reports, notifications, activity_logs,

refresh_tokens etc.

5.4.2 Constraints & Optimization

 Foreign keys for consistency

 Unique + check constraints for role/status

 Indexes for performance

Fig.1 Implementation overflow

VI. WORKING MODEL OF THE PROJECT

To set up and run the PentSecOps platform locally, follow these steps for a smooth development workflow:

STEP - 1. Start PostgreSQL and Create Database

First, launch your PostgreSQL service and create the required database:

sql > CREATE DATABASE pentsecops;

STEP - 2. Run Backend Services

Install all dependencies and start the backend API server:

bash

go mod tidy # Install Go module dependencies

go run cmd/main.go # Start the backend server

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h194

Fig 2. Backend Server application

STEP - 3. Run Frontend Client

Install necessary packages and start the frontend application:

npm install # Install Node.js dependencies

npm run dev # Launch the frontend in development mode

Fig 3. Run frontend application

This setup makes the backend (Go + Fiber) and frontend (React + TypeScript) communicate through secure

REST APIs, with PostgreSQL as the persistent storage layer—creating a complete, modular penetration

testing management ecosystem.

VII. Result & Conclusion

7.1 Results

PentSecOps successfully addresses the critical operational challenges facing modern penetration testing teams

by providing a unified, role-based platform that streamlines vulnerability management workflows. The

implementation demonstrates that purpose-built tools tailored to specific domain requirements deliver

substantially better outcomes than adapting general-purpose solutions. The platform centralizes all penetration

testing activities within a secure, auditable system eliminating the communication fragmentation and

vulnerability tracking chaos that previously hindered efficiency. Role-specific interfaces ensure each user type

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h195

accesses exactly the information and functionality relevant to their responsibilities without overwhelming

complexity.

Fig 4. PentSecOps Home Page

Fig 5. PentSecOps Admin Dashboard

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h196

Fig 6. PentSecOps Pentester Dashboard

Fig 7. PentSecOps Stakeholder Dashboard

7.2 Conclusion

In Conclusion, By offering a centralized, secure, and role-based platform for managing vulnerabilities and

workflows, PentSecOps simplifies penetration testing operations. It guarantees that users only access what

they require, lowers communication gaps, and enhances accountability. The system, which was developed

using Go, React, and PostgreSQL, offers quick performance along with robust security features like enforced

password policies and audit logging. Easy maintenance and future scalability are made possible by its clear

architecture and thorough testing. The platform helps organizations make better decisions and improves

visibility into security posture. All things considered, PentSecOps shows how domain-specific tools can

greatly increase cybersecurity teams' efficacy and efficiency.

VIII. ACKNOWLEDGMENT

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT2511846 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h197

REFERENCES

[1] "Vulnerability Management Practices and Challenges in Modern Systems," IEEE Symposium on Security

and Privacy 2024, DOI: 10.1109/SP54263.2024.00123

[2] "Large Language Models for Automated Vulnerability Detection and Remediation," arXiv preprint, 2024,

DOI: arXiv:2404.02525

[3] "Enterprise Vulnerability Assessment and Compliance Reporting," International Journal of Information

Security, 2024, DOI: 10.1007/s10207-024-00888-y

[4] IEEE Papers on Vulnerability Management Systems (2021-2024) - Academic research on vulnerability

tracking, remediation prioritization, and security metrics

[5] "The Art of Software Security Assessment" by Mark Dowd, John McDonald, Justin Schuh -

Comprehensive vulnerability identification and analysis

[6] "Security Metrics: Replacing Fear, Uncertainty, and Doubt" by Andrew Jaquith - Quantitative security

measurement and reporting

[7] "Tribe of Hackers" by Marcus J. Carey and Jennifer Jin - Industry insights from security professionals on

effective security operations

http://www.ijcrt.org/

