

Intuitionistic Fuzzy Distributive Near Ring groups

Dr. Md Nazir Hussain
Assistant Professor, Department of Mathematics
Bilasipara College, Dhubri, Assam, India

Abstract: Hadi and Semeein [3] introduced and investigated fuzzy distributive modules as an expanded idea of distributive modules. They established the result between the fuzzy distributive module and the distributive of fuzzy singleton. Sharma [9] has studied the notions of intuitionistic fuzzy modules in many ways. Introducing intuitionistic fuzzy submodules of a module, Sharma proved that the intersection of two fuzzy submodules of a module is also a fuzzy submodule. Davvaz, Wieslaw and Jun [1] presented intuitionistic fuzzy submodules of modules and utilizing this notion, numerous scholars such as Isaac [4], Rahman [6], and Sharma [10] investigated it in many ways. They derived different operations on intuitionistic fuzzy sets, intuitionistic (T, S)-fuzzy submodule of a module, intuitionistic fuzzy H_v -submodules of a module and the relationship between fuzzy submodule, and intuitionistic fuzzy submodule of a module. Devi [2] developed the concept of intuitionistic fuzzy N-subgroups and ideals of N-group and discussed the association between intuitionistic fuzzy ideals and fuzzy ideals, which is being investigated by several scholars in various fields.

In this paper, the concept of DN-groups extended to intuitionistic fuzzy and intuitionistic fuzzy weak DN-groups and uniserial N-groups to intuitionistic fuzzy uniserial N-groups. The core concepts employed in this chapter are found in [5, 7, 8]. Here, in general, $\gamma, \lambda \in [0, 1]$ with $\gamma + \lambda \leq 1$.

Introducing the notion of IF DN-groups, the associated outcomes of the (γ, λ) -cut of intuitionistic fuzzy sets, intuitionistic fuzzy DN-groups and intuitionistic fuzzy weak DN-groups are examined. Finally, the correlations among the intuitionistic fuzzy concepts of uniserial N-groups, DN-groups and weak DN-groups are derived.

Keywords: Intuitionistic fuzzy(IF) sets, DN-groups, weak DN-groups.

1 Intuitionistic fuzzy DN-groups

Definition 1.1 [7] Let N be a near-ring. Then an additive group $(E, +)$ is referred to as a left N -group if \exists a map $N \times E \rightarrow E$ such that $(n, u) \rightarrow nu$ in which the following conditions hold-

- i. $(m + n)u = mu + nu$.
- ii. $(mn)u = m(nu)$, $\forall m, n \in N, u \in E$.

It is to be noted that N is itself an N -group over itself. If for $1 \in N$ such that $1 \cdot u = u \forall u \in E$, then E is called an unitary N -group.

Throughout the work, the near-ring N is considered a zero symmetric right near-ring and E is a unitary left N -group.

Definition 1.2 [7] In the event that A is a subgroup of $(E, +)$ and $NA \subseteq A$ for any $A \subseteq E$, then A is referred to as an N -subgroup.

Definition 1.3 When $x \in E$, Nx is referred to as the principal N-subgroup of E .

Definition 1.4 The object $A = \langle \phi_A, \psi_A \rangle = \{ \langle s, \phi_A(s), \psi_A(s) \rangle \mid s \in S \}$ is referred to as an intuitionistic fuzzy (IF) set on a non empty set S , where ϕ_A and ψ_A are fuzzy subsets of S such that $0 \leq \phi_A(s) + \psi_A(s) \leq 1$.

Definition 1.5 An IF set $A = \langle \phi_A, \psi_A \rangle$ in E is called IF an N-subgroup of E ($A \leq_{IFN} E$) if

- i. $\phi_A(p - m) \geq \phi_A(p) \wedge \phi_A(m)$.
- ii. $\phi_A(np) \geq \phi_A(p)$.
- iii. $\psi_A(p - m) \leq \psi_A(p) \vee \psi_A(m)$.
- iv. $\psi_A(np) \leq \psi_A(p) \forall p, m \in E, n \in N$.

Definition 1.6 [11] Let $P = \langle \phi_P, \psi_P \rangle$ be an IF sets in E . Then (γ, λ) -cut of P is referred by-

$${}^{(\gamma, \lambda)}P = \{m \in E: \phi_P(m) \geq \gamma, \psi_P(m) \leq \lambda\}.$$

Definition 1.7 E is called an Intuitionistic fuzzy distributive near ring groups (IF DN-group) if $(P + H) \cap C = (P \cap C) + (H \cap C)$, \forall IF N-subgroups P, H, C of E .

Definition 1.8 Let $B = \langle \phi_B, \psi_B \rangle$ be an IF N-subgroup, then ${}^{(\gamma, \lambda)}B$ is called an N-subgroup of ${}^{(\gamma, \lambda)}E$ if $s - y, ns \in {}^{(\gamma, \lambda)}B$, for any $s, y \in {}^{(\gamma, \lambda)}B$ and $n \in N$.

Definition 1.9 Let $B = \langle \phi_B, \psi_B \rangle$ be an IF N-subgroup, then ${}^{(\gamma, \lambda)}B$ is said to be an ideal of ${}^{(\gamma, \lambda)}E$ if $p - q, m + p - m \in E$ and $n(p + m) - nm \in {}^{(\gamma, \lambda)}B$, for any $p, q \in {}^{(\gamma, \lambda)}B, m \in E, n \in N$.

Lemma 1.1 Let E be a commutative N-group and every principal N-subgroup is an ideal, then the sum of two subgroups of ${}^{(\gamma, \lambda)}E$ is also a subgroup.

Proof. Let ${}^{(\gamma, \lambda)}P$ and ${}^{(\gamma, \lambda)}B$ be subgroups of ${}^{(\gamma, \lambda)}E$.

Let $p, q \in {}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}B$.

Then $p = s_1 + y_1, q = s_2 + y_2$, for some $s_1, s_2 \in {}^{(\gamma, \lambda)}P, y_1, y_2 \in {}^{(\gamma, \lambda)}B$.

Since E is commutative and ${}^{(\gamma, \lambda)}P, {}^{(\gamma, \lambda)}B \subseteq E$,

$p - q = (s_1 - s_2) + (y_1 - y_2) \in {}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}B$.

Since every principal N-subgroup is an ideal,

$n(s_1 + y_1) - ny_1 \in Ns_1$, for $n \in N$.

Also $ny_1 \in Ny_1$.

So $n(s_1 + y_1) - ny_1 + ny_1 \in Ns_1 + Ny_1$.

$\Rightarrow np = n(s_1 + y_1) \in Ns_1 + Ny_1 \in N({}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}B) \subseteq {}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}B$.

Thus the result.

Proposition 1.1 If $P = \langle \phi_P, \psi_P \rangle$ and $B = \langle \phi_B, \psi_B \rangle$ are IF N-subgroups of E , then

i. ${}^{(\gamma, \lambda)}(P + B) = {}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}B$ with $\gamma + \lambda = 1$.

ii. ${}^{(\gamma, \lambda)}(P \cap B) = {}^{(\gamma, \lambda)}P \cap {}^{(\gamma, \lambda)}B$.

Proof. (i). Let $s \in {}^{(\gamma, \lambda)}(P + B)$.

Then $\phi_{P+B}(s) \geq \gamma$ and $\psi_{P+B}(s) \leq \lambda$.

Now, $\phi_{P+B}(s) \geq \gamma$

$\Rightarrow \vee \{ \phi_P(r) \wedge \phi_B(t) : r, t \in E, s = r + t \} \geq \gamma$

$\Rightarrow \phi_P(r_1) \wedge \phi_B(t_1) \geq \gamma$, for some $r, t \in E$ such that $s = r_1 + t_1$.

Since $\phi_P(r_1), \phi_B(t_1) \geq \phi_P(r_1) \wedge \phi_B(t_1) \geq \gamma$

$\Rightarrow \phi_P(r_1) \geq \gamma$ and $\phi_B(t_1) \geq \gamma$, for some $r_1, t_1 \in E$ such that $s = r_1 + t_1$

$\Rightarrow \psi_P(r_1) \leq 1 - \phi_P(r_1) = 1 - \gamma = \lambda$ and $\psi_B(t_1) \leq 1 - \phi_B(t_1) = 1 - \gamma = \lambda$ [Since $\gamma + \lambda = 1$]

$\Rightarrow r_1 \in {}^{(\gamma, \lambda)}P$ and $t_1 \in {}^{(\gamma, \lambda)}B$

$\Rightarrow s = r_1 + t_1 \in {}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}B$.

Conversely, let $s \in {}^{(\gamma, \lambda)} P + {}^{(\gamma, \lambda)} B$.

Then $s = r + t$, for some $r \in {}^{(\gamma, \lambda)} P, t \in {}^{(\gamma, \lambda)} B$

$\Rightarrow \phi_P(r) \geq \gamma, \psi_P(r) \leq \lambda, \phi_B(t) \geq \gamma, \psi_B(t) \leq \lambda$

$\Rightarrow \phi_P(r) \wedge \phi_B(t) \geq \gamma$ and $\psi_P(r) \vee \psi_B(t) \leq \lambda$

$\Rightarrow \{ \phi_P(r) \wedge \phi_B(t) \geq \gamma : s = r + t \} \text{ and } \{ \psi_P(r) \vee \psi_B(t) \leq \lambda : s = r + t \}$

$\Rightarrow s \in {}^{(\gamma, \lambda)} (P + B)$.

Thus the result.

(ii). Let $s \in {}^{(\gamma, \lambda)} (P \cap B)$

$\Rightarrow \phi_{P \cap B}(s) \geq \gamma$ and $\psi_{P \cap B}(s) \leq \lambda$.

But $P \cap B \subseteq P, B$.

So $\phi_P(s), \phi_B(s) \geq \phi_{P \cap B}(s) \geq \gamma$ and $\psi_P(s), \psi_B(s) \leq \psi_{P \cap B}(s) \leq \lambda$.

Thus, $s \in {}^{(\gamma, \lambda)} P$ and $s \in {}^{(\gamma, \lambda)} B$

$\Rightarrow s \in {}^{(\gamma, \lambda)} P \cap {}^{(\gamma, \lambda)} B$.

Conversely, let $s \in {}^{(\gamma, \lambda)} P \cap {}^{(\gamma, \lambda)} B$

$\Rightarrow s \in {}^{(\gamma, \lambda)} P$ and $s \in {}^{(\gamma, \lambda)} B$

$\Rightarrow \phi_P(s) \geq \gamma, \psi_P(s) \leq \lambda$ and $\phi_B(s) \geq \gamma, \psi_B(s) \leq \lambda$

$\Rightarrow \phi_P(s) \wedge \phi_B(s) \geq \gamma$ and $\psi_P(s) \vee \psi_B(s) \leq \lambda$

$\Rightarrow \phi_{P \cap B}(s) \geq \gamma$ and $\psi_{P \cap B}(s) \leq \lambda$

$\Rightarrow s \in {}^{(\gamma, \lambda)} (P \cap B)$.

Thus the result.

Definition 1.10 If $P = \langle \phi_P, \psi_P \rangle$ and $B = \langle \phi_B, \psi_B \rangle$ are IF N-subgroups of E , then ${}^{(\gamma, \lambda)} P = {}^{(\gamma, \lambda)} B$ if and only if $\phi_P(s) = \phi_B(s) \geq \gamma$ and $\psi_P(s) = \psi_B(s) \leq \lambda, \forall s \in E$.

Lemma 1.2 If $P = \langle \phi_P, \psi_P \rangle$ and $M = \langle \phi_M, \psi_M \rangle$ are IF N-subgroups of E , then $P = M$ if and only if ${}^{(\gamma, \lambda)} P = {}^{(\gamma, \lambda)} M$.

Proof. It is clear from the definition.

Proposition 1.2 If $L = \langle \phi_L, \psi_L \rangle$ is an IF N-subgroup of E , then ${}^{(\gamma, \lambda)} L$ is also an N-subgroup of ${}^{(\gamma, \lambda)} E$.

Proof. By definition, ${}^{(\gamma, \lambda)} L$ is a subset of ${}^{(\gamma, \lambda)} E$.

For any $n \in N, s, y \in {}^{(\gamma, \lambda)} L$,

$\phi_L(s), \phi_L(y) \geq \gamma, \psi_L(s), \psi_L(y) \leq \lambda$.

Therefore, $\phi_L(ns) \geq \phi_L(s) \geq \gamma$ and $\psi_L(ns) \leq \psi_L(s) \leq \lambda$ [since L is an IF N-subgroup].

Also, $ns \in E$.

Therefore $ns \in {}^{(\gamma, \lambda)} L$.

Again, $s - y \in E$ such that $\phi_L(s - y) \geq \phi_L(s) \wedge \phi_L(y) \geq \gamma \wedge \gamma = \gamma$ and $\psi_L(s - y) \leq \psi_L(s) \vee \psi_L(y) \leq \lambda \vee \lambda = \lambda$.

So $s - y \in {}^{(\gamma, \lambda)} L$.

This shows that ${}^{(\gamma, \lambda)} L$ is an N-subgroup of ${}^{(\gamma, \lambda)} E$.

Theorem 1.1 E is an IF DN-group if and only if ${}^{(\gamma, \lambda)} E$ is a DN-group with $\gamma, \lambda \in (0, 1], \gamma + \lambda = 1$.

Proof. Let E be an IF DN-group and X, I, L be N-subgroups of ${}^{(\gamma, \lambda)} E$ such that

$$\phi_P(h) = \begin{cases} 1, & h \in X \\ 0, & h \notin X \end{cases}, \psi_P(h) = \begin{cases} 0, & h \in X \\ 1, & h \notin X \end{cases},$$

$$\phi_M(h) = \begin{cases} 1, & h \in I \\ 0, & h \notin I \end{cases}, \psi_M(h) = \begin{cases} 0, & h \in I \\ 1, & h \notin I \end{cases},$$

$$\phi_T(h) = \begin{cases} 1, & h \in L \\ 0, & h \notin L \end{cases}, \quad \psi_T(h) = \begin{cases} 0, & h \in L \\ 1, & h \notin L \end{cases}$$

where $\gamma, \lambda \in (0,1], \gamma + \lambda = 1$.

Now, if $s \in^{(\gamma, \lambda)} P$, then either $s \in X$ or $s \notin X$.

If $s \notin X$, then $\phi_P(s) = 0 \geq \gamma$ and $\psi_P(s) = 1 \leq \lambda$ [since $\phi_P(s) \geq \gamma, \psi_P(s) \leq \lambda$] - which is a contradiction as $\gamma, \lambda \in (0,1]$.

Thus $^{(\gamma, \lambda)} P = X$.

Similarly $^{(\gamma, \lambda)} M = I, ^{(\gamma, \lambda)} T = L$.

Claim P, M, T are IF N-subgroups of E.

Since X is a subgroup of $(E, +)$, for any $s, y \in X, n \in N$,

$s - y \in X$ and $ns \in X$

$\Rightarrow \phi_P(s - y) = 1 = \phi_P(s) \wedge \phi_P(y)$ and $\phi_P(ns) = 1 = \phi_P(s)$ [since $s, y \in X, \phi_P(s) = 1, \phi_P(y) = 1$].

Similarly, $\psi_P(s - y) = \psi_P(s) \vee \psi_P(y)$ and $\psi_P(ns) = \psi_P(s)$.

This shows that P is an IF N-subgroup.

Similarly, M and T are IF N-subgroups of E.

Since E is an IF DN-subgroup, therefore

$$(P + M) \cap T = (P \cap T) + (M \cap T)$$

$$\Rightarrow^{(\gamma, \lambda)} [(P + M) \cap T] =^{(\gamma, \lambda)} [(P \cap T) + (M \cap T)] \text{ [using lemma 1.2]}$$

$$\Rightarrow^{(\gamma, \lambda)} (P + M) \cap^{(\gamma, \lambda)} T =^{(\gamma, \lambda)} (P \cap T) +^{(\gamma, \lambda)} (M \cap T) \text{ [using proposition 1.1]}$$

$$\Rightarrow (^{(\gamma, \lambda)} P + ^{(\gamma, \lambda)} M) \cap^{(\gamma, \lambda)} T = (^{(\gamma, \lambda)} P \cap^{(\gamma, \lambda)} T) + (^{(\gamma, \lambda)} M \cap^{(\gamma, \lambda)} T) \text{ [using proposition 1.1]}$$

$$\Rightarrow (X + I) \cap L = (X \cap L) + (I \cap L).$$

Thus, $^{(\gamma, \lambda)} E$ is a DN-group.

Conversely, suppose $^{(\gamma, \lambda)} E$ is a DN-group.

Let P, M, T are IF N-subgroups of E.

Then by **proposition 1.2**, $^{(\gamma, \lambda)} P, ^{(\gamma, \lambda)} M, ^{(\gamma, \lambda)} T$ are N-subgroups of $^{(\gamma, \lambda)} E$.

Since $^{(\gamma, \lambda)} E$ is a DN-group,

$$(^{(\gamma, \lambda)} P + ^{(\gamma, \lambda)} M) \cap^{(\gamma, \lambda)} T = (^{(\gamma, \lambda)} P \cap^{(\gamma, \lambda)} T) + (^{(\gamma, \lambda)} M \cap^{(\gamma, \lambda)} T)$$

$$\Rightarrow^{(\gamma, \lambda)} [(P + M) \cap T] =^{(\gamma, \lambda)} [(P \cap T) + (M \cap T)] \text{ [using proposition 1.1]}$$

$$\Rightarrow (P + M) \cap T = (P \cap T) + (M \cap T) \text{ [using lemma 1.2].}$$

Thus E is an IF DN-group.

Definition 1.11 E is called an IF uniserial N-group if any two of its IF N-subgroups are comparable to each other.

Theorem 1.2 An IF uniserial N-group is an IF DN-group.

Proof. Let E be an IF uniserial N-group.

Let $P = \langle \phi_P, \psi_P \rangle, B = \langle \phi_B, \psi_B \rangle, T = \langle \phi_T, \psi_T \rangle$ be IF N-subgroups of E.

Since E is an IF uniserial N-group, any two of its IF N-subgroups are comparable to each other.

So, it may assume $P \subseteq B \subseteq T$.

Thus, $\phi_P \leq \phi_B \leq \phi_T$ and $\psi_P \geq \psi_B \geq \psi_T$.

Therefore $P + B = \langle \phi_{P+B}, \psi_{P+B} \rangle$, where

$\phi_{P+B}(s) = \vee \{\phi_P(a) \wedge \phi_B(q) : a, q \in E, s = a + q\}$ and $\psi_{P+B}(s) = \wedge \{\psi_P(a) \vee \psi_B(q) : a, q \in E, s = a + q\}, \forall s \in E$.

So $(P + B) \cap T = \langle \phi_{P+B} \wedge \phi_T, \psi_{P+B} \vee \psi_T \rangle$.

Now, $P \cap T = \langle \phi_P \wedge \phi_T, \psi_P \vee \psi_T \rangle = \langle \phi_P, \psi_P \rangle = P$ and $B \cap T = \langle \phi_B \wedge \phi_T, \psi_B \vee \psi_T \rangle = \langle \phi_B, \psi_B \rangle = B$.

Therefore, $(P \cap T) + (B \cap T) = P + B$.

Again, for any $s, a, q \in E$,

$$\phi_{P+B}(s) = \vee \{\phi_P(a) \wedge \phi_B(q) : s = a + q\}$$

$$\leq \vee \{\phi_T(a) \wedge \phi_T(q) : s = a + q\}$$

$$\leq \vee \{\phi_T(a + q) : s = a + q\} \text{ [Since T is an IF N-subgroup]}$$

$= \phi_T(s)$.

Therefore $\phi_{P+B} \wedge \phi_T = \phi_{P+B}$.

Similarly $\psi_{P+B} \vee \psi_T = \psi_{P+B}$.

Thus, $(P+B) \cap T = P+B$.

Hence the result.

Definition 1.12 $\text{Ann}(E) = \{n \in N : ns = 0, \forall s \in E\}$.

Lemma 1.3 If $E = E_1 + E_2$ is commutative with E_1, E_2 being unitary DN-groups such that $\text{Ann}(E_1) + \text{Ann}(E_2) = N$, then $E = E_1 + E_2$ is a DN-group.

Proof. Let P, M, T be N-subgroups of $E = E_1 + E_2$.

Then $P = P_1 + P_2, M = M_1 + M_2, T = T_1 + T_2$, for some subsets P_1, M_1, T_1 of E_1 and P_2, M_2, T_2 of E_2 .

Since $\text{Ann}(E_1) + \text{Ann}(E_2) = N$ and $1 \in N$, then $\exists n_1 \in \text{Ann}(E_1), n_2 \in \text{Ann}(E_2)$ such that $n_1 + n_2 = 1$.

Now, for any $a_1 \in P_1$,

$$1. a_1 = (n_1 + n_2)a_1$$

$$\Rightarrow a_1 = n_1a_1 + n_2a_1 \text{ [since } E_1 \text{ is unitary].}$$

But, $a_1 \in P_1 \subseteq E_1$

$$\Rightarrow a_1 \in E_1$$

$$\Rightarrow n_1a_1 = 0 \text{ [since } n_1 \in \text{Ann}(E_1)\text{].}$$

Therefore $n_2a_1 = a_1 \in P_1$.

$$\text{But } n_2a_1 \in NP_1.$$

Therefore $NP_1 \subseteq P_1$.

This shows that P_1 is an N-subgroup of E_1 .

Similarly, it can be shown that M_1, T_1 are N-subgroups of E_1 and P_2, M_2, T_2 are N-subgroups of E_2 .

Now, $(P+M) \cap T = [(P_1+P_2) + (M_1+M_2)] \cap (T_1+T_2) = [(P_1+M_1) \cap T_1] + [(P_2+M_2) \cap T_2] =$

$$[(P_1 \cap T_1) + (M_1 \cap T_1)] + [(P_2 \cap T_2) + (M_2 \cap T_2)] \text{ [since } E_1, E_2 \text{ are DN-groups]}$$

$$= [(P_1+P_2) \cap (T_1+T_2)] + [(M_1+M_2) \cap (T_1+T_2)] = (P \cap T) + (M \cap T).$$

This shows that $E = E_1 + E_2$ is a DN-group.

Theorem 1.3 Let E, K be unitary IF DN-subgroups and $\text{Ann}(E) + \text{Ann}(K) = N$ with ${}^{(\gamma,\lambda)}E = E, {}^{(\gamma,\lambda)}K = K$, then $E + K$ is an DN-group with $\gamma, \lambda \in (0,1], \gamma + \lambda = 1$.

Proof. Since E, K are unitary IF DN-groups and $\text{Ann}(E) + \text{Ann}(K) = N$, by **theorem 1.1**, ${}^{(\gamma,\lambda)}E, {}^{(\gamma,\lambda)}K$ are also DN-groups with $\gamma + \lambda = 1$ and $\gamma, \lambda \in (0,1]$.

Since E, K are unitary, ${}^{(\gamma,\lambda)}E, {}^{(\gamma,\lambda)}K$ are also unitary.

Also, by hypothesis $\text{Ann}({}^{(\gamma,\lambda)}E) + \text{Ann}({}^{(\gamma,\lambda)}K) = N$.

Therefore, By **lemma 1.3**, ${}^{(\gamma,\lambda)}E + {}^{(\gamma,\lambda)}K$ is a DN-group with $\gamma, \lambda \in (0,1], \gamma + \lambda = 1$.

So, $E + K$ is an DN-group with $\gamma, \lambda \in (0,1], \gamma + \lambda = 1$.

2 Intuitionistic fuzzy weak DN-groups

Definition 2.1 E is said to be a weak DN-group if and only if $(P+M) \cap T = (P \cap T) + (M \cap T)$, for all ideals P, M, T of E .

Definition 2.2 E is referred to as an IF weak DN-group if and only if $(P+M) \cap T = (P \cap T) + (M \cap T)$, for all IF ideals P, M, T of E .

Definition 2.3 ${}^{(\gamma,\lambda)}E$ is said to be a weak DN-group if and only if $(P+M) \cap T = (P \cap T) + (M \cap T)$, for all ideals P, M, T of ${}^{(\gamma,\lambda)}E$.

Theorem 2.1 If E is an IF weak DN-group, then ${}^{(\gamma,\lambda)}E$ is also a weak DN-group with $\gamma, \lambda \in (0,1], \gamma + \lambda \leq 1$.

Proof. Let X, I, L be ideals of ${}^{(\gamma, \lambda)}E$ and defined as in **theorem 1.1**.

Then as above, ${}^{(\gamma, \lambda)}P = X, {}^{(\gamma, \lambda)}M = I, {}^{(\gamma, \lambda)}T = L$ with $\gamma, \lambda \in (0, 1], \gamma + \lambda = 1$.

Claim P, M, T are IF ideals of E .

Since X is an ideal of ${}^{(\gamma, \lambda)}E$, therefore X is normal subgroup of $(E, +)$ and $n(s + e) - ne \in X, \forall n \in N, s \in X, e \in E$

$$\Rightarrow \phi_P\{n(s + e) - ne\} = 1 = \phi_P(s) \quad [\text{since } s \in X].$$

Also, since X is normal subgroup of $(E, +)$, $s - a, s + a \in X, \forall s, a \in X$.

$$\Rightarrow \phi_P(s - a) = 1, \phi_P(s + a) = 1$$

$$\Rightarrow \phi_P(s - a) = 1 \wedge 1 = \phi_P(s) \wedge \phi_P(a) \text{ and } \phi_P(s + a) = 1 = \phi_P(a + s) \quad [\text{since } s, a \in X].$$

Again, $n \in N, s \in X$,

$$ns \in X$$

$$\Rightarrow \phi_P(ns) = 1 = \phi_P(s).$$

Now $s, a \in X \Rightarrow a + s - a \in X \Rightarrow \phi_P(a + s - a) = 1 = \phi_P(s)$.

Similarly, it can be shown that

$$\psi_P(s - a) = \psi_P(s) \vee \psi_P(a), \psi_P(ns) = \psi_P(s), \psi_P(a + s - a) = \psi_P(s), \psi_P(n(s + a) - ns) = \psi_P(a).$$

This shows that P is an IF ideal of E .

Similarly, M, T are IF ideals of E .

Since E is an IF weak DN-group,

$$(P + M) \cap T = (P \cap T) + (M \cap T)$$

$$\Rightarrow {}^{(\gamma, \lambda)}[(P + M) \cap T] = {}^{(\gamma, \lambda)}[(P \cap T) + (M \cap T)] \quad [\text{using lemma 1.2}]$$

$$\Rightarrow {}^{(\gamma, \lambda)}(P + M) \cap {}^{(\gamma, \lambda)}T = {}^{(\gamma, \lambda)}(P \cap T) + {}^{(\gamma, \lambda)}(M \cap T) \quad [\text{using proposition 1.1}]$$

$$\Rightarrow {}^{(\gamma, \lambda)}P + {}^{(\gamma, \lambda)}M \cap {}^{(\gamma, \lambda)}T = {}^{(\gamma, \lambda)}P \cap {}^{(\gamma, \lambda)}T + {}^{(\gamma, \lambda)}M \cap {}^{(\gamma, \lambda)}T \quad [\text{using proposition 1.1}]$$

$$\Rightarrow (X + I) \cap L = (X \cap L) + (I \cap L).$$

Thus, ${}^{(\gamma, \lambda)}E$ is a weak DN-group with $\gamma, \lambda \in (0, 1], \gamma + \lambda \leq 1$.

Lemma 2.1 If $P = \langle \phi_P, \psi_P \rangle$ is an IF ideal of E , then ${}^{(\gamma, \lambda)}P$ is also an ideal of ${}^{(\gamma, \lambda)}E$.

Proof. Let $P = \langle \phi_P, \psi_P \rangle$ be an IF ideal of E .

$$\text{So } {}^{(\gamma, \lambda)}P \subseteq E.$$

Let $s, a \in {}^{(\gamma, \lambda)}P$.

$$\text{Then } \phi_P(s) \geq \gamma, \psi_P(s) \leq \lambda, \phi_P(a) \geq \gamma, \psi_P(a) \leq \lambda.$$

Since P is an IF ideal of E and $s, a \in E$, therefore

$$\phi_P(s - a) \geq \phi_P(s) \wedge \phi_P(a) \geq \gamma \wedge \gamma = \gamma \text{ and } \psi_P(s - a) \leq \psi_P(s) \vee \psi_P(a) \leq \lambda \vee \lambda = \lambda.$$

Therefore $s - a \in {}^{(\gamma, \lambda)}P$.

Also, if $a \in E$ and $s \in {}^{(\gamma, \lambda)}P$, then $s, a \in E$.

$$\text{Therefore, } \phi_P(a + s - a) \geq \phi_P(s) \geq \gamma \text{ and } \psi_P(a + s - a) \leq \psi_P(s) \leq \lambda.$$

So $a + s - a \in {}^{(\gamma, \lambda)}P$.

Again, if $a \in E, s \in {}^{(\gamma, \lambda)}P$ and $n \in N$, then $s, a \in E$.

$$\text{Therefore, } \phi_P(n(s + a) - na) \geq \phi_P(s) \geq \gamma \text{ and } \psi_P(n(s + a) - na) \leq \psi_P(s) \leq \lambda.$$

Thus $n(s + a) - na \in {}^{(\gamma, \lambda)}P$.

Thus, ${}^{(\gamma, \lambda)}P$ is an ideal of ${}^{(\gamma, \lambda)}E$.

Theorem 2.2 If ${}^{(\gamma, \lambda)}E$ is a weak DN-group, then ${}^{(\gamma, \lambda)}(D \cap M) + {}^{(\gamma, \lambda)}T = ({}^{(\gamma, \lambda)}D + {}^{(\gamma, \lambda)}T) \cap ({}^{(\gamma, \lambda)}M + {}^{(\gamma, \lambda)}T)$, for all ideals ${}^{(\gamma, \lambda)}D, {}^{(\gamma, \lambda)}M, {}^{(\gamma, \lambda)}T$ of ${}^{(\gamma, \lambda)}E$ with $T \subseteq M$.

Proof. Let $s \in {}^{(\gamma, \lambda)}(D \cap M) + {}^{(\gamma, \lambda)}T$.

Then $s = y + m$, where $y \in {}^{(\gamma, \lambda)}(D \cap M), m \in {}^{(\gamma, \lambda)}T$

$$\Rightarrow y \in {}^{(\gamma, \lambda)}D \text{ and } {}^{(\gamma, \lambda)}M, m \in {}^{(\gamma, \lambda)}T$$

$$\Rightarrow s = y + m \in ({}^{(\gamma, \lambda)}D + {}^{(\gamma, \lambda)}T) \cap ({}^{(\gamma, \lambda)}M + {}^{(\gamma, \lambda)}T).$$

Again, let $y \in ({}^{(\gamma, \lambda)}D + {}^{(\gamma, \lambda)}T) \cap ({}^{(\gamma, \lambda)}M + {}^{(\gamma, \lambda)}T)$.

Since Sum of two ideals of ${}^{(\gamma, \lambda)}E$ is also an ideal and ${}^{(\gamma, \lambda)}E$ is a weak DN-group, therefore

$$y \in [{}^{(\gamma, \lambda)}D \cap ({}^{(\gamma, \lambda)}M + {}^{(\gamma, \lambda)}T)] + [{}^{(\gamma, \lambda)}T \cap ({}^{(\gamma, \lambda)}M + {}^{(\gamma, \lambda)}T)]$$

$\Rightarrow y \in [{}^{(\gamma, \lambda)}D \cap {}^{(\gamma, \lambda)}M] + {}^{(\gamma, \lambda)}T] [$ since $T \subseteq M]$.
 Thus ${}^{(\gamma, \lambda)}(D \cap M) + {}^{(\gamma, \lambda)}T = ({}^{(\gamma, \lambda)}D + {}^{(\gamma, \lambda)}T) \cap ({}^{(\gamma, \lambda)}M + {}^{(\gamma, \lambda)}T)$.

Theorem 2.3 If ${}^{(\gamma, \lambda)}E$ is a weak DN-group with $\gamma + \lambda = 1$, then E is an IF weak DN-group.

Proof. Let D, M, T be IF ideals of E , then by **lemma 2.1**, ${}^{(\gamma, \lambda)}D, {}^{(\gamma, \lambda)}M, {}^{(\gamma, \lambda)}T$ are ideals of ${}^{(\gamma, \lambda)}E$.

Since ${}^{(\gamma, \lambda)}E$ is a weak DN-group,

$$\begin{aligned} ({}^{(\gamma, \lambda)}D + {}^{(\gamma, \lambda)}M) \cap {}^{(\gamma, \lambda)}T &= ({}^{(\gamma, \lambda)}D \cap {}^{(\gamma, \lambda)}T) + ({}^{(\gamma, \lambda)}M \cap {}^{(\gamma, \lambda)}T) \\ \Rightarrow {}^{(\gamma, \lambda)}[(D + M) \cap T] &= {}^{(\gamma, \lambda)}[(D \cap T) + (M \cap T)] [\text{ using } \text{proposition 1.1}] \\ \Rightarrow (D + M) \cap T &= (D \cap T) + (M \cap T) [\text{ using } \text{lemma 1.2}] \\ \Rightarrow E \text{ is an IF weak DN-group.} \end{aligned}$$

Conclusion

The main goal of this paper is to extend the notion of distributive near-ring groups to intuitionistic fuzzy distributive near-ring groups as well as intuitionistic fuzzy weak distributive near-ring groups. Some lemmas and theorems related to IF N-subgroups, IF DN-groups and IF weak DN-groups are studied. The **theorem 2.2** describes the relationships between IF DN-groups and IF uniserial DN-groups. **Theorems 3.1 to 3.2** illustrate the association between IF weak DN-group and weak DN-group.

References

- [1] Davvaz, B., Wieslaw, A. D. and Jun, Y. B. Intuitionistic fuzzy Hv-submodules, *Inform. Sci.*, **176**, 285-300, (2006).
- [2] Devi, R. ,Intuitionistic fuzzy near-ring and its properties, *Journal of the Indian Math.Soc.*, **74(3-4)**, 203-219, (2007).
- [3] Hadi, I. M. A. and Semeein, Sh. B. Fuzzy distributive modules. *IBN Al-Haitham J. for pure and appl. Sci.*, **24(1)**, (2011).
- [4] Issac, P. and John, P. P. On intuitionistic fuzzy submodules of a module. *Int. J. of Mathematical Sciences and Applications*, **1(3)**, 1447-1454, (2011).
- [5] Pilz, G. *Near-rings*. North Holland Publishing Company, Amsterdam, (19771st Ed and 1983 2nd Ed).
- [6] Rahman, S. and Saikia, H. K. Some aspects of atannassov's intuitionistic fuzzy submodule. *International Journal of Pure and applied mathematics*, **77(3)**, 369-383, (2012).
- [7] Saikia, P. and Barthakur, L. K. (T, S)-intuitionistic fuzzy N-subgroup of an N-group. *Malaya Journal of mathematik*, **8(3)**, 945-949, (2020).
- [8] Saikia, P. and Saikia, H. K. Intuitionistic fuzzy N-subgroup and intuitionistic fuzzy ideals. *International Journal of Trends and Technology(IJMTT)*, **57(6)**, 418-421, (2018).
- [9] Sharma, P. K. Intuitionistic fuzzy module over intuitionistic fuzzy ring. *International Journal of fuzzy Mathematics and systems*, **2(2)**, 133-140, (2012).
- [10] Sharma, M. and Sharma, P. K. Intuitionistic (T, S)-fuzzy submodule of a module. *20th ICIFS*, Sofia, Bulgaria, **5(1)**, 65-73, (2015).
- [11] Sharma, P. K. Intuitionistic fuzzy ideals of near-rings. *International Mathematical forum*, **7(16)**, 769-776, (2012).